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On the basis of Wilson's operator product expansions, local improved operator products 

are defined as well-defined parts of usual operator products. The local products thus defined 

are independent of the order of the operators in the original products. All expressions, 

identities, relations and equations to be considered in the quantum field theory are uniquely, 

by virtue of the order independence, given by these local products. They are exactly of the 

same form as those of the formal theory except the case of the trace identity anomaly. 

The Adler-Bell-Jackiw anomaly is an example of the trace anomaly. When the improved 

operator products are rewritten in terms of the usual products, our theory reduces to the 

renormalization theory. 

§I. Introduction and summary 

In general, the product of the Heisenberg operators 

(1·1) 

m the covariant field theory is singular at X1 =x" = ··· =x, owing to the singularities 

of the canonical commutation relations and then it is impossible to consider the 

local product 

A1(x)A"(x) ···A,(x) (1·2) 

m a na1ve sense. It is not easy to regularize the commutation relations. So we 

propose, without regularizing them, the adoption of the improved and regularized 

operator products. For the singularities of operator products Wilsonv has pre

sented a powerful hypothesis which states that any operator product allows an 

expanswn in the form 

Al(xl) A2(x2) ···An(xn) =Eo(xl, x2, ···, Xn) 

+I: Ei (xl> x2, ... 'Xn) oi (xl) + R (xl, x2, ... 'Xn). (1·3) 

Here the E/s are c-number functions which may be singular at x 1 =x2= ··· =x, 

the 0/s are local operators (anti-) commuting with themselves and other local 
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280 Y. Taguchi, A. Tanaka and K. Yamamoto 

operator of the model at y if x- y is space-like and R is an operator which becomes 

·weakly zero as x 1 =x2 = ··· =xn-

On the basis of this hypothesis, we define, in the next section, the non-local 

improved product (non-local rP) 

IJC [A1 (xl) Az (x2) ···An (xn)] (1· 4) 

as a well-defined part of the expansion (1· 3), where tc is a constant, with the 

dimension of mass, necessary in the process of the subtraction of a logarithmically 

divergent part. Then the improved product (rP) is tc-dependent. The local im

proved product (local rP) 

(1·5) 

exists, contrary to the formal product (1· 2), and is the one which takes the place 

of (1· 2). The rP thus defined has the following important properties. Firstly, 

the local rP IS independent of the order of the operators in the original product, 

for example, 

(1·6) 

but if x- y IS time-like 

(1·7) 

This is because the rP has no singular part to bring about the order dependence. 

This property is indispensable for the correct definition of the product, since the 

Feynman rules with regularization procedure2l always give correct results and the 

manifestly covariant Feynman rules possess the independence of this kind. Second

ly, for the operators with the Lorentz index, A 1, and B~, in some cases, -

the trace identity is modified as 

O~vrJC[A~Bv···] =r"[AvBv···] +anomalous term. (1·8) 

From the definition of the rP it is obvious that the anomalous term is always 

finite and covariant. This is also indispensable because the regularization scheme 

brings3l the anomaly of this kind. 

Our basic proposition is that all the quantities to be considered in the quantum 

field theory, such as each term of the equations of motion and the generators of 

the transformation groups, are given by the local rP without any modification. 

The product like r" [···]riC [ · · ·] is unnecessary. According to this, the quantum 

equation for a formal one, f)~J~(x) =O(x) is r"[fJPJ;,(x)] =r"[O(x)]. Then, in 

some cases, the divergence equation becomes 

FJ~r"[J~(x)] =r"[O(x)] +anomalous term (1· 9) 

on account of the trace anomaly seen in (1· 8). This is the operator form of 

Adler-Bell-Jackiw's result. 4l We emphasize that, by virtue of (1· 6), there is no 

arbitranness in the process of the quantization. We can rigorously prove that the 

generators thus obtained satisfy the necessary algebraic relations. 
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Finite and Covariant Formulation of Local Field Theory 281 

We study the IP formulation of a free field theory in four dimensions in § 2, 

of the 7i:-N system in two dimensions in § 3 and of the vector-meson nucleon system 

m two dimensions in § 4. In § 5 the connection between our theory and the 

renormaliza tion theory is discussed. 

Finally we want to remark on the constant /C. Our formalism explicitly de

pends on /C. Therefore, all the results depend on /C. However, even in our theory, 

the finite renormalization is necessary. The matrix element, renormalizable in the 

sense of the usual renormalization theory, will be /C-independent, so long as we 

write it by the renormalized mass and coupling. The unrenormalizable matrix 

element, however, remains /C-dependent although it becomes finite. 

§ 2. Finite formulation of free field theory based on IP 

For the case of a free complex scalar field with mass /1 in four dimensions, 

we investigate the following subjects: 

A) Definition of IP, 

B) How to formulate finite theory, 

C) Properties of IP, 

D) How to express generators of the Poincare group and the gauge group, 

E) Transformation properties of IP, 

F) Algebra of generators. 

Since there is no problem in the free field theory, we can safely use the conven

tional ones for the equations of motion, the equal-time commutators, the definition 

of vacuum and so on. Most of the discussion in this section holds also for inter

acting cases. 

A) Definition of IP 

In the free field theory, the operator products ¢(x)¢(y) and ¢*(x)¢*(y) 

have no singularity at x=y. Only the products ¢*(x)¢(y) and ¢(x)¢*(y) have 

c-number singularities. Its form is obtained from the vacuum expectation value 

(2 ·1) 

vvhere 

A,,=('\: -y, Xo-Yo-ic). (2·2) 

At this stage, it will be wortlnvhile to note that 

i 
---------- f __ = -io(x-y). 
7L2 [(x- YY + f2]' 

(2·3) 
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282 Y. Taguchi, A. Tanaka and K. Yamamoto 

Therefore (2 ·1) reproduces the canonical commutation relation. 

Now, taking the case of a JP* (x) a,¢ (y), let us illustrate how to define the 

IP. Using (2·1), we extract the ill-defined part of fJ~¢*(x)fJ,¢(y) as 

a (ll) --0 ------log 1.-JJL - 1 ~ [ 2 ;l ,U.4 - . 2] 
f'V 4n2 f'V 02)' 2ll2 8 

_ _l }I'Av [-8 __ fJ.
2 + jl 4

] 

4n2 llz (A2)2 llz 8 . 
(2·4) 

In (2 · 4) /C is any constant with the dimension of mass. The last term in the 

second square bracket of (2 · 4) is not well-defined, since it depends on the direction 

of the limit. The well-defined part of a~¢*(x)av¢(y), which is called the non-local 

IP and denoted by IIC [a;,¢* (x) a,¢ (y) J' is 

(2·5) 

As is seen m (2 · 4), in general, the unique separation of the ill-defined part IS 

done in the form 

(2·6) 

where Am, Bm and Cm are x, y-independent constants or the non-local IP already 

defined. Only after subtracting these terms from a 11¢* (x) av¢ (y), we can define 

the local product 

(2·7) 

The IP thus defined depends on the choice of /C and hence we denote it by the 

suffix. 

Next let us show that the ill-defined part (2 · 5) is derivable from only the 

informations of the canonical commutation relations and the equations of motion. 

First we put 

1 
l;;[¢*(x)¢(y)] =¢*(x)¢(y) ----L(x,y). 

4n2ll 2 

(2·8) 

From the definition, the singularities of ¢*(x)¢(y) are subtracted by the second 

and the third terms. The second term -1/ 4!72A2 is the one responsible for the 

canonical commutation relation between a11¢* and ¢ as is seen in the discussion 

around (2 · 3). The third term L (x, y) is the rq.t of the ill-defined part of ¢* (x) 

X¢ (y) and therefore 

[L(x,y)]qs=O, (2· 9) 

where [ ] qs denotes the extraction of the singular part, at least quadratically. 

Operating Dx-,U2 in (2·8), we have 

(2 ·10) 
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Finite and Covariant Formulation of Local Field Theory 283 

From the definition, in general, I/C[···J is less singular than log tc~/! and A.j,,/A.2, 

then 

Using (2·9), (2·10) and (2·11), we obtain 

This determines L(x,y) uniquely, because of (2·9), as 

Secondly, using 

!'12 I 
L(x, y) = 8_ 2 log ICY }. 2 • 

/( 

(2·11) 

(2·12) 

(2 ·13) 

(2·14) 

and (2·8) with (2·13), we can fix the singularities of fJ,,cp*(x)a,rjJ(y) up to the 

quadratic order. Thus 

where Lpv is the rest of the ill-defined part of fJ Prj;* (x) 8,¢ (y) and therefore 

(2 ·16) 

Operating Dx- ;l again in (2 ·15), we have 

(Ox- ;l) I/C [fJP¢* (x) av¢ (y)] 

=- ,rl[ 0""-2A."A."]-co -!'l')L.(x v). 
8nz },' CA2Y x "' '-

(2 ·17) 

From (2·11), (2·16) and (2·17) we find 

[0 L (x ) ] = - /1. 4 
[ 0'"- 2 },,.A.,]. 

x "' 'y qs 8n2 A2 CA2Y 
(2 ·18) 

This determines Lj/V(x, y) uniquely. The ill-defined part of Oprp* (x) a,rp(y) thus 

obtained is exactly aP, (A) gi,~en by (2 · 4). 

The IP has some similarities to the normal ordered product. The former is, 

howe\-er, defined by subtracting only ill~defined terms from the usual operator product, 

whereas in the latter for two operators in a free theory the whole vacuum expecta

tion value is subtracted. We emphasize that the ill-defined terms are directly 
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284 Y. Taguchi, A. Tanaka and K. Yamamoto 

derivable from the informations of the canonical commutation relations and the 

equations of motion, but the whole vacuum expectation value is not. 

Finally from (2 · 5) we have 

IIC[a~¢* (x)av¢(y)] -IJC[av¢(y)a.a¢* (x)] 

= [aA>*(x), av¢(y)J -a~vU) +a:.aU) 

= _ __!!_'" '"[-F;_l(/1Ji2)- KI(/1J(A.2)*)]- (1) + *. (1) (2·19) 
47[ 2 U,Nv J }.' J (A 2) * a 11v /' av 11 A • 

Then it IS obvious that 

I"[a,,¢* (x)avr,b(x)] =IJC[av¢(x)a11¢* (x)] (2. 20) 

which IS the special case of (1· 6), but if x- y is time-like 

(2. 21) 

which is the special case of (1· 7). This statement is valid also for the interacting 

cases. Thus we see that the local IP is independent of the order of the operators 

in the original product, although the non-local IP depends. For simplicity in the 

following >ve omit if which comes from the order of operators. 

B) Proposition for finite and covariant formulation of local field theory 

Our basic proposition is that all quantities in the finite theory are obtained 

from those in the formal theory by replacing them by corresponding local IP's. 

It should be noted that this proposition is meaningless without (1· 6). Identities, 

relations and equations in the formal theory are valid also in the finite theory 

without any modification except the case of the trace anomaly seen in (1· 8). 

When we consider the expression involved in the trace anomaly, the trace should 

be always taken in the inside of the IP. 

C) Some properties of IP 

It is clear from the discussion in A) that 

(2. 22) 

The ongin of the last term is that - (11"/32n') A1)v/ A2 in (2 · 4) becomes - f14/32n 2 

for a~¢*(x)a/,b(y) and becomes well-defined. So it should not be subtracted from 

a11¢*(x)at/!J(y). Comparing (2·22) with (2·5), we have 

!'4 
o"J" [a"¢* (x) a,q\ (y)] =IK[a"q\* (x) a"q\ (y)] + 3;n'. (2 ·23) 

This is a simple example3J of the trace anomaly (1· 8). We do not have this 

kind of anomalous equation for the normal product of free field operators. 

From (2 ·1), '\Ve easily verify that 
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Finite and Covariant Formulation of Local Field Theory 285 

Obviously this identity holds for the IP of any operators. 

Using the definition of the IP, we can easily calculate the equal-time com

mutator between the IP's, for example, 

[I,c{ ¢* (x) ¢ (y)}, I~~: {(Yo¢* (x') ¢ (y')} ]x,~y,~x,'~y,' 

=i¢*(x)¢(y')o(x' -y). (2. 25) 

This indicates that the commutator between the IP's is not always written by IP 

alone. Therefore the commutator between the local IP's is meaningless. This is 

the reason why we consider the non-local IP as well as the local IP in spite of 

our proposition that all the physical quantities are given by the local IP. This is 

not an obstacle to formulate the theory. 

D) Generators of transformation groups 

According to the proposition in B), the energy-momentum tensor and the 

conserved current are 

T/IV(x) =I~~:[a~¢* (x) av¢(x) J +I~~:[av¢* (x) a~¢(x) J 

-r5'~v{I,[aP¢* (x) Upf/;(x)] + tll"[¢* (x) ¢(x) ]} 

-c!JjJ.V > (2·26) 

JjJ. (x) = iiiC [a~¢* (x) ¢ (x) J - iiiC [¢* (x) ajJ.¢ (x)]. (2. 27) 

When the vacuum is defined, we should determine the last term of (2 · 26) so 

that the vacuum expectation value of TjJ.v(x) may be zero. 

Using (2 · 26) and (2 · 27), we can construct the generators of the Poincare 

group and the gauge group. Then we obtain the usual commutation relations 

between the generators and each of ¢(x), a0¢(x), ¢*(x), a0¢*(x). 

E) Transformation properties of IP 

As an illustration we study the transformation property of I~~:[ai¢*(x)uj¢(x) 

a0¢ (x) J under the time translation. The definition of I~~: [ai¢*aj¢a0¢] Is 

Il\;[ai¢* (x) aj¢ (y) Do¢ (z)] = ai¢* (x) aj¢ (y) ao¢ (z) 

-aij(x-y)a0¢(z) +aiO(x-z)aj¢(y) (2. 28) 

with the singular function ajJ.v (2 · 4). Since the Hamiltonian H has already been 

defined in D), we can calculate the commutator between Hand I" [ai¢*aj¢a0rp] as 

i[H, I" {ai¢* (x) aj¢ (y) ao¢ (z)}] 

= aoai¢* (x) aj¢ (y) ao¢ (z) + a;r;)* (x) aoaj¢ (y) ao¢ (z) 

+ ai¢* (x) aj¢ (y) (P'- ,a')¢ (z) -aij (x- y) (P'- p.') ¢ (z) 

+ aiO (x- z) aoaj¢ (y). 

Now we try to write, by the IP, each term of (2·29): 

(2. 29) 
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286 Y. Taguchi, A. Tanaka and K. Yamamoto 

the first term= IIi: [aoai¢* (X) aj¢ (y) 8o¢ ( z) J 

+ 8oaij (x- y) 8o¢ (z) + 8iaoo (x- z) 8j¢ (y), 

the second term=Ifi;[a;¢*(x)808i¢(y)80¢(z)] 

- 80aij (x- y) 80¢ (z) -aio (x- z) 80aj¢ (y), 

the third term=Ifi;[8;¢*(x)aj¢(y) (J72 -;l)¢(z)] 

(2·30)*) 

(2·31) 

+aij(x-y) (J7 2 -;i)¢(z) -aiakk(x-z)8j¢(y) 

_ _!!_8; +E..logtcV(x-z)2 8i¢(y), 
2 [ 1 2 . •] 

4n2 (x-zY 2 
(2· 32) 

where akk=a11 +a22+a33 • Substituting (2·30)"-'(2·32) into (2·29) and using the 
explicit form (2 · 4) of a 11V> \Ye obtain 

i[H, I" {8i¢* (x) 8j¢ (y) 80¢ (.z)}] 

=IIi: [8o8;¢* (x) 8j¢ (y) 8o¢ (z)] +IIi: [a;¢* (x) 8aaj¢ (y) 80¢ (z)] 

+IIi: [8;¢* (x) 8j¢ (y) (J72 - p 2) ¢ (z)]. (2. 33) 

This contains no ill-defined term. Then taking the local limit of (2 · 33), we have 

8oi/i:[8;¢* (x) 8i¢ (x) 80¢ (x)] 

=IIi:[8o8;¢* (x) 8i¢ (x) 8o¢ (x)] +I" [a;¢* (x) 8a8j¢ (x) 80¢ (x)] 

+I"[8i¢* (x) 8j¢(x) (172 -;l)¢(x)]. (2. 34) 

This is the rigorous quantum equation corresponding to the formal equation 

80 [8;¢* (x) aj¢ (x) 80¢ (x)] = a08;¢* (x) 8j¢ (x) 8o¢ (x) 

+ 8;¢* (x) 8a8j¢ (x) 80¢ (x) +a;¢* (x) 8j¢ (x) (172 - p 2 ) ¢ (x). (2·35) 

The derivation of the equation like (2 · 34) for the other kind of transformation 
is much easier than that of (2 · 34). 

Equation (2 · 34) tells us the following two facts. Firstly, the rigorous equa
tion corresponding to the formal equation is obtained by simply replacing the formal 
operator products with the local IP' s. In this case we have Eq. (2 · 33) 
for the non-local IP, too. However, the equation we want to have is not the 
non-local one but the local one on account of the order dependence of the non-local 
IP. Secondly, although 

[I" ( · · ·) , IIi: ( · · ·) ] (2. 36) 

cannot be written by the IP as sho\Y11 in (2 · 25), 

[generator, IIi:(-··)] (2. 37) 

*> Throughout this paper i}" is the differentiation with respect to the argument of the nearest 
operator or function unless iJ"[···J. 
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Finite and Covariant Formulation of Local Field Theory 287 

can be written by the IP alone. From the local limit of the commutator (2 · 37) 

written by the IP, we see that the local IP has the transformation property 

expected from its constituents. 

F) Algebra of generators 

Since the local IP has the expected transformation property and the generator 

is constructed from the IP's, the algebra of generators is exactly the one which 

is expected from the formal theory. 

§ 3. Finite theory for 7&-N system in two dimensions 

According to the proposition in B) in § 2, the equations of motion and the 

symmetrical energy-momentum tensor for the n-N system in two dimensions are 

and 

(r·8+m)1;(x) = -igl"[r5</J(x)¢(x)], 

(0 -;.l)¢(x) =igl"[¥J (x)r5<f!(x)] 

@~lj (x) = ti" [¥J (x) r"(8.-8.) <f!(x)] + ti"[¥J (x)r.(8" -8") <f!(x)] 

- top.r/C [¥J (x)r· (8 -8) <f!(x)]- mop.l/C [¥J (x) <f!(x)] 

(3·1)*) 

(3·2) 

+ I/C[8"¢ (x) 8.¢ (x)]- to",I"[8p¢ (x) 8/p(x)]- ttlo"J/C[¢ (x) ¢ (x)] 

-igo11,l"[¥J(x)r5<f!(x)¢(x)] -c'o11,. (3·3) 

The last term in (3 · 3) is the one corresponding to co 11, in (2 · 26). In order to 

understand (3 ·1) '""'-' (3 · 3) we need the definition of each IP. For these, after 

the straightforward but rather lengthy calculations explained in the Appendix, 

we have 

IJC[</J(x) ¢(y)] = <f! (x) ¢(y), 

I"[¢(x)¢(y)] =¢(x)¢(y) -IDCT's, 

I/C[¢(x)¥J(y)] =¢(x)¥J(y) +l_{-r·8+m-l_igr5[¢(x) +¢(y)J} 
2n 2 

X log JCJJ!, 

I/C[811 </J (x) Vi (y)] = 011</J(x) VJ (y) 

- igr5[ 2J..."¢(x)- J..."r·J...r·8¢(x) +r·8¢(x)r" log ,cJX2] 

4rr J...z J...z 

(3·4) 

(3·5) 

(3·6) 

- 92 [r" log JCJI2 + J..."r; A. Jr.[¢ (x) ¢ (y)] - IDCT's, (3 · 7) 
4rr J...-

I/C[8"¢(x) 8,¢(y)] =8"¢(x) 8,¢(y) -IDCT's, (3·8) 

*l For the Dirac matrices we take r,=O',, r•=0'2 and r.=O'a. 
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288 Y. Taguchi, A. Tanaka and K. Yamamoto 

ii" [\b (x) ¢ (y) ¢ (z)] = iy) (x) ¢ (y) ¢ (z)- j_[r:J.- m log tcJJ!]¢ (z) 
2rr J.. 2 

(3 ·9) 

where J.., = (x1- Y~> X0 - Yo- iE) and IDCT's are ill-defined e-n umber terms. 

When we use (3 · 4) ~ (3 · 9) for the tensor like @ ""' we must be careful 

about the trace identity anomaly (1· 8). E~pecially, in the two-dimensional space

time this problem becomes perplexing because of the identity for any tensor T,v, 

(3 ·10) 

We can easily avoid this by examining in the n-dimensional space-time free from 

(3·10). 

Now we try to derive the equations of motion (3 ·1) and (3 · 2) from the 

Hamiltonian 

(3 ·11) 

by calculating 

[H, ¢] and [H, 84¢]. (3 ·12) 

The energy-momentum tensor (3 · 3) is sufficient so far as the matrix elements 

between some states are concerned. 

culating the commutators (3 ·12). 

However, the special care is required in cal

As discussed in E) in § 2, (3 ·12) must be 

written by IP alone, that is, the singularities which appear in the commutators 

between each term of rFJ;t and y; (or ¢, 84¢) must be cancelled out each other. 

Therefore the local limit of "each term of @Z4N should be related to each other so 

that the cancellation may take place correctly. For example, the logarithmic fac

tors as coefficients of I"[¢¢] in (3·7) and (3·9) should take the common value. 

Then the Hamiltonian (3 ·11) is defined as the local limit of an integral over one 

variable x, keeping the relative coordinates fixed so as to satisfy the condition 

for the cancellation. We confine the fixed relative coordinates to space components 

alone from necessity of deriving the equations of motion from (3 ·12). Using the 

Hamiltonian thus defined, we have (3 ·1) and (3 · 2) through 

[H, <f'(x)] = -r.Cr~iY~ +m)<f'(x) -igr4r,I"[y;(x)¢(x)], 

[H, ¢(x)] =84rf;(x), 

[H, 84¢(x)] = -8N(x) +;l¢(x) +igi"[¢(x)rs'f;(x)]. 

(3 ·13) 

(3 ·14) 

(3 ·15) 

Now we examine the transformation property of IP. As an illustration we 

study the transformation property of I" [if' (x) ¢ (y)] under the time translation. 

Using (3·6) and (3·1), we find 

a - - a - - ~ 
-I"[y)(x)y) (y)J +IK[\b(x)y) (y)J-= -r.~r~a~lb(x)y) (y) -y)(x)¢ (y)r1a1r4 
OX4 OY4 
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Finite and Covariant Formulation of Local Field Theory 289 

- mr.c/J(x) (f (y) + mcf; (x) (f (y)r. 

- igr.r5cfJ (x) ¢ (x) (f (y) + igcj; (x) ¢ (y) (f (y) r5r4 

- igr5[8'.¢(x) +8'.¢(y)]log !ClJ. 2 • 

4TC 
(3 ·16) 

Using (3 · 6), (3 · 7) and (3 · 9), we rewrite each term of (3 ·16) into the cor

responding IP with care to the trace anomaly about r·a. The result is 

I.:[r.r· acf;(x) (f (y)] +I"[cf;(x)(f (y)r· 8r,J 

=-mi"[r,cf;(x) (f (y)] +mi.: [ cf;(x) (f (y)r4] 

- igi" [r.r5cf; (x) ¢ (x)(f (y) J + igi" [cf;(x) ¢ (y) (f (y) r5r4J 

+ g2 
rdi"[¢(x)¢(x)] -I.:[¢(y)¢(y)]}log !ClJ. 2 • 

4TC 
(3 ·17) 

Although in (3 · 7) and (3 · 9) we have not written the explicit forms of the 

IDCT' s, (3 ·17) is correct including the IDCT. The local limit is 

IK[r.r· acf;(x) (f (x) J +I.:[1J(x)(f (x) r·8r.J 

= -mi.:[r4cf;(x)(f(x)J +mi.:[cf;(x)(f(x)r4 ] 

-igi.:[r.r5cf;(x)(f (x)¢(x) J +igi,;[cp(x)¢ (x) r5r.¢(x)]. (3 ·18) 

Note that r · 8' is placed inside of I.: [ · · ·]. This is exactly the equation we have 

proposed in B) in § 2. 

§ 4. Vector-meson nucleon system in two dimensions 

and the Adler-Bell-Jackiw anomaly 

Let us consider the system whose Lagrangian is 

where 

J: = -(f (r· a+ m)cf;-tFjlvF.uv- t;lA.uA.u 

-xa.uA.u+ta2l-ie(frjlcf;Ajl, 

The canonical commutation relations are 

where 

lr1(x) =iF41 (x), 

TC0 (x) =iTC4 (x) = -x(x). 

(4·1) 

(4·2) 

(4·3) 

(4·4) 

(4·5) 

(4·6) 

(4·7) 
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290 Y. Tague hi, A. Tanaka and K. Yamamoto 

The proposed equations of motion are 

Then 

Cr· a+ m) <f;(x) =- ier" [r11</J (x) A,(x) ], 

(D-JL2)A11 (x) -a11a,A,(x) +811x(x) =iel"[Sb(x)r11<f;(x)], 

a11A,(x) -a•x(x) =0. 

(D-a2j.!2)x(x) =0. 

(4·8) 

(4·9) 

( 4 ·10) 

(4·11) 

The symmetrical energy-momentum tensor, whose ( 4, 4) component does not con

tain a,<j;, 84Sb, of A 11 and a4x, is 

@~~ (x) =ir"[Sb (x)r11 (8,-8,)<f;(x)] 

-io/l,r"[Sb(x)r· (8-8)</;(x)] -!mo11,r"[Sb(x)<f;(x)] 
__, <--

+ tr"[F11p(x)F,P(x)] + tr"[A11 (x) (D +D) A,(x)] 

- tr" [A 11 (x) a,apAp(x)]- tr" [8 11X (x) A,(x)] 

- io11,r" [Fpa (x) Fpa (x)]- tJL2D11,r" [AP (x) AP (x)] 

+ !o11,r" [apx (x) Ap (x)] + ia•o11,r" [x (x) x (x)] 

- !ieo11,r"[Sb (x) rp<f;(x) Ap(x)] + (JL~V). (4·12) 

After the same procedure, used the canonical commutation relations ( 4 · 3) 

'"'-'(4·5) and the equations of motion (4·8)'"'-'(4·10), as that in the -rc-N case in 

the previous section, we have 

r"[A11 (x)A,(y)] =A11 (x)A,(y) -rDCT's, 

r" [apA,(x) aaA,(y)] = apA11 (x) a a A. (y)- rDCT's, 

r" [A,(x) apaaA. (y)] = A 11 (x) apaaA. (y)- rDCT's, 

r"[a11x(x)A.(y)] =a11x(x)A,(y) -rDCT's, 

r"[x(x)x(x)] =x(x)x(y) -rDCT's, 

r"[<f;(x)A 11 (y)] =<f;(x)A11 (y), 

r"[¢(x)Sb(y)] =¢(x)Sb(y) + ie Apr:Jc [Ap(x) +Ap(y)] -rDCT's, 
4-rc ,{ 

r" [811 </; (x) Sb (y)] = 811</; (x) Sb (y) 

+ ie [4(rl'lc_P±_~,I'l._!-._2Jc~'_&r_-_l) [A (x) _l_lc·aA (x)] 
8-rc ,{ 2 (,{ 2y p 2 p 

+ [r · aAP (x)r Pr ~'- r ~'r Pr · aAP (x)] log 1cVX2 

+ 2,{P()I'AP (x) r· ,{ + A_I'J_:aAp (x)_r pr~}-,- ]._l'rJr pr· aAp (x) 
,{2 ,{2 ,{2 

(4·13) 

(4·14) 

(4·15) 

(4·16) 

(4·17) 

(4·18) 

( 4 ·19) 
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Finite and Covariant Formulation of Local Field Theory 291 

-4m (a PI' log tCV A2 + A~~p) Ap (x) J 

+~[r")pA"+ 2 (J_p"j"r·A_ 2 A,JpAur·J,J 1 [A (x)A ( )] 
4n A2 A2 U2Y " P " Y 

-IDCT's, (4· 20) 

I"[<f'(x)¢(y)A~(z)] =cj;(x)¢(y)Ll~(z)- 2
17r(r/-m log tCVJ, 2)A"(z) 

+ ie Apr·A {I"[L'lp(x)A"(z)] +I"[Ap(y)A"(z)]} -IDCT's. (4·21) 
4n A2 

By using these the consistency betvveen the equations of motion and the energy

momentum tensor is justified in the same way as the n-N case. 

Through the same process of the calculation as done in the derivation of 

(3 ·18), we get 

(4·22) 

and 

( 4. 23) 

By virtue of (2 · 24) we can take out () P. from the IP so far as the differentiation 

is concerned. Only problem is the trace anomaly. The careful evaluation gives us 

a,J"[¢(x)rp.<f'(x) J =0, 

a P.I" [¢ (x hsrp.1; (x)] = -2m I"[¢ (x hs<P (x)] 

where f 11 = - f 41 = i and 

I"[¢(x)r"¢(y)] =¢(x)r"¢(y) _ _!_A; 
n A 

- ie Aw~P[A (x) +A ( )] 
2n A2 P P Y ' 

( 4. 24) 

(4 ·25) 

(4 ·26) 

(4· 27) 

which are the special cases of ( 4 ·19). Equation ( 4 · 25) is the two-dimensional 

analog of Adler-Bell-]ackiw's anomalous equation. 4J 

Finally we remark that ( 4 · 24) and ( 4 · 25) are derivable directly from ( 4 · 26), 

(4·27) and the equations of motion (4·8)"--'(4·10). 
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292 Y. Taguchi, A. Tanaka and K. Yamamoto 

§ 5. Connection with renormalization theory 

In our finite theory all operator products have been expressed by the local 

IP's. If we wish, we can write these products by the usual products in a formal 

but not a rigorous way. For example, the Hamiltonian densities in the models of 

§ 3 and § 4 are written, apart from the c-number terms, as 

1 ~ ~ 

- e:t (x) = --;/f (x)rl (81- 81) </J (x) + m(j} (x) </J (x) 

+ 2_n(x) 7T (x) + 2_81¢ (x) 81¢ (x) + 2_/}. 2¢ (x) ¢ (x) 
2 2 2 

+ig(j)(x)r5<j;(x)¢(x)- 92 (log~o)¢(x)¢(x), 
2n 

(5·1) 

+ 2_n1(x) n1(x) - i81n1(x) Aix) + i81n4(x) A1(x) + 2_a2nix) n.(x) 
2 2 

+ 2_fJ. 2A" (x) A" (x) + ie(j) (x)r "¢ (x) A" (x) + !C_A1 (x) A 1 (x). (5 · 2) 
2 2n 

In (5·1), n=a0¢ and log~o are the abbreviation of [log~.J(x-y) 2 ]x~y· Equations 

(5 ·1) and (5 · 2) are the Hamiltonian in the usual renormalization theory. The 

last term of (5 ·1) is only one divergent quantity in that model and is the counter 

term to the meson mass. Since the vector-meson nucleon system in two dimensions 

has no divergent Feynman graph, there is no counter term in (5 · 2). The last 

term of (5 · 2) is necessary to assure 51 the Lorentz covariance (the integrability 

condition in the interaction representation or the Schwinger condition in the Heisen

berg representation). Thus our theory is closely connected with the renormaliza

tion theory. However, (5·1) and (5·2) are the Hamiltonian written only in 

a formal way. 

Similarly, rewriting (3 ·1), (3 · 2) ( 4 · 8) ~ ( 4 ·10) by the usual product, we 

get the formal equations of motion in the renormalization theory. 

Appendix 

--Derivation of (3 · 4) ~ (3 · 9)--

In this Appendix we discuss how to derive (3 · 4) ~ (3 · 9). For this purpose 

we explain the method of the derivation of (3 · 6) and (3 · 7). 

Now we put 

- - 1 v.A 
I"'[<f;(x)¢ (y)] =<j;(x)<j; (y) ---1 --S(x, y). 

2n A2 

(A·1) 
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Finite and Covariant Formulation of Local Field Theory 293 

The singularities of <jJ(x)ifJ(y) are subtracted by the second and the third terms. 

The second term - r · J..j2nJ..•, satisfying 

(A·2) 

is the one responsible for the canonical commutation relation between <jJ and ip. 

The third term is the rest of the ill-defined part of <jJ ( x) ifi (y) and therefore 

[S(x, y) ]!s =0, (A·3) 

where [ ] 1, denotes the extraction of the singular part, at least linearly. Operat

ing (r·o+m) in (A·l), we have 

(A·4) 

smce for any IP 

(A·5) 

and 

[¢ (x) cjJ (x) ifi (y) J~, = ¢ (x) 2r · ,1,2 • 

nJ.. 
(A·6) 

From (A·3) and (A·4), we obtain (3·6). In (3·6) we use the form - (1/4rr) 

Xigr5 [¢(x) +rfi(y)]log tciJ! instead of - (1/2rr)igr5¢(x)log tc/J!. This difference 

is not essential so long as the ill-defined part is concerned. We use the former 

one to maintain the symmetry between <jJ ( x) and ifJ (y) . 

with 

Next using (A· 5) and (3 · 6), we can write 

I" [o,.<jJ(x) ifi (y)] = o,.<jJ(x)ifi (y) 

+ [ -r·o+m-igr5¢(x)]...b_-L"(x,y) 
2rrJ..2 

[L,.(x, y) ]!s =0. 

(A·7) 

(A·S) 

Operating (r·o/oy-m) from the right in (A·7) and using (A·5), we get 

[ L" (x, y)r · ! l. =ig[o"cf;(x)ifi (y) r5¢ (y)]r, 

+ [ -r·o+m-igr5¢(x)J...b_(r· a -m). 
2rrJ..2 oy 

(A·9) 

The linear singularities are closely connected with the equal-time commutators as 

is seen in (A· 2). Then, we can easily obtain 
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294 Y. T aguchi, A. Tanaka and K. Yamamoto 

+ig~{I,;[¢(x)¢(y)] _]__log JCJi2}. 

2rr,.l2 2rr 
(A·lO) 

Equations (A· 9) and (A ·10) are sufficient to derive (3 · 7). 
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