
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

2000-12-01 

Finite-Aperture Wire Grid Polarizers Finite-Aperture Wire Grid Polarizers 

Michael A. Jensen 
jensen@byu.edu 

Gregory P. Nordin 
nordin@byu.edu 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Electrical and Computer Engineering Commons 

Original Publication Citation Original Publication Citation 
M. A. Jensen and G. P. Nordin, "Finite-Aperture Wire Grid Polarizers", J. Opt. Soc. Am. A 17(12), 

pp. 2191-2198 (2) 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Jensen, Michael A. and Nordin, Gregory P., "Finite-Aperture Wire Grid Polarizers" (2000). Faculty 
Publications. 1104. 
https://scholarsarchive.byu.edu/facpub/1104 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1104?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Finite-aperture wire grid polarizers
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The transmission characteristics of wire grid polarizers fabricated in finite apertures are investigated by using
a three-dimensional finite-difference time-domain formulation. Specifically, the optical transmissivity and ex-
tinction ratio are characterized for a wide variety of geometrical parameters including aperture size in both
dimensions, conducting wire fill factor, and polarizer thickness. A dispersive material model is used to inves-
tigate the performance of polarizers fabricated by using realistic metals at infrared wavelengths. The results
indicate that the aperture dimension significantly impacts the polarizer transmission behavior and that the
extinction of the unwanted polarization is often limited by depolarizing scattering that is due to the finite ap-
erture size. © 2000 Optical Society of America [S0740-3232(00)01912-8]

OCIS codes: 050.0050, 050.1970, 230.0230, 230.3990.

1. INTRODUCTION
Wire grid polarizers have long been recognized as an ef-
fective option for discriminating between orthogonal lin-
ear polarization states in the infrared portion of the elec-
tromagnetic spectrum.1,2 Such polarizers can be
fabricated by placing conducting wires within an aperture
formed in a larger opaque screen. When this aperture is
electrically large, the device behavior is similar to that of
a polarizer of infinite extent, and its performance can be
accurately characterized by using simulation approaches
such as rigorous coupled-wave analysis.3–5 However,
new fabrication technologies and applications that re-
quire small-aperture polarizers6 and arrays of
micropolarizers7–9 have motivated the development of de-
vices with electrically small apertures. In this case, al-
ternative simulation techniques that model the finite-
aperture extent must be explored for device char-
acterization.

Some recent work has appeared on the subject of simu-
lating finite-aperture diffractive devices. For example,
the boundary element method has been shown to be effec-
tive in the analysis of finite-number-of-periods dielectric
and finite-conductivity metallic grating structures,10 dif-
fractive optical lenses,11–13 and other aperiodic
structures.14 Method-of-moments solution techniques
have also been applied to lenslet analysis based on both
rigorous surface15 and volume16 integral formulations for
the fields. For two-dimensional (2-D) perfectly conduct-
ing gratings, spectral-domain mode-matching solutions
appear to be effective.17–19 While these studies have pro-
vided significant insight into the behavior of finite-extent
diffractive devices, they have not focused on extending
and applying such techniques to perform detailed analy-
ses of finite-aperture wire grid polarizers.

In this paper we present a detailed characterization of
wire grid polarizers placed in finite apertures. The

analysis uses a three-dimensional (3-D) formulation of
the finite-difference time-domain (FDTD) method because
of its computational efficiency and geometrical and mate-
rial modeling flexibility.20–22 For specific cases the
FDTD results are compared with data obtained from a
2-D spectral-domain mode-matching solution tech-
nique.18,19,23,24 Additionally, because many practical
metals used for micropolarizer fabrication possess permit-
tivities with negative real parts at infrared wavelengths,
a dispersive FDTD method is implemented to assess the
performance of devices fabricated with these materials.25

These simulation tools are used to perform a systematic
study of device performance for various geometrical and
material configurations. The results indicate that the
aperture size exercises a significant influence on the po-
larizer transmission behavior. The data further show
that the polarizer extinction performance is often limited
by depolarizing scattering that is due to finite-aperture
effects.

2. GEOMETRY AND ANALYSIS
The problem under consideration is that of a plane wave
impinging on a finite-sized aperture located in an other-
wise infinite conducting plane of thickness D. As indi-
cated in Fig. 1, the aperture is periodically loaded with
equal-sized conducting wires of width w and center-to-
center spacing Dx. The polarizer is assumed to be em-
bedded in a homogeneous medium (free space for the com-
putations in this paper), although the analysis used could
be extended to allow for variations in the surrounding
material parameters. For simplicity, the incident plane
wave will be constrained to travel in the positive z direc-
tion. With this assumption the terminology x polariza-
tion and y polarization will be used to designate illumi-
nating fields that contain electric field vectors polarized in
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the x direction and the y direction, respectively.
Throughout this paper, all dimensions will be given in
terms of the illumination free-space wavelength (l).

A. Finite-Difference Time-Domain Method
The FDTD method is an excellent tool for analyzing the
electromagnetic behavior of optical devices because of its
modeling flexibility, implementation simplicity, and com-
putational efficiency.26–28 To introduce the plane-wave
excitation with minimal distortion, the FDTD implemen-
tation uses a total field/scattered field boundary21 for
z , 0. The FDTD grid is truncated by using a perfectly
matched layer (PML) absorbing boundary condition29,30

that is eight FDTD cells thick (0.40l thick given the
FDTD cell size of 0.05l). A buffer layer between the po-
larizer and the PML is also implemented to reduce cor-
ruption of the results due to artificial reflections from the
absorbing boundary condition. The PML conductivities
increase quadratically away from the computational
domain,29 with the profile chosen to achieve a reflection
coefficient of 1025. The polarizer ground plane extends
into the PML layer to avoid unwanted leakage of the in-
cident fields into the region z . D. Figure 2 illustrates
the computational configuration along with all of the rel-
evant dimensions used for the analysis.

The simulation is performed by introducing a normally
incident single-frequency plane wave into the domain and
allowing the simulation to proceed until the fields in the
region reach a steady-state condition. The fields on a
planar surface one FDTD cell beyond the polarizer output
plane are then sampled over a complete sinusoidal tem-
poral cycle. Because of the staggered placement of the
vector field components in the standard FDTD grid, spa-
tial averaging is used to place all tangential field compo-
nents at the center of each cell. The sampled fields are
then transformed to the frequency domain in preparation
for postprocessing evaluations of the polarizer behavior.

Evaluating the polarizer transmissivity requires com-
puting the real power transmitted through the device.
This can be accomplished by integrating the frequency-
domain sampled fields on the output plane to obtain far-
zone fields21 and integrating the resulting Poynting vec-
tor on a hemispherical surface. Unfortunately, this
process is computationally very costly and can be inaccu-
rate if the sampling in the far zone is not adequately
dense. An improved procedure is to directly integrate
the Poynting vector from the electric (E) and magnetic
(H) fields on the output sampling plane. When this ap-
proach is followed, the total power transmitted by the ap-
erture is given as

PT 5
1

2
ReS E

A
E 3 H* • ẑdxdy D , (1)

where A 5 LxLy is the aperture area and ẑ denotes a unit
vector in the z direction. It should be recognized that any
power contained in the evanescent field will be imaginary
and therefore will not contribute to the value of PT . The
transmissivity is then defined as the ratio of the transmit-
ted power to the total power intercepted by the aperture,
or

T 5
2h0

A

PT

uEiu2 , (2)

where h0 is the intrinsic wave impedance of the surround-
ing medium and Ei is the incident plane-wave electric
field intensity.

Because the integration plane is very close (one cell
5 0.05l) to the polarizer, the fields are spatially local-
ized near the aperture, implying that the integration
needs to be performed over only a limited region. To en-
sure the accuracy of the integration used in this work, the
value of PT computed for a large aperture (3.90l
3 3.90l) was examined as a function of the size of this
integration region for an x-polarized illuminating plane
wave. This study showed that the computed power
quickly converges as the integration domain is extended,
with 99% of the power being captured by a region approxi-
mately 0.2l larger than the aperture.

B. Material Model
Most of the results presented in this paper assume that
the conducting wires forming the polarizer are con-
structed of perfectly conducting materials. However, it is
also useful to assess the effects on polarizer performance
of real metals with finite conductivity. Interestingly,
many practical metals used for thin-film wire fabrication,
including aluminum, gold, and molybdenum, are charac-
terized by a relative permittivity with a negative real part
for infrared wavelengths.31 Physically, this implies a
material response that is 180° out of phase with the illu-
minating field. Computationally, however, this leads to
instability in the FDTD simulations.

To allow FDTD analysis of these materials, a disper-
sive material model25 has been extended for 3-D simula-
tions and implemented for this study. In this approach,
differential equations describing the temporal evolution
of the polarization current Jp and the polarization PL

generated by the material are obtained by transforming

Fig. 1. Geometry for a plane wave incident on the finite-
aperture wire grid polarizer.

Fig. 2. Computational geometry for FDTD simulation of the
finite-aperture wire grid polarizer.
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the Lorentz material model from the frequency to the
time domain. These equations are then coupled to Max-
well’s equations and are discretized in the FDTD algo-
rithm. Prior implementations of this technique placed
the polarization quantities Jp and PL at the center of the
FDTD unit cell.25 However, our observations reveal that
this practice can lead to anomalous material responses
that do not match reasonable physical behavior, particu-
larly for weak transmitted field intensities. To avoid this
difficulty, we have implemented the scheme by placing
the vector components of Jp and PL coincident with the
electric field components in the standard FDTD grid.

3. RESULTS
In this section, we utilize the methodologies discussed in
Section 2 to investigate the behavior of finite-aperture
wire grid polarizers for different geometrical parameters.
Convergence studies of the transmitted power versus the
number of sinusoidal periods used in the FDTD simula-
tions indicate that 10 and 20 cycles are required to
achieve steady state for perfectly conducting and nonper-
fectly conducting polarizers, respectively. Throughout
the discussion, we will use the following definitions:

fill factor 5 w/Dx, (3)

extinction ratio 5 Tx /Ty , (4)

where the subscripts on the transmissivity (T) denote the
polarization of the illuminating field. In all of the re-
sults, the wire spacing is set to Dx 5 0.2l. Unless oth-
erwise noted, all reported transmissivity values are for an
x-polarized illuminating field, since this is typically the
parameter of interest in the design of practical devices
(i.e., this represents the optical throughput of the polar-
izer if the transmissivity of the y-polarized light is very

Fig. 3. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length for a square aperture for several values of
fill factor (D 5 0.05l, Lx 5 Ly).

Fig. 4. Spatial map of the x-polarized transmitted field for a
y-polarized incident plane wave on the square aperture of dimen-
sions Lx 5 Ly 5 1.45l and with 75% fill factor.

Fig. 5. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length Ly for a rectangular aperture for several
values of fill factor (D 5 0.05l).
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small in comparison). Also, except as noted in particular
cases, the polarizer is constructed of a perfectly conduct-
ing material with a thickness of D 5 0.05l (see Fig. 1).

A. Effect of Aperture Dimension
To begin our study, we investigate the behavior of the po-
larizer transmission as a function of the aperture dimen-
sions. Consider the results in Figs. 3(a) and 3(b), which
show the transmissivity and the extinction ratio, respec-
tively, for a square aperture as a function of the aperture
side length (Lx 5 Ly). Results for three different values
of fill factor are provided. It is important to recognize
that in these and other plots in the paper, the disjoint plot
appearance stems from the fact that the aperture dimen-
sion is increased in increments of Dx 5 0.2l.

Several different observations can be made from the
data shown in these plots. First, it is apparent that for
aperture dimensions near l/2, the transmissivity can ac-
tually be greater than unity as a result of the strong reso-
nant behavior of the fields within the aperture ‘‘cavity,’’
confirming the result of prior studies.18,19 Since the
transmissivity is defined as the ratio of the transmitted
power to that intercepted by the aperture, this result
physically means that energy in currents surrounding the
aperture edge contributes to the transmitted radiation.
Second, rather than quickly converging to a final value,
both the transmissivity and the extinction ratio tend to
oscillate as a function of the aperture size. These peaks
occur when the aperture dimension is near an odd mul-

tiple of half-wavelengths, again suggesting a resonant be-
havior associated with the finite-aperture dimensions.
Finally, as we may expect, the transmissivity decreases
while the extinction ratio increases as the fill factor is
increased.32 However, it is noteworthy that the increase
in extinction is not commensurate with the increase in fill
factor from 50% to 75%. To explore this phenomenon
more carefully, consider the plot in Fig. 4, which shows
the magnitude of the x-polarized electric field component
of the transmitted field for a y-polarized illumination
field. The aperture dimensions are Lx 5 Ly 5 1.45l
with a 75% fill factor. For this same configuration, the
maximum value of the y-polarized field on the integration
surface is 4 3 1025. These results imply that for low
values of fill factor, Ty is dominated by the y-polarized
transmission, which decays rapidly with increasing fill
factor. However, as the fill factor assumes larger values,
Ty is dominated by scattering into the x-polarized field
that is due to finite-aperture effects. Because this scat-
tering does not decrease significantly with increasing fill

Fig. 6. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length Lx for a rectangular aperture for several
values of fill factor (D 5 0.05l).

Fig. 7. x-polarized transmitted field strength for y-polarized il-
lumination with 75% fill factor and Ly 5 3.85l (D 5 0.05l):
(a) Lx 5 1.05l, (b) Lx 5 3.85l.
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factor, this phenomenon becomes a limiting factor in the
achievable extinction of the undesired polarization.

More insight can be gained concerning the effects of the
aperture dimensions by studying the polarizer behavior
while varying only Lx or Ly . Figures 5 and 6 illustrate
the results when increasing the aperture in the y and x
dimensions, respectively. In each case, the fixed dimen-
sion is chosen such that the aperture is square when the
increasing dimension attains its largest value. For ex-
ample, this leads to Lx (Ly) 5 3.95l, 3.90l, and 3.85l for
fill factors of 25%, 50%, and 75%, respectively, in Fig. 5
(6).

Several additional conclusions can be drawn from the
data in Figs. 5 and 6. First, the oscillatory behavior is
more pronounced in Fig. 5 than in Fig. 6, implying that
resonances in the dimension parallel to the wires are
more influential than those in the dimension perpendicu-
lar to the wires. Second, both Figs. 5(b) and 6(b) confirm
the trend that the increase in extinction ratio is not com-
mensurate with the increase in fill factor. Finally, we ob-
serve in Fig. 6(b) that for larger values of fill factor, the
extinction tends to increase with aperture dimension. To
explore this more fully, consider the plots in Fig. 7, which
depict the x-polarized transmitted field for a y-polarized
illumination. The polarizer has a fill factor of 75% and
Ly 5 3.85l. The data in Figs. 7(a) and 7(b) are for
Lx 5 1.05l and 3.85l, respectively. In both cases, the

y-polarized output field strengths are below 1023, imply-
ing that the transmissivity is dominated by the
x-polarized fields. The key observation from these plots
is that strong values of cross-polarized fields occur princi-
pally in the grooves at the edges of the aperture. As the
value of Lx increases, the relative influence of these
strong field values decreases, resulting in an overall de-
crease in the value of Ty . This produces the increase in
the extinction ratio observed in Fig. 6(b).

As a final study of the effect of aperture dimension on
polarizer behavior, it is interesting to compare the FDTD
results with those from a 2-D (Ly → `) simulation proce-
dure based on a spectral-domain mode-matching
solution.18,23 Figure 8 shows the variation of Tx and the
extinction ratio with increasing values of Lx for the three
different values of fill factor. Comparison of these results
with those in Fig. 6 reveals that the two methods predict
very similar behaviors, although there are notable dis-
crepancies. First, the computations indicate that the
FDTD method predicts slightly lower values of transmis-
sivity. This can be explained by examining Fig. 5(a),
which shows that for the case used in Fig. 6 (Ly at its
maximum value), the transmissivity is slightly below its
peak value. Second, it is interesting that the finite value
of Ly exercises some influence on the variation of Tx with
Lx , as implied by the pronounced oscillations observed in
Fig. 6(a). Finally, the mode-matching solution does not
predict the increase in extinction with aperture size, since
this 2-D analysis does not allow for the depolarization ef-

Fig. 8. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length Lx for an infinitely long aperture (Ly
→ `) for several values of fill factor (D 5 0.05l). These re-
sults are obtained by using the mode-matching solution tech-
nique.

Fig. 9. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length for a square aperture for several values of
thickness (50% fill factor).
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fects highlighted in Fig. 7. This fact also accounts for the
large increase in extinction observed in Fig. 8(b) when the
fill factor increases from 50% to 75%.

B. Polarizer Thickness
All of the results shown above assume a polarizer thick-
ness of D 5 0.05l. However, in practical polarizer con-
figurations, the wire aspect ratio (and therefore the thick-
ness) is an issue that impacts both the performance33 and
the fabrication of the device. Indeed, intuition suggests
that improved extinction can be obtained by increasing
the conducting film thickness, since this should signifi-
cantly reduce the transmissivity of the y polarization
while only slightly modifying the transmissivity for the x
polarization. Figure 9 shows the transmissivity and the
extinction ratio for a square aperture with a fill factor of
50% for three different film thicknesses. Contrary to our
hypothesis, however, the extinction ratio does not signifi-
cantly increase with polarizer thickness. This is again
due to the fact that the transmissivity Ty is dominated by
scattering into the x polarization and therefore does not
drop off significantly with increasing D. Figure 10(a)
shows the extinction ratio for a 25% fill factor, illustrating
that for cases where the value of Ty is predominantly de-
termined by the transmission of the y-polarized field, our
hypothesis is confirmed. The results in Fig. 10(b), which
show the predictions from the 2-D mode-matching tech-
nique, further support this conclusion.

C. Polarizer Material
Because practical polȧrizers are fabricated by using ma-
terials with finite conductivity, it is interesting to explore
the impact of using realistic material models on the polar-
izer performance. In this case, however, only the wires
are modeled by using the material parameters while the
supporting ground plane remains perfectly conducting.
This eliminates the transmission that would pass through
a nonperfectly conducting ground plane and therefore
produce ambiguous results when trying to assess the po-
larizer behavior. Table 1 shows the material parameters
used in this study.

To assess the performance differences resulting from
using these materials, we duplicate the results of Figs. 3
and 9 in Figs. 11 and 12, respectively, when the wires are
replaced with molybdenum. At once, we notice very
similar behaviors in the optical throughout between the

Fig. 10. Extinction ratio as a function of aperture side length for
several values of thickness: (a) square aperture with 25% fill
factor and (b) 2-D aperture (Ly → `) with 50% fill factor.

Fig. 11. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length for a square aperture for several values of
fill factor (D 5 0.05l) when the metal parameters are those of
molybdenum.

Table 1. Refractive-Index and Relative
Permittivity Values for Different Metals

at l Ä 4 mm

Metal Refractive Index Relative Permittivity

Molybdenuma 5.16 2 j10.16 276.59 2 j104.87
Aluminumb 6.76 2 j40.96 21632.04 2 j553.70
Goldb 1.41 2 j30.51 2928.87 2 j86.04

a Values taken from ellipsometry measurements.
b Values taken from the literature.31
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perfectly and nonperfectly conducting cases. However,
the finite-conductivity model predicts lower extinction ra-
tio values, consistent with the notion that some transmis-
sion passes directly through the wire material. Addition-
ally, we note that there is a much larger increase in
extinction when moving from 50% to 75% fill factor or
from D 5 0.10l to 0.15l than what was observed for the
perfectly conducting wires. This is due to the fact that
transmission of the y-polarized field through the wires
plays a significant role in the value of Ty , and this value
is reduced as the fill factor or the thickness is increased.
Figure 13 shows the effect of using different material pa-
rameters on the transmissivity and the extinction ratio.
As can be seen, use of these materials exercises a notice-
able impact on the polarizer performance.

D. Practical Implications
Many applications require both large extinction ratio and
high optical throughput. Based on the above results, the
extinction ratio can, in general, be augmented by increas-
ing the fill factor, the thickness, or both, until reaching
the limit imposed by cross-polarization scattering.
Cross-polarization scattering can in turn be reduced by
increasing the polarizer aperture (within the constraints
of application requirements). A high optical throughput
is achieved with a low fill factor or, if the fill factor must
be large, by decreasing the polarizer thickness. Both of
these cases affect the optical throughput. Clearly, de-
signing a wire grid polarizer for a particular application

involves distinct trade-offs between the extinction ratio
and the aperture size, and the extinction ratio and the op-
tical throughput.

Fabrication considerations impose additional con-
straints on wire grid polarizer design. For example, con-
sider the use of microfabrication techniques to create a
polarizer for the infrared or the visible portion of the spec-
trum. Minimum feature size limitations determine the
maximum slit density and also affect the achievable fill
factor, both of which in turn influence the extinction ratio.
Whether the wires are formed with an etch8,32 or a lift-off
process, wire aspect ratio considerations affect the selec-
tion of polarizer thickness. Hence wire grid polarizer de-
sign involves making careful trade-offs between applica-
tion requirements and physical and fabrication
constraints.

4. SUMMARY
This paper has provided a detailed examination of the
transmission characteristics of finite-aperture wire grid
polarizers. The basic analysis approach uses the FDTD
electromagnetic simulation method, with supporting data
derived from a 2-D spectral-domain mode-matching tech-
nique. The FDTD implementation allowed modeling of
real metals whose permittivity is characterized by a nega-
tive real part. These analysis tools were used to investi-
gate the device transmissivity and extinction ratio for a
wide variety of geometrical and material configurations.

Fig. 12. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length for a square aperture for several values of
thickness (50% fill factor) when the metal parameters are those
of molybdenum.

Fig. 13. (a) Transmissivity and (b) extinction ratio as a function
of aperture side length for a square aperture for several different
types of metal (50% fill factor, D 5 0.05l).
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The studies revealed that the aperture can exercise a sig-
nificant influence on the device transmission behavior.
Most notably, it was found that in many structures, the
extinction of the undesired polarization is limited by de-
polarizing scattering. Additionally, we observed that in
general the transmissivity decreases and the extinction
ratio increases with increasing fill factor or thickness.
This in turn leads to a trade-off between the achievable
optical transmission and extinction ratio. Finally, it was
shown that using realistic metal parameters for the polar-
izer wires reduces the extinction ratio but does not signifi-
cantly impact the optical throughput. Directions for fu-
ture research include examining the effects of fabrication-
related defects and nonuniformities such as sidewall
roughness and fill factor variations.
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