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Abstract
This paper investigates the finite and infinite time ruin probabilities in a discrete

time stochastic economic environment. Under the assumption that the insurance risk
- the total net loss within one time period - is extended-regularly-varying or rapidly-
varying tailed, various precise estimates for the ruin probabilities are derived. In
particular, some estimates obtained are uniform with respect to the time horizon,
hence apply for the case of infinite time ruin.
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1 Introduction

Let {Xn, n = 1, 2, . . .} be a sequence of independent and identically distributed (i.i.d.)

random variables with generic random variable X, let {Yn, n = 1, 2, . . .} be another sequence

of i.i.d. and positive random variables with generic random variable Y , and let the two

sequences be mutually independent. In this paper we are interested in the tail probabilities

of the quantities

Un = max
0≤k≤n

k∑
i=1

Xi

i∏
j=1

Yj, n = 1, 2, . . . , (1.1)

∗Corresponding author. Tel.: 1-514-848 2424x5219; fax: 1-514-848 2831.
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and

U∞ = max
0≤k<∞

k∑
i=1

Xi

i∏
j=1

Yj, (1.2)

where
∑0

i=1(·) = 0 by convention. Clearly, 0 ≤ U∞ ≤ ∑∞
i=1 X+

i

∏i
j=1 Yj. It is well known

that the right-hand side converges almost surely if −∞ ≤ E log Y < 0 and E log+ X+ < ∞;

see Vervaat (1979, Theorem 1.6) and Brandt (1986, Theorem 1). Therefore, the maximum

U∞ has a proper distribution function on [0,∞).

Although this topic is interesting in many fields of applied probability, we will restrict

our discussions to ruin theory.

Following the works by Nyrhinen (1999, 2001) and Tang and Tsitsiashvili (2003), we

consider a stochastic economic environment. In this environment an insurer invests his

surplus into both risk-free and risky assets, which may lead to negative returns. The Xn

denotes the insurer’s net loss - the total claim amount minus the total incoming premium

- within period n and the Yn denotes the discount factor from time n to time n − 1, n =

1, 2, . . .. In the terminology of Norberg (1999), we call the random variable X the insurance

risk and the random variable Y the financial risk. It is natural to assume P (0 < Y < ∞) =

1.

We are concerned with the ruin probabilities of this discrete time risk model. Let x ≥ 0

be the initial surplus. Write An = −Xn and Rn = Y −1
n − 1, n = 1, 2, . . .. Then, An

denotes the total net income and Rn denotes the total stochastic return rate within period

n. We tacitly assume that the income An is calculated at time n. Hence, the surplus of the

company accumulated till time n, denoted by Sn, can be characterized by

S0 = x, Sn = x
n∏

j=1

(1 + Rj) +
n∑

i=1

Ai

n∏
j=i+1

(1 + Rj), n = 1, 2, . . . ,

where
∏n

j=n+1(·) = 1 by convention. The probabilities of ruin within finite time and of

ultimate ruin are defined by

ψ(x, n) = P
(

min
0≤k≤n

Sk < 0

)
, n = 1, 2, . . . , (1.3)

and

ψ(x) = lim
n→∞

ψ(x, n) = P
(

min
0≤n<∞

Sn < 0

)
, (1.4)

respectively.

We remark that there are some nontrivial cases in which the ultimate ruin probability

ψ(x) ≡ 1 for x ≥ 0. Actually, using the proof of Theorem 1 of Tsitsiashvili (2002) with

some simple adjustments, we can prove that ψ(x) ≡ 1 for x ≥ 0 if, for example, ER1 < 0,
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EA+
1 < ∞, and P

(
A1 < −EA+

1 /ER1

)
> 0, where x+ denotes max{x, 0}. Hence, in these

cases only the finite time ruin probability needs further investigation.

In the model above, the quantity Un defined by (1.1) describes the maximum of the

discounted losses of the insurer by time n, n = 1, 2, . . ., and the quantity U∞ defined by

(1.2) describes the ultimate maximum of the discounted losses. As done by Tang and

Tsitsiashvili (2003), in terms of these maxima, the ruin probabilities (1.3) and (1.4) can be

rewritten as

ψ(x, n) = P (Un > x) and ψ(x) = P (U∞ > x) ,

respectively.

Under some general conditions, Nyrhinen (1999, 2001) investigated the asymptotic be-

havior of the ruin probabilities and obtained large-deviation type results. Write

w = sup
{
t : EY t ≤ 1

}
and t0 = sup

{
t : EY t < ∞, E |X|t < ∞}

. (1.5)

Suppose 0 < w < t0 ≤ ∞ and P(X > 0) > 0. Directly applying Theorem 2 of Nyrhinen

(2001) to the model introduced above, the relation

ln ψ(x, n ln x) ∼ −R(n) ln x (1.6)

holds for all integers n ≥ x0 for some x0 ≥ 0, where R(·) is a positive function determined

by the distribution of Y . Moreover, it holds that

ln ψ(x) ∼ −w ln x. (1.7)

Here and throughout, all limiting relationships are for x →∞ unless stated otherwise.

For two positive functions a(·) and b(·) satisfying

l1 = lim inf
x→∞

a(x)

b(x)
≤ lim sup

x→∞

a(x)

b(x)
= l2

for some 0 ≤ l1 ≤ l2 ≤ ∞, we write a(x) = O (b(x)) if l2 < ∞, a(x) = o (b(x)) if l2 = 0, and

a(x) ³ b(x) if 0 < l1 ≤ l2 < ∞; we write a(x) . b(x) if l2 = 1, a(x) & b(x) if l1 = 1, and

a(x) ∼ b(x) if both l1 = 1 and l2 = 1.

Combined with Theorem 6.3 of Goldie (1991), relation (1.7) implies that the stronger

relation

ψ(x) ∼ Cx−w (1.8)

holds with some positive constant C. Unfortunately, the representation of this constant is

too involved and ambiguous.

Similar results to (1.8) with implicit coefficients were given by Kalashnikov and Nor-

berg (2002, Theorem 3), Frolova et al. (2002, Theorem 1(i)), and Paulsen (2002, Theorem
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3.2(b)), who studied the problem in bivariate Lévy driven risk processes. Their investi-

gations confirm that the ultimate ruin probability decreases at a power rate as the initial

surplus increases. In a certain special case, Paulsen (2002, Proposition 4.1) obtained an ex-

plicit asymptotic estimate for the infinite time ruin probability. However, as recently stated

in Cai and Tang (2004) and their communications with Professor Paulsen, at the end of

the proof of his Proposition 4.1, the argument of applying Proposition 3.2 of Klüppelberg

and Stadtmüller (1998) is not valid.

Under the standard assumptions above, Tang and Tsitsiashvili (2003) showed that

Un =d Vn, n = 1, 2, . . . , (1.9)

where =d denotes equality in distribution and the Vn’s are determined by a Markov chain

V0 = 0, Vn = Yn max {0, Xn + Vn−1} , n = 1, 2, . . . . (1.10)

Based on formulae (1.9) and (1.10), a ‘precise’ - as distinct from ‘the large-deviation type’

as that of (1.6) and (1.7) - estimate for the finite time ruin probability was obtained for the

case where the insurance risk X is dominatedly varying tailed.

We say that a distribution F is dominatedly varying tailed (or has a dominated varia-

tion), denoted by F ∈ D, if

lim sup
x→∞

F (θx)

F (x)
< ∞ (1.11)

for some (or equivalently, for all) θ ∈ (0, 1), where F = 1− F .

However, an obvious disadvantage of the study of Tang and Tsitsiashvili (2003) is

that restriction (1.11) excludes many popular distributions such as the lognormal-like, the

Weibull-like, the exponential-like, and the generalized inverse Gaussian distributions, which

are often applied to model the claim size distributions in ruin theory; see, for example, As-

mussen (1998).

In the present paper we continue the investigation on the finite and infinite time ruin

probabilities. We consider the cases where the distribution of the insurance risk X has an

extended regular variation and a rapid variation, respectively. Admittedly, the latter is a

more difficult case. For these cases we derive various precise asymptotic estimates for the

ruin probabilities ψ(x, n) and ψ(x). In particular, some asymptotics obtained are uniform

with respect to n = 1, 2, . . ..

The rest of this paper is organized as follows. Section 2 recollects preliminaries of some

well-known distribution classes, Section 3 establishes some uniform estimates for the ruin

probabilities for the case where the insurance risk is extended regularly varying tailed,

and Section 4 considers the case where the insurance risk is rapidly varying tailed and the
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financial risk is bounded or unbounded. Some lemmas that are used in establishing the

main results are placed in the Appendix.

2 Some distribution classes

Throughout, for two independent random variables X and Y distributed by F and G, we

denote by F ∗ G the distribution of X + Y and by F ⊗ G the distribution of XY . In

addition, we write F ∗2 = F ∗ F , F⊗2 = F ⊗ F , and so on. Whenever we mention a

distribution F belonging to a certain class specified below, it always satisfies F (x) > 0 for

all x ∈ (−∞,∞).

We say that a distribution F belongs to the class R if there is some α ≥ 0 such that

lim
x→∞

F (θx)

F (x)
= θ−α for all θ > 0.

In this case we call α the (regularity) index of the distribution F and we write F ∈ R−α.

Now we introduce a new class below, which complements the class R with an extreme

case of α = +∞.

Definition 2.1. A distribution F is said to be rapidly varying tailed (to have a rapid

variation), denoted by F ∈ R−∞, if

lim
x→∞

F (θx)

F (x)
= 0 for all θ > 1.

This property has been investigated in the literature; we refer the reader to the mono-

graphs de Haan (1970, Chapter 1.2), Bingham et al. (1987, Chapter 2.4), and Geluk and

de Haan (1987).

Trivially, if F (·) ∈ R−∞, then F (·/c) ∈ R−∞ for any c > 0; if F 1(x) ³ F 2(x), then

F1 ∈ R−∞ whenever F2 ∈ R−∞. For a distribution F ∈ R−∞, from Theorem 1.2.2 of de

Haan (1970) we know that there are positive functions b(·) and c(·) with b(x) → ∞ and

c(x) → c0 ∈ (0,∞) such that

F (x) = c(x) exp

{
−

∫ x

1

b(u)

u
du

}
, x ≥ 1;

see also Theorem A3.12 of Embrechts et al. (1997). By this representation we easily check

that for any ε > 0 and K > 0, there is some D > 0 such that the inequality

F (x)

F (y)
≤ (1 + ε) (x/y)−K (2.1)

holds whenever x ≥ y ≥ D.

A significant subclass of R−∞ is the generalized exponential class L(γ) with γ > 0, as

defined below.
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Definition 2.2. A distribution F is said to belong to the class S (γ) with γ ≥ 0 if

1. limx→∞ F
∗2

(x)/F (x) = 2c < ∞

2. limx→∞ F (x− t) /F (x) = eγt for all t ∈ (−∞,∞).

F is said to belong to the class L (γ) with γ ≥ 0 if it satisfies item 2.

Classical works on these classes with applications can be found in Chistyakov (1964),

Chover et al. (1973a,b), and Teugels (1975), among many others. It has been proved that,

for any distribution F ∈ S (γ) with γ ≥ 0,

c =

∫ ∞

−∞
exp{γx}F (dx) < ∞;

see Rogozin and Sgibnev (1999), Rogozin (1999), and references therein. We remark that

the convergence in item 2. is uniform for t in any finite interval. We call S = S (0) the

subexponential class and L = L (0) the class of long-tailed distributions. The intersection

S ∩R−∞ contains a lot of well-known distributions such as the Weibull and the lognormal

distributions. Typical examples in the classes L (γ) and S (γ) with γ > 0 are the exponential

distribution and the generalized inverse Gaussian distributions, respectively; see Embrechts

(1983).

It is easy to verify the following statements, which will be tacitly used in the sequel.

1. for distributions F1 and F2, if F 1(x) ∼ cF 2(x) for some constant c > 0, then F1

belongs to the class L (γ) or S (γ) with γ ≥ 0 whenever F2 belongs to this class (see

Klüppelberg 1989, p. 260);

2. for any random variable X and any constant c > 0, if the distribution of X belongs

to the class S (γ) with γ ≥ 0, then the distribution of cX belongs to the class S (γ/c);

3. for two distributions F1 and F2, if F1 ∈ L (γ1) and F2 ∈ L (γ2) for some 0 ≤ γ1 <

γ2 < ∞, then F 2(x) = o(F 1(x)).

Till now we have introduced four of the most important classes of heavy-tailed distribu-

tions. They are the classes D, R, S, and L. Another useful class is the so-called Extended

Regular Variation (ERV) class. By definition, a distribution F belongs to the class ERV if

there are some 0 ≤ α ≤ β < ∞ such that the relation

θ−β ≤ lim inf
x→∞

F (θx)

F (x)
≤ lim sup

x→∞

F (θx)

F (x)
≤ θ−α
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holds for all θ > 1. In this case we write F ∈ ERV(−α,−β). This class has recently been

applied to the study of precise large deviations; see Klüppelberg and Mikosch (1997), Ng

et al. (2003), and references therein. It is well known that

R ⊂ ERV ⊂ D ∩ L ⊂ S ⊂ L.

Actually, the inclusions R ⊂ ERV ⊂ D ∩ L can be verified directly by definition and the

other inclusions D∩L ⊂ S ⊂ L can be found in Embrechts et al. (1997, Chapters 1.3, 1.4,

and A3) and references therein.

Let F ∈ ERV(−α,−β) for some 0 ≤ α ≤ β < ∞. From Proposition 2.2.1 of Bingham et

al. (1987) - see also Cline and Samorodnitsky (1994, Section 3) and Tang and Tsitsiashvili

(2003, Section 3.3) - we know that, for any p1 < α and p2 > β, there are positive constants

Ci and Di, i = 1, 2, such that the inequality

F (y)

F (x)
≥ C1 (x/y)p1 (2.2)

holds whenever x ≥ y ≥ D1, and that the inequality

F (y)

F (x)
≤ C2 (x/y)p2 (2.3)

holds whenever x ≥ y ≥ D2. Furthermore, fixing the variable y in (2.3) leads to

x−p = o
(
F (x)

)
for p > β. (2.4)

Hence, E (X+)
p

= ∞ for all p > β.

For a distribution F and a real number x0, denote by F (x0−) the right limit of F at

x = x0. The purpose of the assumption F (0−)G(0−) = 0 below is to guarantee that the

equality

F ⊗G(x) =

∫ ∞

0

F (x/y)G(dy)

holds for x ≥ 0. The first of the following two lemmas is a reformulation of Theorem 2.1 of

Cline and Samorodnitsky (1994).

Lemma 2.1. Let F and G be two distributions with F ∈ S, G nondegenerate at 0, and

F (0−)G(0−) = 0. Then H = F ⊗ G ∈ S if there is a positive function a(·) such that

a(x) = o(x), F (x− a(x)) ∼ F (x), and G(a(x)) = o
(
H(x)

)
.

We establish a similar result for the class R−∞ as follows.

Lemma 2.2. Let F and G be two distributions with F ∈ R−∞, G nondegenerate at 0, and

F (0−)G(0−) = 0. Then H = F ⊗ G ∈ R−∞ if there is a positive function a(·) such that

a(x) = o(x) and G(a(x)) = o
(
H(x)

)
.
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Proof. For any θ > 1 we have

H(θx)

H(x)
=

(∫ a(x)

0
+

∫∞
a(x)

)
F (θx/y) G(dy)

H(x)

≤
∫ a(x)

0
F (θx/y) G(dy)

∫ a(x)

0
F (x/y) G(dy)

+
G(a(x))

H(x)

≤ sup
0<y≤a(x)

F (θx/y)

F (x/y)
+

G(a(x))

H(x)
→ 0.

Hence, F ∈ R−∞.

Trivially, if the distribution G only has a bounded support, the existence of the auxiliary

function a(·) in Lemmas 2.1 and 2.2 is guaranteed by identifying it as a large constant. See

also Corollary 2.5 of Cline and Samorodnitsky (1994) for a related discussion.

The following result is from Rogozin and Sgibnev (1999).

Lemma 2.3. Let F , F1, and F2 be three distributions such that F ∈ S (γ) for γ ≥ 0 and

that the limit

ki = lim
x→∞

F i(x)

F (x)

exists and is finite for i = 1, 2. Then,

lim
x→∞

F1 ∗ F2(x)

F (x)
= k1

∫ ∞

−∞
exp{γx}F2(dx) + k2

∫ ∞

−∞
exp{γx}F1(dx).

3 Uniform estimates with extended regular variation

Let us go back to the discrete time risk model introduced in Section 1. Hereafter, we

always denote by F and G the distributions of the insurance risk X and the financial risk

Y , respectively.

The following result, which originates from Theorem 5.1 of Tang and Tsitsiashvili (2003),

establishes a uniform asymptotic relation for ψ(x, n) with respect to n = 1, 2, . . ..

Theorem 3.1. If F ∈ ERV (−α,−β) for some 0 < α ≤ β < ∞ and Emax{Y α−δ, Y β+δ} <

1 for some 0 < δ < α, then the relation

ψ(x, n) ∼
n∑

i=1

P

(
X

i∏
j=1

Yj > x

)
(3.1)
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holds uniformly for n = 1, 2, . . .. That is,

lim
x→∞

sup
n≥1

∣∣∣∣∣∣∣∣∣∣

ψ(x, n)

n∑
i=1

P

(
X

i∏
j=1

Yj > x

) − 1

∣∣∣∣∣∣∣∣∣∣

= 0.

Proof. Clearly, the second condition above implies EY p < 1 for any p ∈ [α − δ, β + δ].

Choose some p1 and p2 satisfying

0 < α− δ < p1 < α ≤ β < p2 < β + δ.

Then, there are positive constants Ci and Di, i = 1, 2, such that inequalities (2.2) and (2.3)

hold accordingly.

Write

∆m =
∞∑

i=m+1

X+
i

i∏
j=1

Yj for m = 0, 1, . . . .

We follow the proofs of Lemma 4.24 of Resnick (1987) and Proposition 1.1 of Davis and

Resnick (1988) to show that P (∆m > x) is asymptotically negligible when compared with

F (x) in case x and m are sufficiently large. See also Embrechts et al. (1997, Section A3.3)

for a simpler treatment. For all integers m such that
∑∞

i=m+1 i−2 < 1, we derive that

P (∆m > x) ≤ P
( ∞∑

i=m+1

X+
i

i∏
j=1

Yj >
∞∑

i=m+1

x

i2

)

≤ P
( ∞⋃

i=m+1

(
X+

i

i∏
j=1

Yj >
x

i2

))

≤
∞∑

i=m+1

P

(
X+

i

i∏
j=1

Yj >
x

i2

)
. (3.2)

For all i = 1, 2, . . . and x > 0, introduce the events

A1(i, x) =

(
0 < i−2

i∏
j=1

Y −1
j ≤ D2

x

)
,

A2(i, x) =

(
D2

x
< i−2

i∏
j=1

Y −1
j ≤ 1

)
,

A3(i, x) =

(
1 < i−2

i∏
j=1

Y −1
j < ∞

)
.
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We divide the right-hand side of (3.2) into three parts as I1(m,x)+I2(m,x)+I3(m,x) with

Ik(m,x) =
∞∑

i=m+1

E

[
P

(
Xi > i−2

i∏
j=1

Y −1
j x

∣∣∣∣∣ Y1, . . . , Yi

)
1Ak(i,x)

]
,

where 1Ak(·,·) denotes the indicator function of the event Ak(·, ·), k = 1, 2, 3. Clearly,

I1(m,x) ≤
∞∑

i=m+1

P (A1(i, x)) =
∞∑

i=m+1

P

(
i2

i∏
j=1

Yj ≥ x

D2

)
.

Since EY β+δ < 1 and relation (2.4) holds for p = β + δ, applying Chebyshev’s inequality

we have

lim
m→∞

lim sup
x→∞

I1(m,x)

F (x)
= 0.

Applying inequalities (2.3) and (2.2) with p2 and p1 given above, for all x ≥ max{D1, D2}
we obtain, respectively,

I2(m,x) ≤ C2F (x)
∞∑

i=m+1

E

[
i2p2

i∏
j=1

Y p2

j 1A2(i,x)

]
≤ C2F (x)

∞∑
i=m+1

i2p2 (EY p2)i ,

and

I3(m,x) ≤ F (x)

C1

∞∑
i=m+1

E




(
i−2

i∏
j=1

Y −1
j

)−p1

1A3(i,x)


 ≤ F (x)

C1

∞∑
i=m+1

i2p1 (EY p1)i .

Hence,

lim
m→∞

lim sup
x→∞

Ik(m,x)

F (x)
= 0 for k = 2, 3.

Substituting these results into (3.2) leads to

lim
m→∞

lim sup
x→∞

P (∆m > x)

F (x)
= lim

m→∞
lim sup

x→∞

∞∑
i=m+1

P

(
X+

i

i∏
j=1

Yj > i−2x

)

F (x)
= 0.

Since P (XY > x) ³ F (x) - see Cline and Samorodnitsky (1994, Theorem 3.5(v)), it follows

that

lim
m→∞

lim sup
x→∞

P (∆m > x)

P (XY > x)
= lim

m→∞
lim sup

x→∞

∞∑
i=m+1

P

(
Xi

i∏
j=1

Yj > x

)

P (XY > x)
= 0. (3.3)

By (3.3), for an arbitrarily fixed 0 < ε < 1, there are some integer m0 and some number

x1 > 0 such that

P (∆m0 > x) ≤ εP (XY > x) (3.4)
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and
∞∑

i=m0+1

P

(
Xi

i∏
j=1

Yj > x

)
≤ εP (XY > x) (3.5)

hold for all x ≥ x1.

For the fixed m0, applying Theorem 5.1 of Tang and Tsitsiashvili (2003), we have that

relation (3.1) holds uniformly for 1 ≤ n ≤ m0. That is, the two-sided inequality

(1− ε)
n∑

i=1

P

(
Xi

i∏
j=1

Yj > x

)
≤ ψ(x, n) ≤ (1 + ε)

n∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
(3.6)

holds for all 1 ≤ n ≤ m0 and x ≥ x2 for some x2 ≥ x1.

Now we apply inequalities (3.4) and (3.5) to consider n > m0. By (3.6) with n = m0

and (3.5), it holds uniformly for n > m0 and x ≥ x2 that

ψ(x, n) ≥ ψ(x,m0)

≥ (1− ε)

(
n∑

i=1

−
n∑

i=m0+1

)
P

(
Xi

i∏
j=1

Yj > x

)

≥ (1− ε)2

n∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
. (3.7)

Next we aim at an upper bound for ψ(x, n) with n > m0. For any 0 < l < 1/2,

ψ(x, n) ≤ P
(

Um0 +
n∑

i=m0+1

X+
i

i∏
j=1

Yj > x

)

≤ P (Um0 + ∆m0 > x)

≤ P (Um0 > (1− l)x) + P (∆m0 > lx)

= J1(l, x) + J2(l, x). (3.8)

Applying inequality (3.6) with n = m0, it holds for all x ≥ 2x2 that

J1(l, x) ≤ (1 + ε)

m0∑
i=1

P

(
Xi

i∏
j=1

Yj > (1− l)x

)
.

Since EY β+δ < 1, by Theorem 3.5(iii) of Cline and Samorodnitsky (1994) we know that

for any i = 1, 2, . . ., the distribution of the product Xi

∏i
j=1 Yj still belongs to the class

ERV (−α,−β). This means that

m0∑
i=1

P

(
Xi

i∏
j=1

Yj > (1− l)x

)
. (1− l)−β

m0∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
.
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We identify the number l in (3.8) as some l0 > 0 small enough such that (1− l0)
−β < 1 + ε.

Therefore, for all n > m0 and x ≥ x3 for some x3 ≥ 2x2,

J1(l0, x) ≤ (1 + ε)2

m0∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
≤ (1 + ε)2

n∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
. (3.9)

As for J2(l0, x), by (3.4) we have

J2(l0, x) . εP (XY > l0x) . εl−β
0 P (XY > x) .

That is, for all x ≥ x4 for some x4 ≥ x3,

J2(l0, x) ≤ 2εl−β
0 P (XY > x) . (3.10)

Substituting (3.9) and (3.10) into (3.8) and recalling (3.7), we obtain that, uniformly for

n > m0 and x ≥ x4,

(1− ε)2

n∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
≤ ψ(x, n) ≤

(
(1 + ε)2 + 2εl−β

0

) n∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
.

Combining this with (3.6) and taking into account the arbitrariness of ε > 0, we finally

obtain the uniformity of relation (3.1) with respect to n = 1, 2, . . ..

The following is an immediate but important consequence of Theorem 3.1.

Theorem 3.2. If F ∈ R−α for some 0 < α < ∞ and Emax
{
Y α−δ, Y α+δ

}
< 1 for some

0 < δ < α, then, uniformly for n = 1, 2, . . .,

ψ(x, n) ∼ EY α (1− (EY α)n)

1− EY α
F (x). (3.11)

Proof. Using an elementary property - which is often referred to as Breiman’s (1965) result

- of the class R−α, for each fixed i = 1, 2, . . .,

P

(
Xi

i∏
j=1

Yj > x

)
∼ (EY α)i F (x).

Hence, for each n = 1, 2, . . .,

n∑
i=1

P

(
Xi

i∏
j=1

Yj > x

)
∼ EY α (1− (EY α)n)

1− EY α
F (x). (3.12)

Similarly to the proof of Theorem 3.1, by inequality (3.5) it is easy to check that relation

(3.12) holds uniformly for n = 1, 2, . . .. Then applying Theorem 3.1, we immediately

complete the proof of Theorem 3.2.
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Sometimes it is interesting to find asymptotic estimates for the ruin probability ψ(x, n)

in the case where both x and n tend to ∞ at a certain rate. This is the situation that

is usually considered in large-deviation theory. Clearly, the uniformity of relation (3.11)

enables us to derive such asymptotics. For example, we have the following result.

Corollary 3.1. Let the conditions of Theorem 3.2 be valid. Then,

1. for any function n(x) : (0,∞) → {1, 2, . . .},

ψ(x, n(x)) ∼
EY α

(
1− (EY α)n(x)

)

1− EY α
F (x);

2. for any function x(n) : {1, 2, . . .} → (0,∞) with limn→∞ x(n) = ∞,

ψ(x(n), n) ∼ EY α

1− EY α
F (x(n)), n →∞;

3. it holds that

ψ(x) ∼ EY α

1− EY α
F (x). (3.13)

Relation (3.13) gives a completely explicit estimate for the ultimate ruin probability in

the presence of stochastic returns. The reader may compare this result with relation (1.8).

The convergence rate of the ruin probability ψ(x) given by (3.13) is not necessarily an exact

power rate. The difference between the two results is not surprising as they are obtained

under different conditions. In fact, recalling (1.5), one sees that the inequality w > t0 holds

under the conditions of Theorem 3.2.

4 Estimates with rapid variation

We denote by

y∗ = y∗(G) = sup {y : G(y) < 1}
the (upper) endpoint of the distribution G.

4.1 Case 1: 0 < y∗(G) ≤ 1

Since Y1 = (1 + R1)
−1, the assumption y∗ ≤ 1 means that the insurer invests all his surplus

into a risk-free asset and then he receives nonnegative stochastic returns. This case was

not considered by Nyrhinen (1999, 2001) since the quantity w defined in (1.5) is infinite.

The infinite time ruin probability in continuous or discrete time models with a constant

interest rate has been deeply investigated in the literature; see Sundt and Teugels (1995,

1997), Klüppelberg and Stadtmüller (1998), Asmussen (1998), Yang (1999), Kalashnikov

and Konstantinides (2000), Konstantinides et al. (2002), and Tang (2004), among others.
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Theorem 4.1. Suppose that F ∈ S(γ) with γ ≥ 0 and that G has an endpoint y∗ ≤ 1.

Then, for each n = 1, 2, . . .,

ψ(x, n) ∼
n∑

i=1

(E exp{γX})i−1 E exp{γVn−i}P
(

X

i∏
j=1

Yj > x

)
. (4.1)

In particular, for γ = 0, formula (4.1) coincides with (3.1).

Proof. We derive from (1.9) and (1.10) that

ψ(x, 1) = P(V1 > x) = P(Y1X1 > x).

Hence, (4.1) holds for n = 1. In addition, by Lemma A.4 we know that the distribution of

V1 belongs to the class L(γ/y∗).

Now we inductively assume that (4.1) holds for n = m− 1 for some integer m ≥ 2 and

that the distribution of Vm−1 belongs to the class L(γ/ym−1
∗ ). If y∗ = 1 or γ = 0, noting

that relation (4.1) with n = m− 1 implies P(Vm−1 > x) = O
(
F (x)

)
, applying Lemma 3.2

of Tang and Tsitsiashvili (2003) we have

P (Xm + Vm−1 > x) ∼ E exp{γVm−1}F (x) + E exp{γXm}P(Vm−1 > x); (4.2)

if y∗ < 1 and γ > 0, then P(Vm−1 > x) = o
(
F (x)

)
, and therefore, applying Lemma 2.3,

P (Xm + Vm−1 > x) ∼ E exp{γXm}P(Vm−1 > x).

Thus, in any case, relation (4.2) holds. Successively applying (1.9), (1.10), and (4.2),

ψ(x,m) =

∫ y∗

0

P(Xm + Vm−1 > x/y)G(dy)

∼
∫ y∗

0

(
E exp{γVm−1}F (x/y) + E exp{γXm}P(Vm−1 > x/y)

)
G(dy)

= E exp{γVm−1}P(XY > x) + E exp{γXm}
∫ y∗

0

ψ(x/y, m− 1)G(dy).

Substituting to the above the asymptotic result (4.1) with m− 1 and x/y instead of n and

x, after some simple adjustments we obtain (4.1) for n = m. This further indicates that

the distribution of Vm belongs to the class L(γ/ym
∗ ).

The mathematical induction method completes the proof of Theorem 4.1.

A natural consequence of Theorem 4.1 is the following, in which the assumption F ∈
S(γ) ∩R−∞ with γ ≥ 0 means that either F ∈ S(γ) with γ > 0 or F ∈ S ∩R−∞ holds.

Corollary 4.1. In addition to the conditions of Theorem 4.1 we assume F ∈ S(γ) ∩R−∞
with γ ≥ 0.
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1. If P(Y = 1) = 0 - the endpoint y∗ may be less than or equal to 1, then,

ψ(x, n) ∼ E exp{γVn−1}P (XY > x) , n = 1, 2, . . . . (4.3)

In particular, for γ = 0, formula (4.3) can be simplified to

ψ(x, n) ∼ P (XY > x) , n = 1, 2, . . . . (4.4)

2. If P(Y = 1) = p∗ > 0, then,

ψ(x, n) ∼ Cn(γ)F (x), n = 1, 2, . . . , (4.5)

where

Cn(γ) =
n∑

i=1

pi
∗ (E exp{γX})i−1 E exp{γVn−i}, n = 1, 2, . . . .

In particular, for γ = 0, formula (4.5) can be simplified to

ψ(x, n) ∼ (
p∗ + p2

∗ + . . . + pn
∗
)
F (x), n = 1, 2, . . . .

Proof. In order to prove relation (4.3), it suffices to verify that the other terms on the

right-hand side of (4.1) are asymptotically negligible when compared with P (XY > x). In

fact, by Lemma 2.2 the distribution of the product XY belongs to the class R−∞. For any

i ≥ 2, applying the dominated convergence theorem,

lim
x→∞

P

(
X

i∏
j=1

Yj > x

)

P (XY > x)
=

∫

(0,1)

lim
x→∞

P (XY > x/t)

P (XY > x)
G⊗(i−1)(dt) = 0.

Relation (4.5) can be proved similarly by applying (A.4) to (4.1).

In case γ > 0, the expressions for the coefficients in formulae (4.1), (4.3), and (4.5) are

rather involved and it does not seem to admit a substantial simplification. However, the

convergence rates characterized by these formulae are explicit.

Using a different approach Sgibnev (1996) proved (4.5) for the special case p∗ = 1.

In the following result we make the statement of relation (4.4) somewhat stronger.

Theorem 4.2. Suppose that F ∈ S ∩ R−∞ and that G has an endpoint 0 < y∗ < 1. Then

it holds uniformly for n = 1, 2, . . . that

ψ(x) ∼ ψ(x, n) ∼ P (XY > x) .

15



Proof. Trivially, it holds for all n = 1, 2, . . . and x ≥ 0 that

ψ(x) ≥ ψ(x, n) ≥ P (XY > x) . (4.6)

Hence, it suffices to establish appropriate upper bounds for ψ(x) and ψ(x, n). To this end,

we notice that, for all n,m = 1, 2, . . . and x ≥ 0,

ψ(x, n) ≤ ψ(x) ≤ P
(

Um +
∞∑

i=m+1

yi
∗X

+
i > x

)
. (4.7)

For an arbitrarily fixed number y ∈ (y∗, 1), we identify the integer m in (4.7) as some m0

satisfying
∞∑

i=m0+1

yi < 1 and p = P (Y > (y∗/y)m0) > 0.

For the first term in the last bracket of (4.7), by relation (4.4) we have

P (Um0 > x) = ψ(x,m0) ∼ P (XY > x) .

Hence by Lemma 2.1, the quantity Um0 is subexponentially distributed. For the second

term there, we derive that

P

( ∞∑
i=m0+1

yi
∗X

+
i > x

)
≤ P

( ∞∑
i=m0+1

yi
∗X

+
i >

∞∑
i=m0+1

yix

)

≤ P
( ∞⋃

i=m0+1

(
yi
∗X

+
i > yix

)
)

≤
∞∑

i=m0+1

P
(
X > (y/y∗)

i x
)

.

Applying Fatou’s lemma guaranteed by inequality (2.1) with K > 1, we obtain that

lim sup
x→∞

P
( ∞∑

i=m0+1

yi
∗X

+
i > x

)

P (XY > x)
≤ lim sup

x→∞

1

p

∞∑
i=m0+1

P
(
X > (y/y∗)

i x
)

P (X > (y/y∗)
m0 x)

= 0.

By Lemma 2.3, it follows that

P

(
Um0 +

∞∑
i=m0+1

yi
∗X

+
i > x

)
∼ P (XY > x) .

Substituting this into (4.7), we obtain that, uniformly for n = 1, 2, . . .,

ψ(x, n) ≤ ψ(x) . P (XY > x) . (4.8)

By inequalities (4.6) and (4.8), we complete the proof of Theorem 4.2.
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4.2 Case 2: 1 < y∗(G) < ∞
Now we consider a more realistic case where negative investment returns may be earned.

Theorem 4.3. Suppose that F ∈ R−∞ and that G has an endpoint 1 < y∗ < ∞ with

p∗ = P (Y = y∗) > 0. Then, for each n = 1, 2, . . .,

ψ(x, n) ∼ pn
∗P

(
n∑

i=1

yi
∗Xi > x

)
. (4.9)

Proof. We derive from (1.9), (1.10), and (A.4) that

ψ(x, 1) ∼ p∗P(y∗X1 > x).

This implies that relation (4.9) holds for n = 1, that V1 is rapidly varying tailed, and that

F (lx) = o (P (V1 > x)) for l = (y−1
∗ + 1)/2 ∈ (y−1

∗ , 1).

Now we inductively assume that relation (4.9) holds for n = m − 1 for some integer

m ≥ 2, that Vm−1 is rapidly varying tailed, and that F (lx) = o (P (Vm−1 > x)). Hence by

Lemma A.6,

P (Xm + Vm−1 > x) ∼ pm−1
∗ P

(
Xm +

m−1∑
i=1

yi
∗Xi > x

)
; (4.10)

furthermore, by Lemma A.2 the sum Xm +Vm−1 is rapidly varying tailed. By (1.9), (1.10),

and Lemma A.3 once again, we have

ψ(x,m) ∼ p∗P (y∗ (Xm + Vm−1) > x) . (4.11)

Substituting (4.10) into (4.11) and noticing that Xn, n = 1, 2, . . . are i.i.d., we obtain (4.9)

with n = m. This also proves that Vm is rapidly varying tailed. Moreover,

F (lx)

P (Vm > x)
∼ 1

pm∗

F (lx)

P
(

m∑
i=1

yi∗Xi > x

) ≤ 1

pm∗
(
F (0)

)m−1

F (lx)

F (x/y∗)
→ 0.

The mathematical induction method completes the proof of Theorem 4.3.

If we restrict ourselves to the case F ∈ S(γ) with γ ≥ 0, a completely explicit result

can be derived.

Corollary 4.2. Suppose that F ∈ S(γ) ∩ R−∞ with γ ≥ 0 and that G has an endpoint

1 < y∗ < ∞ with p∗ = P(Y = y∗) > 0. Then, for each n = 1, 2, . . .,

ψ(x, n) ∼ pn
∗F

(
xy−n

∗
) n−1∏

i=1

E exp
{
γy−i

∗ X
}

. (4.12)

In particular, for γ = 0, formula (4.12) can be simplified to

ψ(x, n) ∼ pn
∗F

(
xy−n

∗
)

for each n = 1, 2, . . . . (4.13)
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Proof. Observe the right-hand side of (4.9). The distribution of yn
∗Xn in the bracket belongs

to the class S(γ/yn
∗ ) with tail F (xy−n

∗ ). Compared with F (xy−n
∗ ), the tail probabilities of

the other terms in the bracket are asymptotically negligible. Hence, applying Lemma 2.3

we obtain

ψ(x, n) ∼ pn
∗P

(
n−1∑
i=1

yi
∗Xi + yn

∗Xn > x

)
∼ pn

∗E exp

{
γ

yn∗

n−1∑
i=1

yi
∗Xi

}
P (yn

∗Xn > x) .

This proves relation (4.12).

Formula (4.13) can also be derived from (4.14) below.

In this subsection we assumed that the financial risk Y has a finite endpoint Y∗ > 1

with a positive mass. This assumption is reasonable if Y is modelled by a positive, discrete,

and bounded random variable. Secondly, suppose that the underlying financial risk in the

economic environment is Y ∈ (0,∞). When the insurer invests his surplus into a risky

asset he always buys an option to hedge the downside risks. The resulting financial risk is

modified by this strategy as

Y = Y 1(0<Y <y∗) + y∗1(y∗≤Y <∞)

for some y∗ > 1. Thus, it has a positive mass P
(
y∗ ≤ Y < ∞)

at its endpoint y∗. Finally, we

provide the following example as the third explanation for the assumption P (Y = y∗) > 0.

Example 4.1. In practice, there is a regulation that the insurer can only invest a part of

his surplus into a risky asset. If the default risk appears he loses all the money invested

into the risky asset and the default probability is positive. Assume that the insurer invests

a ∈ (0, 1), say, of his surplus into a risk-free asset, which produces a constant return rate

r > 0, and he invests the remaining surplus into a risky asset, which leads to a stochastic

return rate R ∈ [−1,∞) with P (R = −1) = p∗ > 0. Let R̃ be the overall return rate. Then,

R̃ = ar + (1− a)R.

Clearly, the financial risk Y , which is described by

Y = (1 + ar + (1− a)R)−1 ,

is bounded from above by y∗ = (a(1 + r))−1 with a positive mass P (Y = y∗) = p∗.

4.3 Case 3: 1 < y∗(G) ≤ ∞
In this subsection we will not care whether the endpoint of the distribution G is finite or

whether G has a positive mass at its endpoint. For notational convenience, we denote by

Hn the distribution of the product X
∏n

j=1 Yj for n = 1, 2, . . ..
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Theorem 4.4. Suppose F ∈ S ∩ R−∞ and G(1) = P (Y > 1) > 0. If there is a positive

function a(·) such that a(x)/x → 0 eventually monotonically, F (x − a(x)) ∼ F (x), and

G(a(x)) = o
(
H1(x)

)
, then, for each n = 1, 2, . . .,

ψ(x, n) ∼ P
(

X
n∏

j=1

Yj > x

)
. (4.14)

Proof. Clearly, for each n = 1, 2, . . .,

lim sup
x→∞

G(a(x))

Hn(x)
≤ lim sup

x→∞

G(a(x))

H1(x)G
n−1

(1)
= 0. (4.15)

From (1.9) and (1.10), it is trivial that (4.14) holds for n = 1. In addition, by Lemma

2.1 we know H1 ∈ S, and by Lemma 2.2 we also know H1 ∈ R−∞. Moreover, we can prove

that

H1(x− a(x)) ∼ H1(x).

Actually, since F (x − a(x)) ∼ F (x), G(1) > 0, and a(x)/y . a(x/y) for all 1 < y ≤ a(x),

by Lemma A.3 we have

H1(x) ≤ H1(x− a(x))

∼
(∫ a(x)

1

+

∫ ∞

a(x)

)
F

(
x− a(x)

y

)
G(dy)

.
∫ a(x)

1

F (x/y − a(x/y)) G(dy) + G(a(x))

= (1 + o(1))

∫ a(x)

1

F (x/y) G(dy) + o
(
H1(x)

)

. H1(x). (4.16)

Next we inductively assume that (4.14) holds for n = m − 1 for some integer m ≥ 2,

that Hm−1 ∈ S ∩R−∞, and that

Hm−1(x− a(x)) ∼ Hm−1(x). (4.17)

We aim to prove (4.14) for n = m. By the right continuity of the distribution G, the

condition G(1) > 0 implies that there is some y0 > 1 such that G(y0) > 0. We obtain

F (x)

P (Vm−1 > x)
∼ F (x)

Hm−1(x)
≤ F (x)

F (x/y0)G
m−2

(1)G(y0)
→ 0. (4.18)

Hence by Lemma 2.3,

P (Xm + Vm−1 > x) ∼ P (Vm−1 > x) ∼ Hm−1(x).
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From this, (1.9), and (1.10), we derive that

ψ(x,m) =

(∫ a(x)

0

+

∫ ∞

a(x)

)
P (Xm + Vm−1 > x/y) G(dy)

= (1 + o(1))

∫ a(x)

0

Hm−1 (x/y) G(dy) +

∫ ∞

a(x)

P (Xm + Vm−1 > x/y) G(dy)

= (1 + o(1))Hm(x) + Ξm(x),

where the symbol Ξm(x) denotes

Ξm(x) =

∫ ∞

a(x)

P (Xm + Vm−1 > x/y) G(dy)− (1 + o(1))

∫ ∞

a(x)

Hm−1 (x/y) G(dy).

Clearly, from (4.15),

lim sup
x→∞

|Ξm(x)|
Hm(x)

≤ 2 lim sup
x→∞

G(a(x))

Hm(x)
= 0.

This proves that (4.14) holds for n = m. In order for the mathematical induction to be

complete, we have to prove Hm ∈ S ∩R−∞ and

Hm(x− a(x)) ∼ Hm(x). (4.19)

Recalling (4.17) and the inductive assumption Hm−1 ∈ S∩R−∞, the proof of Hm ∈ S∩R−∞
is a direct application of Lemmas 2.1 and 2.2; the proof of (4.19) can be given by using

(4.17) and copying the proof of (4.16) with H1 being changed into Hm and F being changed

into Hm−1.

Finally, the mathematical induction method completes the proof of Theorem 4.4.

From the proof of Theorem 4.4, we see that the distribution Hn belongs to the class

R−∞ for n = 1, 2, . . .. Similar to (4.18), for each n = 1, 2, . . .,

Hn−1(x)

Hn(x)
≤ Hn−1(x)

Hn−1(x/y0)G(y0)
→ 0.

This gives the following consequence of Theorem 4.4.

Corollary 4.3. Under the conditions of Theorem 4.4, it holds for each n = 1, 2, . . . that

ψ(x, n) ∼
n∑

i=1

P

(
X

i∏
j=1

Yj > x

)
∼ P

(
X

n∏
j=1

Yj > x

)
. (4.20)

When the financial risk Y follows a lognormal distribution, as that in the Black-Scholes

model, the calculation of the estimates given by (4.20) becomes particularly simple. See

below:
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Example 4.2. Let F be lognormal-like with a density function

f(x) ∼ 1

cx
exp

{
−(ln x− µ1)

2

2σ2
1

}
= f̃(x)

for some c > 0, −∞ < µ1 < ∞, σ1 > 0, and let G be lognormal with a density function

g(x) =
1

σ2

√
2πx

exp

{
−(ln x− µ2)

2

2σ2
2

}

for −∞ < µ2 < ∞ and σ2 > 0. Suppose σ2 < σ1.

We choose the auxiliary function in Theorem 4.4 as a(x) = xα for some α ∈ (σ2/σ1, 1).

Then, it is straightforward to verify F (x−a(x)) ∼ F (x) and G(a(x)) = o
(
F (x)

)
. Hence, all

the conditions of Theorem 4.4 are satisfied and relation (4.20) holds for each n = 1, 2, . . ..

Furthermore, for this concrete case, it is well known that the product
∏i

j=1 Yj also has

a lognormal distribution with a density function

gi(x) =
1

iσ2

√
2πx

exp

{
−(ln x− iµ2)

2

2i2σ2
2

}
, i = 1, 2, . . . .

By relation (4.20) and Lemma A.5, one sees that for each n = 1, 2, . . .,

ψ(x, n) ∼
n∑

i=1

∫∫

v>0,uv>x

f̃(u)gi(v)dudv ∼
∫∫

v>0,uv>x

f̃(u)gn(v)dudv.

5 Appendix

In this section we establish some results that were applied in the paper.

Lemma A.1. If F1 ∈ R−∞ and F 2(x) = O
(
F 1(x)

)
, then F = F1 ∗ F2 ∈ R−∞.

Proof. We formulate the proof into two parts according to whether or not y∗ = y∗(F2), the

endpoint of F2, is finite.

First we assume y∗ < ∞. Let y0 < y∗ be a constant. Clearly, for any x > 0,

F 1(x− y∗) ≥ F (x) ≥
∫ y∗

y0

F 1(x− y)F2(dy) ≥ F2(y0, y∗]F 1(x− y0),

where F2(y0, y∗] = F2(y∗)− F2(y0). It follows that, for any θ > 1,

lim sup
x→∞

F (θx)

F (x)
≤ 1

F2(y0, y∗]
lim sup

x→∞

F 1(θx− y∗)

F 1(x− y0)
= 0.

This proves F ∈ R−∞.
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Next we assume y∗ = ∞. Then, for any θ and l with θ > 1 and 1/θ < l < 1,

F (θx)

F (x)
=

(∫ θlx

−∞ +
∫∞

θlx

)
F 1(θx− y)F2(dy)

F (x)

≤
∫ lx

−∞
F 1(θx−θz)

F 1(x−z)
F 1(x− z)F2(θdz) + F 2(θlx)

F (x)

≤ sup
−∞<z≤lx

F 1(θx− θz)

F 1(x− z)
·
∫ θlx

−∞ F 1(x− y
θ
)F2(dy)

F (x)
+

F 2(θlx)

F (x)

= I1I2 + I3. (A.1)

Clearly, I1 → 0. We also have

I3 ≤ F 2(θlx)

F 1(θlx)

F 1(θlx)

F 1(x)

1

F 2(0)
→ 0. (A.2)

As for I2, it holds that

I2 ≤

(∫ 0

−∞ +
∫∞

0

)
F 1(x− y

θ
)F2(dy)

∫∞
0

F 1(x− y)F2(dy)
≤ F 1(x)F2(0)

F 1(x)F 2(0)
+ 1 =

1

F 2(0)
.

Substituting these results into (A.1) yields that F (θx)/F (x) → 0.

Lemma A.2. If Fi ∈ R−∞ for i = 1, 2, then F1 ∗ F2 ∈ R−∞.

Proof. The result can be obtained by copying the proof of Lemma A.1, with a modification

on (A.2) in the following way:

I3 ≤ F 2(θlx)

F 2(x)F 1(0)
→ 0.

This completes the proof.

Lemma A.3. Let X and Y be two independent random variables distributed by F and G,

respectively. If F ∈ R−∞, G has an endpoint 0 < y∗ ≤ ∞, and F (0−)G(0−) = 0, then for

any 0 ≤ y0 < y∗,

P(XY > x) ∼
∫ y∗

y0

P(yX > x)G(dy), (A.3)

where the integral interval (y0, y∗] is understood as (y0,∞) in case y∗ = ∞. If further

y∗ < ∞ and p∗ = P(Y = y∗) > 0, then

P(XY > x) ∼ p∗P(y∗X > x). (A.4)
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Proof. To prove the first assertion, for any x > 0 we write

P(XY > x) =

(∫ y0

0

+

∫ y∗

y0

)
P(yX > x)G(dy) = J1 + J2. (A.5)

Arbitrarily choose y ∈ (y0, y∗). An appeal to Fatou’s lemma gives that

lim sup
x→∞

J1

J2

≤ 1

G(y, y∗]
lim sup

x→∞

∫ y0

0
P(yX > x)G(dy)

P(yX > x)

≤ 1

G(y, y∗]

∫ y0

0

lim sup
x→∞

P(yX > x)

P(yX > x)
G(dy) = 0.

Substituting this into (A.5) yields (A.3).

The second assertion can be proved similarly. Actually, we write

P(XY > x) =

∫

(0,y∗)
P(yX > x)G(dy) + p∗P(y∗X > x) = J3 + J4.

The dominated convergence theorem proves J3 = o (J4). Hence, (A.4) holds.

Lemma A.4. Let F and G be two distributions such that F ∈ L(γ) for some γ ≥ 0,

F (0−)G(0−) = 0, and y∗ = y∗(G) ∈ (0,∞). Then, H = F ⊗G ∈ L(γ/y∗).

Proof. If γ = 0, then the result is a consequence of Theorem 2.2(iii) of Cline and Samorod-

nitsky (1994). Thus, we only consider γ > 0. In this case F ∈ R−∞. For any t > 0 and

any 0 < y0 < y∗, applying Lemma A.3 twice, we have

H(x− t) ∼
∫ y∗

y0

F ((x− t)/y)G(dy)

≤
∫ y∗

y0

F (x/y − t/y0)G(dy)

∼ exp {γt/y0}
∫ y∗

y0

F (x/y)G(dy)

∼ exp {γt/y0}H(x).

In a symmetrical way, we obtain that

H(x− t) & exp {γt/y∗}H(x).

Hence, by the arbitrariness of 0 < y0 < y∗ we obtain that

H(x− t) ∼ exp {γt/y∗}H(x),

which implies H ∈ L(γ/y∗).
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Lemma A.5. Let F1, F2, and G be three distributions such that Fi(0−)G(0−) = 0 for

i = 1, 2, G ∈ R−∞, and F 1(x) ∼ cF 2(x) for some 0 < c < ∞. Then,

F1 ⊗G(x) ∼ cF2 ⊗G(x). (A.6)

Proof. From the condition F 1(x) ∼ cF 2(x) we know that, for any 0 < ε < c and all large

x, say x ≥ y0 for some y0 > 0,

(c− ε)F 2(x) ≤ F 1(x) ≤ (c + ε)F 2(x). (A.7)

Since F i(y0) > 0 for i = 1, 2, by virtue of Lemma A.3, for i = 1, 2,

Fi ⊗G(x) ∼
∫ ∞

y0

G (x/y) Fi(dy) = G (x/y0) F i(y0) +

∫ x/y0

0

F i(x/y)G(dy).

Substituting (A.7) to the above leads to

(c− ε)F2 ⊗G(x) . F1 ⊗G(x) . (c + ε)F2 ⊗G(x).

Hence, relation (A.6) follows from the arbitrariness of 0 < ε < c.

Lemma A.6. Let F , F1, and F2 be three distributions such that F1 ∈ R−∞, F 1(x) ∼ cF 2(x)

for some 0 < c < ∞, and F (lx) = o(F 1(x)) for some 0 < l < 1. Then

F ∗ F1(x) ∼ cF ∗ F2(x). (A.8)

Proof. With some l∗ ∈ (l, 1), we derive

F ∗ F1(x) =

(∫ l∗x

−∞
+

∫ ∞

l∗x

)
F 1(x− u)F (du)

= (c + o(1))

∫ l∗x

−∞
F 2(x− u)F (du) +

∫ ∞

l∗x
F 1(x− u)F (du)

= (c + o(1))F ∗ F2(x) + Ξ(x), (A.9)

where

Ξ(x) =

∫ ∞

l∗x
F 1(x− u)F (du)− (c + o(1))

∫ ∞

l∗x
F 2(x− u)F (du).

Choose M > 0 such that F (−M) > 0. Clearly,

|Ξ(x)|
F ∗ F2(x)

≤ (c + 1 + |o(1)|)F (l∗x)

F (−M)F 2(x + M)
→ 0.

Substituting this into (A.9) yields (A.8).
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Montréal (QC) H4B 1R6 CANADA


