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Finite-Approximation-Error-Based Optimal Control
Approach for Discrete-Time Nonlinear Systems

Derong Liu, Fellow, IEEE, and Qinglai Wei

Abstract—In this paper, a new iterative adaptive dynamic pro-
gramming (ADP) algorithm is developed to solve optimal control
problems for infinite-horizon discrete-time nonlinear systems with
finite approximation errors. The idea is to use an iterative ADP
algorithm to obtain the iterative control law that makes the iter-
ative performance index function reach the optimum. When the
iterative control law and the iterative performance index function
in each iteration cannot be accurately obtained, the convergence
conditions of the iterative ADP algorithm are obtained. When
convergence conditions are satisfied, it is shown that the iterative
performance index functions can converge to a finite neighborhood
of the greatest lower bound of all performance index functions un-
der some mild assumptions. Neural networks are used to approx-
imate the performance index function and compute the optimal
control policy, respectively, for facilitating the implementation of
the iterative ADP algorithm. Finally, two simulation examples are
given to illustrate the performance of the present method.

Index Terms—Adaptive dynamic programming (ADP), approx-
imate dynamic programming, finite approximation errors, neural
networks, optimal control.

I. INTRODUCTION

O PTIMAL control of nonlinear systems has always been
the key focus in the control field in the latest several

decades [12], [19], [21]. Dynamic programming is a very useful
tool in solving optimal control problems. However, due to
the difficulties in solving nonlinear two-point boundary value
problems or the time-varying Hamilton–Jacobi–Bellman (HJB)
equations, analytical forms of the optimal control solutions for
nonlinear systems are usually impossible to obtain. Approxi-
mate solutions of optimal control problems have attracted a
lot of attention [3]–[5], [8], [20]. Among these approximate
approaches, adaptive dynamic programming (ADP) algorithm,
proposed by Werbos [33], has played an important role in seek-
ing approximate solutions of dynamic programming problems
as a way to solve the computational issue forward-in-time [18],
[23], [24]. There are several synonyms used for ADP, including
“adaptive critic designs” [22], “adaptive dynamic program-
ming” [20], [28], “approximate dynamic programming” [2],
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[13], [34], “neural dynamic programming” [7], “neurodynamic
programming” [5], and “reinforcement learning” [14]. In [22]
and [34], ADP approaches were classified into several main
schemes: heuristic dynamic programming (HDP), dual heuris-
tic programming (DHP), action-dependent HDP (also known
as Q-learning [29]), action-dependent DHP, globalized DHP
(GDHP), and action-dependent GDHP. Recursive methods are
also used in ADP to obtain the solution of HJB equation
indirectly and have received lots of attention. There are two
main recursive ADP algorithms that are based on policy and
value iterations, respectively [15].

Policy iteration algorithms for optimal control of continuous-
time systems with continuous state and action spaces were
given in [1]. In 2011, Wang et al. [27] studied finite-horizon op-
timal control problems for discrete-time nonlinear systems with
unspecified terminal time. In the policy iteration algorithms of
ADP, to obtain the performance index functions and control
actions iteratively, an initial admissible control sequence of the
system must be required. However, unfortunately, the admissi-
ble control sequence for the nonlinear system is also difficult
to obtain. Thus, the initial conditions for the controller greatly
limit the applications of the policy iteration algorithms. On
the other hand, value iteration algorithms for optimal control
of discrete-time nonlinear systems were given in [4]. In [2], a
value iteration algorithm, which is referred to as greedy HDP
iteration algorithm, was proposed. The convergence of the al-
gorithm was proved in [2] and [16]. In [36], an optimal tracking
control problem for a class of nonlinear discrete-time systems
was solved by a value iteration algorithm. For the value iteration
algorithms of ADP, the initial admissible control sequence of
the nonlinear system can be avoided, whereas the stability
property of control systems under the iterative control cannot
be guaranteed. This means that the value iteration algorithm can
be only implemented offline. In 2012, Wei and Liu [30], [31]
proposed a new iterative θ-ADP algorithm for discrete-time
nonlinear systems. In the iterative θ-ADP algorithm, the initial
admissible control sequence is unnecessary, and it is proved
that each of the iterative controls is stable for the nonlinear
system. This makes the iterative θ-ADP algorithm feasible for
implementation both online and offline.

Although iterative ADP algorithms attract more and more
attention [11], [17], [26], [32], [35], [37], for nearly all of
the iterative algorithms, the iterative control of each itera-
tion is required to be accurately obtained. These iterative
ADP algorithms can be called “accurate iterative ADP algo-
rithms.” For most real-world control systems, however, ac-
curate iterative control laws in the iterative ADP algorithms
cannot be obtained. For example, during the implementation
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of iterative ADP algorithms, approximation structures such as
neural networks and fuzzy systems are used to approximate the
iterative performance index functions and the iterative control
laws. While we can see that no matter what kind of neural
networks and fuzzy systems is used and no matter what ap-
proximation precision values are obtained, there always exist
approximation errors between the approximation functions and
the expected ones. This shows that the accurate performance
index function and control laws cannot be reached in the
iterative ADP algorithms for real-world control systems. When
the accurate iterative control laws cannot be obtained, the
convergence properties in the accurate iterative ADP algorithms
may be invalid. Until now, to the best of our knowledge, there
are no discussions on the convergence properties of the iterative
ADP algorithms when the accurate iterative control cannot be
obtained, which limits the applications of ADP in general. This
motivates our research.

In this paper, we will develop a new ADP scheme for infinite-
horizon optimal control problems. The main contribution of
this paper is that the optimal control problems with finite
approximation errors are effectively solved using the proposed
iterative ADP algorithms. First, the HJB equation for infinite-
horizon optimal control of discrete-time systems is derived.
Second, for the situation that accurate iterative performance
index functions and iterative control laws cannot be obtained, in
order to solve the HJB equation, a new iterative ADP algorithm
with finite approximation errors is developed with convergence
and optimality proofs. Next, it will be shown that the proposed
iterative ADP algorithm can make the iterative performance
index functions converge to a finite neighborhood of the optimal
performance index function if the convergence condition is sat-
isfied. A new convergence analysis method is proposed, and the
least upper bound of the converged iterative performance index
function is also obtained. Furthermore, in order to facilitate
the implementation of iterative ADP algorithms, we use neural
networks to obtain the iterative performance index function and
the optimal control policy. Finally, two simulation examples are
given to show the effectiveness of the proposed iterative ADP
algorithm.

This paper is organized as follows. In Section II, the problem
statement is presented. In Section III, the iterative ADP algo-
rithm with finite approximation errors is derived. In Section IV,
the neural network implementation for the optimal control
scheme is discussed. In Section V, two simulation examples are
given to demonstrate the effectiveness of the proposed control
scheme. Finally, in Section VI, this paper is concluded with a
few pertinent remarks.

II. PROBLEM STATEMENT

In this paper, we will study the following deterministic
discrete-time system:

xk+1 = F (xk, uk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the n-dimensional state vector, and uk ∈ R

m

is the m-dimensional control vector. Let x0 be the initial state
and F (xk, uk) be the system function.

Let uk = (uk, uk+1, . . .) be an arbitrary sequence of controls
from k to ∞. The performance index function for state x0 under
the control sequence u0 = (u0, u1, . . .) is defined as

J(x0, u0) =

∞∑
k=0

U(xk, uk) (2)

where U(xk, uk) > 0, ∀xk, uk, is the utility function.
In this paper, we will study optimal control problems for (1).

The goal of this paper is to find an optimal control scheme
that stabilizes system (1) and simultaneously minimizes the
performance index function (2). For convenience of analysis,
results in this paper are based on the following assumptions.

Assumption 1: System (1) is controllable, and the function
F (xk, uk) is Lipschitz continuous for ∀xk, uk.

Assumption 2: The system state xk = 0 is an equilibrium
state of system (1) under the control uk = 0, i.e., F (0, 0) = 0.

Assumption 3: The feedback control uk = u(xk) satisfies
uk = u(xk) = 0 for xk = 0.

Assumption 4: The utility function U(xk, uk) is a continu-
ous positive definite function of xk and uk.

Define the control sequence set as Uk = {uk : uk =
(uk, uk+1, . . .), ∀uk+i ∈ R

m, i = 0, 1, . . .}. Then, for arbitrary
control sequence uk ∈ Uk, the optimal performance index func-
tion can be defined as

J∗(xk) = inf
u
k

{J(xk, uk) : uk ∈ Uk} . (3)

According to Bellman’s principle of optimality, J∗(xk) satisfies
the discrete-time HJB equation

J∗(xk) = min
uk∈Rm

{U(xk, uk) + J∗ (F (xk, uk))} . (4)

Define the law of optimal control sequence as

u∗(xk) = arg inf
u
k

{J(xk, uk) : uk ∈ Uk} . (5)

Then, the law of optimal single control vector can be expressed as

u∗(xk) = arg min
uk∈Rm

{U(xk, uk) + J∗ (F (xk, uk))} . (6)

Hence, the HJB equation (4) can be written as

J∗(xk) = U (xk, u
∗(xk)) + J∗ (F (xk, u

∗(xk))) . (7)

We can see that if we want to obtain the optimal control law
u∗(xk), we must obtain the optimal performance index function
J∗(xk). Generally, J∗(xk) is unknown before all the controls
uk ∈ R

m are considered. If we adopt the traditional dynamic
programming method to obtain the optimal performance index
function one step at a time, then we have to face “the curse of
dimensionality.” This makes the optimal control nearly impos-
sible to be obtained by the HJB equation (7).

In [30] and [31], an iterative θ-ADP algorithm was proposed
to obtain the optimal performance index function and the op-
timal control law iteratively. In the iterative θ-ADP algorithm,
the performance index function and control law are updated by
recurrent iteration, with iteration index i increasing from 0 to
infinity.
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For ∀xk ∈ R
n, let the initial function Ψ(xk) be an arbitrary

function that satisfies Ψ(xk) ∈ Ψ̄xk
, where Ψ̄xk

is defined as
follows.

Definition 2.1: Let

Ψ̄xk
= {Ψ(xk) : Ψ(xk) > 0, and ∃ ν(xk) ∈ R

m

Ψ(F (xk, ν(xk))) < Ψ(xk)} (8)

be the initial positive definition function set.
It can be easily proved that Ψ̄xk

is not an empty set. From the
definition, we can see that all the Lyapunov functions belong to
the initial positive definition function set Ψ̄xk

. For ∀xk ∈ R
n,

let the initial performance index function V0(xk) = θΨ(xk),
where θ > 0 is a large finite positive constant. The iterative
control law v0(xk) can be computed as follows:

v0(xk) = argmin
uk∈Rm

{U(xk, uk) + V0(xk+1)}

= argmin
uk∈Rm

{U(xk, uk) + V0 (F (xk, uk))} (9)

where V0(xk+1) = θΨ(xk+1). The performance index function
can be updated as

V1(xk) = U (xk, v0(xk)) + V0 (F (xk, v0(xk))) . (10)

For i = 1, 2, . . ., the iterative ADP algorithm will iterate
between

vi(xk) = argmin
uk∈Rm

{U(xk, uk) + Vi(xk+1)}

= argmin
uk∈Rm

{U(xk, uk) + Vi (F (xk, uk))} (11)

Vi+1(xk) = min
uk∈Rm

{U(xk, uk) + Vi(xk+1)}
=U (xk, vi(xk)) + Vi (F (xk, vi(xk))) . (12)

For the iterative θ-ADP algorithm, we can see that for ∀i =
0, 1, . . ., the accurate iterative control law and the accurate
iterative performance index function must be obtained in order
to guarantee the convergence of the iterative performance index
function [30], [31]. In real-world implementations, however,
for ∀i = 0, 1, . . ., the accurate iterative control law vi(xk) and
the iterative performance index function Vi(xk) are generally
impossible to obtain. For example, if neural networks are
used to implement the iterative θ-ADP algorithm, no matter
what kinds of neural networks we choose, the approximation
error between the outputs of neural networks and the expected
outputs will exist. Therefore, in this situation, the convergence
of the iterative performance index function and the iterative
control law may be invalid and the iterative ADP algorithm
may be even divergent. To overcome this difficulty, a new ADP
algorithm and analysis method will be developed.

III. PROPERTIES OF THE ITERATIVE ADP ALGORITHM

WITH FINITE APPROXIMATION ERRORS

In the previous section, we have indicated that in the iterative
θ-ADP algorithm (9)–(12), the iterative performance index
function Vi(xk) converges to the optimal performance index
function J∗(xk) and J∗(xk)=infu

k
{J(xk, uk), uk∈Uk} satis-

fies the HJB equation (7) for any controllable state xk∈R
n. In

fact, as the existence of the approximation errors, the accurate
iterative control law cannot generally be obtained. In this situa-
tion, the iterative ADP algorithm with no approximation errors
may be invalid. New analysis methods should be investigated.

Then, in the following, we give the iterative ADP algorithm
with finite approximation errors.

A. Derivation of the Iterative ADP Algorithm With Finite
Approximation Errors

In the proposed iterative ADP algorithm, the performance
index function and control law are updated by recurrent it-
eration, with iteration index i increasing from 0 to infinity.
For ∀xk ∈ R

n, let the initial function Ψ(xk) be an arbitrary
function that satisfies Ψ(xk) ∈ Ψ̄xk

, where Ψ̄xk
is expressed

in Definition 2.1. For ∀xk ∈ R
n, let the initial performance

index function V̂0(xk) = θΨ(xk), where θ > 0 is a large finite
positive constant. The iterative control law v̂0(xk) can be
computed as follows:

v̂0(xk) = argmin
uk∈Rm

{
U(xk, uk) + V̂0(xk+1)

}
+ ρ0(xk)

= argmin
uk∈Rm

{
U(xk, uk) + V̂0 (F (xk, uk))

}
+ ρ0(xk)

(13)

where V̂0(xk+1) = θΨ(xk+1), and the performance index
function can be updated as

V̂1(xk)=U (xk, v̂0(xk))+V̂0 (F (xk, v̂0(xk)))+π0(xk) (14)

where ρ0(xk) and π0(xk) are the approximation error functions
of the iterative control and iterative performance index function,
respectively.

For i = 1, 2, . . ., the iterative ADP algorithm will iterate
between

v̂i(xk) = argmin
uk∈Rm

{
U(xk, uk) + V̂i(xk+1)

}
+ ρi(xk)

= argmin
uk∈Rm

{
U(xk, uk) + V̂i (F (xk, uk))

}
+ ρi(xk)

(15)
V̂i+1(xk) =U (xk, v̂i(xk)) + V̂i (F (xk, v̂i(xk))) + πi(xk)

(16)

where ρi(xk) and πi(xk) are the finite approximation error
functions of the iterative control and iterative performance
index function, respectively.

Remark 3.1: Due to the existence of approximation errors,
we can see that the iterative performance index function V̂i(xk)
may be smaller than zero for some large πi(xk). Since the iter-
ative performance index function Vi(xk) > 0 holds for ∀xk �=
0, then V̂i(xk) ≤ 0 is meaningless. Thus, in this paper, it is
assumed that V̂i(xk) > 0, ∀xk �= 0.

Remark 3.2: From the iterative ADP algorithm (13)–(16),
we can see that for i = 0, 1, . . ., the iterative performance
index function Vi(xk) and the iterative control law vi(xk) in
(9)–(12) are replaced by V̂i(xk) and v̂i(xk), respectively. Due
to the existence of approximation errors, generally speaking, we
have for ∀i ≥ 0, v̂i(xk) �= vi(xk) and V̂i+1(xk) �= Vi+1(xk).
This means that there exists an error between V̂i+1(xk) and



782 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 2, APRIL 2013

Vi+1(xk). It should be pointed out that the iterative approxi-
mation is not a constant. The fact is that, as the iteration index
i → ∞, the boundary of iterative approximation errors will
also increase to infinity, although in the single iteration, the
approximation error is finite. The following theorem will show
this property.

Theorem 3.1: Let xk ∈ R
n be an arbitrary controllable state

and Assumptions 1–4 hold. For i = 1, 2, . . ., define a new
iterative performance index function as

Γi(xk) = min
uk∈Rm

{
U(xk, uk) + V̂i−1(xk+1)

}
(17)

where V̂i(xk) is defined in (16), and uk can be accurately
obtained in R

m. Let the initial iterative performance index
function V̂0(xk) = Γ0(xk) = θΨ(xk). If for i = 1, 2, . . . there
exists a finite constant ε̄ ≥ 0 that makes∣∣∣V̂i(xk)− Γi(xk)

∣∣∣ ≤ ε̄ (18)

hold uniformly, then we have∣∣∣V̂i(xk)− Vi(xk)
∣∣∣ ≤ iε̄. (19)

Proof: The theorem can be proved by mathematical in-
duction. First, let i = 1. We have

Γ1(xk) = min
uk∈Rm

{
U(xk, uk) + V̂0(xk+1)

}
= min

uk∈Rm
{U(xk, uk) + V0 (F (xk, uk))}

=V1(xk). (20)

According to (18), we have

−ε̄ ≤ V̂i(xk)− Γi(xk) ≤ ε̄ (21)

that holds for ∀i = 1, 2, . . .. Then, we can get

−ε̄ ≤ V̂1(xk)− V1(xk) ≤ ε̄ (22)

which proves that ∣∣∣V̂1(xk)− V1(xk)
∣∣∣ ≤ ε̄. (23)

Assume that (19) holds for i = l − 1, l = 1, 2, . . .. Then, we
have

−(l − 1)ε̄ ≤ V̂l−1(xk)− Vl−1(xk) ≤ (l − 1)ε̄. (24)

For i = l, we can get

Γl(xk) = min
uk∈Rm

{
U(xk, uk) + V̂l−1(xk+1)

}
≥ min

uk∈Rm
{U(xk, uk) + Vl−1(xk+1)− (l − 1)ε̄}

=Vl(xk)− (l − 1)ε̄ (25)

Γl(xk) = min
uk∈Rm

{
U(xk, uk) + V̂l−1(xk+1)

}
≤ min

uk∈Rm
{U(xk, uk) + Vl−1(xk+1) + (l − 1)ε̄}

=Vl(xk) + (l − 1)ε̄. (26)

Then, according to (21), we can get (19) easily. �

From Theorem 3.1, we can see that if we let a finite constant
−ε̄ ≤ ε ≤ ε̄ that satisfies

V̂i(xk)− Γi(xk) ≤ ε (27)

uniformly, then we can immediately obtain

V̂i(xk)− Vi(xk) ≤ iε (28)

where ε can be defined as a uniform finite approximation error
(finite approximation error for brief). For the iterative θ-ADP
algorithm (9)–(12), it has been proved that the iterative per-
formance index function converges to the optimum as i → ∞.
From (28), we can see that if we let Ti = iε be the least upper
bound of the iterative approximation errors, then for ∀ε �= 0,
we have Ti → ∞ as i → ∞. This means that, although the
approximation error for each single step is finite and may be
small, as the iteration index increases i → ∞, it is possible that
the approximation errors between V̂i(xk) and Vi(xk) increase
to infinity. Hence, the convergence analysis theorems in [30]
and [31] are invalid to justify the properties of V̂i(xk) and
v̂i(xk) in (13)–(16). To overcome these difficulties, a new
convergence analysis must be established.

B. Properties of the Iterative ADP Algorithm With Finite
Approximation Errors

From the iterative ADP algorithm (13)–(16), we can see
that for ∀i = 0, 1, . . ., there exists an approximation error be-
tween the iterative performance index functions V̂i(xk) and
Vi(xk). Furthermore, the detailed value of each iterative error
is unknown and nearly impossible to obtain. It makes the
properties of the iterative performance index function V̂i(xk)
and the iterative control law v̂i(xk) very difficult to analyze.
Therefore, in this section, a new “error bound” analysis method
is proposed. The idea of the “error bound” analysis method is
that, for each iterative index i = 0, 1, . . ., the least upper bound
of the iterative performance index functions V̂i(xk) is analyzed,
which avoids analyzing the value of V̂i(xk) directly. Using
the “error bound” method, it can be proved that the iterative
performance index functions V̂i(xk) can uniformly converge
to a bounded neighborhood of the optimal performance index
function.

For convenience of analysis, we transform the expressions
of approximation errors. According to (27), we have V̂i(xk) ≤
Γi(xk) + ε. Then, for ∀i = 0, 1, . . ., there exists a finite con-
stant σ ≥ 1 that makes

V̂i(xk) ≤ σΓi(xk) (29)

hold uniformly. Hence, we can give the following theorem.
Theorem 3.2: Let xk ∈ R

n be an arbitrary controllable state
and Assumptions 1–4 hold. For ∀ i = 0, 1, . . ., let Γi(xk) be
expressed as (17) and V̂i(xk) be expressed as (16). Let 0 < γ <
∞ and 1 ≤ δ < ∞ be both constant that make

J∗ (F (xk, uk)) ≤ γU(xk, uk) (30)

J∗(xk) ≤ V0(xk) ≤ δJ∗(xk) (31)
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hold uniformly. If there exists 1 ≤ σ < ∞ that makes (29) hold
uniformly, then we have

V̂i(xk) ≤ σ

⎛
⎝1+

i∑
j=1

γjσj−1(σ − 1)

(γ + 1)j
+
γiσi(δ − 1)

(γ + 1)i

⎞
⎠ J∗(xk)

(32)
where we define

∑i
j(·) = 0, for ∀j > i and i, j = 0, 1, . . ..

Proof: The theorem can be proved by mathematical in-
duction. First, let i = 0. Then, (32) becomes

V̂0(xk) ≤ σδJ∗(xk). (33)

As V0(xk) = Γ0(xk) = θΨ(xk), we can obtain σΓ0(xk) ≤
σδJ∗(xk). Therefore, the conclusion holds for i = 0.

Next, let i = 1. According to (17), we have

Γ1(xk) = min
uk∈Rm

{
U(xk, uk) + V̂0 (F (xk, uk))

}

≤ min
uk∈Rm

{U(xk, uk) + σδJ∗ (F (xk, uk))}

≤ min
uk∈Rm

{(
1 + γ

σδ − 1

γ + 1

)
U(xk, uk)

+

(
σδ − σδ − 1

γ + 1

)
J∗ (F (xk, uk))

}

=

(
1 + γ

σδ − 1

γ + 1

)

× min
uk∈Rm

{U(xk, uk) + J∗ (F (xk, uk))}

=

(
1 +

γ(σ − 1)

γ + 1
+

γσ(δ − 1)

γ + 1

)
J∗(xk). (34)

According to (29), we can obtain

V̂1(xk) ≤ σ

(
1 +

γ(σ − 1)

γ + 1
+

γσ(δ − 1)

γ + 1

)
J∗(xk) (35)

which shows that (32) holds for i = 1.
Assume that (32) holds for i = l − 1, where l = 1, 2, . . ..

Then, for i = l, we have (36), shown at the bottom of
the page.

Then, according to (29), we can obtain (32), which proves
the conclusion for ∀ i = 0, 1, . . .. �

From (32), we can see that for arbitrary finite i, σ, and δ, there
exists a bounded error between the iterative performance index
function V̂i(xk) and the optimal performance index function
J∗(xk). As i → ∞, the bound of the approximation errors
may increase to infinity. Thus, in the following, we will show
the convergence properties of the iterative ADP algorithm
(13)–(16) using the error bound method.

Theorem 3.3: Let xk ∈ R
n be an arbitrary controllable state

and Assumptions 1–4 hold. Suppose Theorem 3.2 holds for
∀xk ∈ R

n. If for 0 < γ < ∞ the inequality

1 ≤ σ <
γ + 1

γ
(37)

holds, then as i → ∞, the iterative performance index function
V̂i(xk) in the iterative ADP algorithm (13)–(16) is uniformly
convergent to a bounded neighborhood of the optimal perfor-
mance index function J∗(xk), i.e.,

lim
i→∞

V̂i(xk)= V̂∞(xk)≤σ

(
1+

γ(σ−1)

1−γ(σ−1)

)
J∗(xk). (38)

Γl(xk) = min
uk∈Rm

{
U(xk, uk) + V̂l−1 (F (xk, uk))

}

≤ min
uk∈Rm

⎧⎨
⎩U(xk, uk) + σ

⎛
⎝1 +

l−1∑
j=1

γjσj−1(σ − 1)

(γ + 1)j
+

γl−1σl−1(δ − 1)

(γ + 1)l−1

⎞
⎠ J∗(xk+1)

⎫⎬
⎭

≤ min
uk∈Rm

⎧⎨
⎩
⎛
⎝1 + γ

l−1∑
j=1

γj−1σj−1(σ − 1)

(γ + 1)j
+

γl−1σl−1(σδ − 1)

(γ + 1)l−1

⎞
⎠U(xk, uk)

+

⎡
⎣σ

⎛
⎝1 +

l−1∑
j=1

γjσj−1(σ − 1)

(γ + 1)j
+

γl−1σl−1(δ − 1)

(γ + 1)l−1

⎞
⎠

−

⎛
⎝ l−1∑

j=1

γj−1σj−1(σ − 1)

(γ + 1)j
+

γl−1σl−1(σδ − 1)

(γ + 1)l−1

⎞
⎠
⎤
⎦ J∗ (F (xk, uk))

⎫⎬
⎭

=

⎛
⎝1 +

l∑
j=1

γjσj−1(σ − 1)

(γ + 1)j
+

γlσl(δ − 1)

(γ + 1)l

⎞
⎠ min

uk∈Rm
{U(xk, uk) + J∗ (F (xk, uk))}

=

⎛
⎝1 +

l∑
j=1

γjσj−1(σ − 1)

(γ + 1)j
+

γlσl(δ − 1)

(γ + 1)l

⎞
⎠ J∗(xk) (36)
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Proof: According to (36) in Theorem 3.2, we can see that
for j = 1, 2, . . ., the sequence {γjσj−1(σ − 1)/(γ + 1)j} is a
geometric series. Then, (36) can be written as

Γi(xk)≤

⎛
⎜⎜⎝1+

γ(σ−1)
γ+1

(
1−

(
γσ
γ+1

)i
)

1− γσ
γ+1

+
γiσi(δ−1)

(γ+1)i

⎞
⎟⎟⎠ J∗(xk).

(39)
As i → ∞, if 1 ≤ σ < (γ + 1)/γ, then (39) becomes

lim
i→∞

Γi(xk)=Γ∞(xk)≤
(
1+

γ(σ−1)

1−γ(σ−1)

)
J∗(xk). (40)

According to (29), let i → ∞, we have

V̂∞(xk) ≤ σΓ∞(xk). (41)

According to (40) and (41), we can obtain (38). �
Corollary 3.1: Let xk ∈ R

n be an arbitrary controllable state
and Assumptions 1–4 hold. Suppose Theorem 3.2 holds for
∀xk ∈ R

n. If for 0 < γ < ∞, 1 ≤ σ < ∞, and the inequality
(37) holds, then the control law v̂i(xk) of the iterative ADP
algorithm (13)–(16) is convergent, i.e.,

v̂∞(xk) = lim
i→∞

v̂i(xk). (42)

Remark 3.3: Theorem 3.3 gives a convergent condition for
the iterative performance index function V̂i(xk) in the iterative
ADP algorithm (13)–(16). From the convergent condition (37),
we can see that the approximation error σ is only the function
of variable γ, which is independent of δ. As i → ∞, the limit of
the iterative performance index function in (38) is the function
of variables σ and γ while it is still independent of δ. This
makes the justification of the convergence and estimation of the
bound of the performance index function easier.

Due to the existence of approximation errors, the iterative
performance index function V̂i(xk) is not necessary larger or
smaller than Γi(xk). If (29) is only satisfied for some 0 <
σ′ < 1, there must exist some σ ≥ 1 that also satisfies (29) for
different xk and i. From (29), we can see that 0 < σ′ < 1 is
just a special case of σ ≥ 1. Therefore, in this paper, we will
consider only the situation for σ ≥ 1.

For the iterative ADP algorithm with finite approximation
errors, we can see that, for different approximation errors,
the limits of the iterative performance index function V̂i(xk)
are different. This property can be proved by the following
theorem.

Theorem 3.4: Let xk ∈ R
n be an arbitrary controllable state

and Assumptions 1–4 hold. Let

V̄∞(xk) = σ

(
1 +

γ(σ − 1)

1− γ(σ − 1)

)
J∗(xk) (43)

be the least upper bound of the limit of the iterative performance
index function. If Theorem 3.3 holds for ∀xk ∈ R

n, then we
have V̄∞(xk) as a monotonically increasing function of the
approximation error coefficient σ.

Proof: From (43), we can see that the least upper bound of
the limit of the iterative performance index function V̄∞(xk) is a
differentiable function of the approximation error coefficient σ.

Hence, we can take the derivative of the approximation error σ
along to the two sides of (43). Then, we can obtain

∂V̄∞(xk)

∂σ
=

(
1 + γ

(γ(σ − 1)− 1)2

)
J∗(xk) > 0. (44)

This proves the theorem. �
According to the definitions of iterative performance index

functions V̂i(xk) and Γi(xk) in (16) and (17), for ∀ i = 0, 1, . . .,
if we let

V̂i(xk)− Γi(xk) = εi(xk) (45)

then we can define

ε = sup {ε0(xk), ε1(xk), . . .} . (46)

In the previous section, the approximation error σ that satisfies
(29) is used to analyze the convergence properties of the itera-
tive ADP algorithm. Generally, the approximation error ε is ob-
tained instead of obtaining σ. Therefore, if we use ε to express
the approximation error, then an expression transformation is
needed between the two approximation errors ε and σ.

For ∀ i = 0, 1, . . ., for any εi(xk) expressed in (45), there
exists a σi(xk) that satisfies

V̂i(xk)− εi(xk) =
V̂i(xk)

σi(xk)
. (47)

According to (46), we can also obtain σ = sup{σ0(xk),
σ1(xk), . . .}.

Remark 3.4: In [6], the approximation error for a class of
single-layer neural networks is discussed to show the uniform
convergence of a performance index function, whereas for
different types of neural networks, the convergence cannot be
guaranteed. In this paper, we can see that the type of errors in
the algorithm is not specified. For example, the errors can de-
note the approximation errors by arbitrary neural networks and
fuzzy structures. Therefore, the approximation errors discussed
in this paper are more general than the one in [6].

IV. NEURAL NETWORK IMPLEMENTATION

FOR THE OPTIMAL CONTROL SCHEME

In the case of linear systems, the performance index func-
tion is quadratic and the control law is linear. In the nonlin-
ear case, this is not necessarily true, and therefore, we use
back propagation (BP) neural networks to approximate vi(xk)
and Vi(xk).

Assume that the number of hidden layer neurons is denoted
by L. The weight matrix between the input and hidden layers
is denoted by Y . The weight matrix between the hidden and
output layers is denoted by W . The input vector of the neural
network is denoted as X . Then, the output of the three-layer
neural network is represented by

F̂ (X,Y,W ) = Wσ(Y X) (48)

where σ(Y X) ∈ RL, [σ(z)]i = (ezi − e−zi)/(ezi + e−zi), i =
1, . . . L, are the activation functions.

The neural network estimation error can be expressed by

F (X) = F (X,Y ∗,W ∗) + ε(X) (49)
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Fig. 1. Structure diagram of the algorithm.

where Y ∗ and W ∗ are the ideal weight parameters, and ε(X) is
the reconstruction error.

Here, there are two networks, which are the critic and action
networks, respectively. Both neural networks are chosen as
three-layer feedforward networks. The whole structure diagram
is shown in Fig. 1.

A. Critic Network

The critic network is used to approximate the performance
index function Vi(xk). The output of the critic network is
denoted by

V̂i+1(xk) = Wci(k)σ (Yci(k)xk) . (50)

The target function can be written as

Vi+1(xk) = U (xk, vi(xk)) + V̂i(xk+1). (51)

Then, we define the error function for the critic network as

eci(k) = V̂i+1(xk)− Vi+1(xk). (52)

The objective function to be minimized for the critic network
training is

Eci(k) =
1

2
e2ci(k). (53)

The gradient-based weight update rule [24] that can be applied
here to the critic network training is given by

wc(i+1)(k) =wci(k) + Δwci(k) (54)

Δwci(k) = −αc

[
∂Eci(k)

∂wci(k)

]
(55)

∂Eci(k)

∂wci(k)
=

∂Eci(k)

∂V̂i+1(xk)

∂V̂i+1(xk)

∂wci(k)
(56)

where αc > 0 is the learning rate of the critic network, and
wci(k) is the weight vector in the critic network, which can be
replaced by Wci and Yci, respectively.

If we define

ql(k) =

Lc∑
j=1

Y
lj
ci (k)xjk, l = 1, 2 . . . , Lc (57)

pl(k) =
eql(k) − e−ql(k)

eql(k) + e−ql(k)
, l = 1, 2 . . . , Lc (58)

then we have

V̂i+1(xk) =

Lc∑
l=1

W l
ci(k)pl(k) (59)

where Lc is the total number of hidden nodes in the critic
network. By applying the chain rule, the adaptation of the critic
network is summarized as follows.

The hidden-to-output layer of the critic is updated as

ΔW l
ci(k) = −αc

∂Eci(k)

∂V̂i+1(xk)

∂V̂i+1(xk)

∂W l
ci(k)

= −αceci(k)pl(k). (60)

The input-to-hidden layer of the critic is updated as

ΔY l
ci(k) = −αc

∂Eci(k)

∂V̂i+1(xk)

∂V̂i+1(xk)

∂Y l
ci(k)

= −αc
∂Eci(k)

∂V̂i+1(xk)

∂V̂i+1(xk)

∂pl(k)

∂pl(k)

∂ql(k)

∂ql(k)

∂Y l
ci(k)

= −αceci(k)W
l
ci(k)

[
1

2

(
1− p2l (t)

)]
xlk. (61)

B. Action Network

In the action network, the state error xk is used as an input to
create the optimal control law as the output of the network. The
output can be formulated as

v̂i(xk) = Waiσ(Yaixk). (62)

The target of the output of the action network is given by
(11). Therefore, we can define the output error of the action
network as

eai(k) = v̂i(xk)− vi(xk) (63)

where the target function of the iterative control law is given by

vi(xk) = argmin
uk

{
U(xk, uk) + V̂i−1(xk+1)

}
. (64)

The weights in the action network are updated to minimize the
following performance error measure:

Eai(k) =
1

2
e2ai(k). (65)

The weights updating algorithm is similar to the one for the
critic network. By the gradient descent rule, we can obtain

wa(i+1)(k) =wai(k) + Δwai(k) (66)

Δwai(k) = −βa

[
∂Eai(k)

∂wai(k)

]
(67)

∂Eai(k)

∂wai(k)
=

∂Eai(k)

∂eai(k)

∂eai(k)

∂v̂i(xk)

∂v̂i(xk)

∂wai(k)
(68)

where βa > 0 is the learning rate of the action network, and
wai(k) is the weight of the action network, which can be
replaced by Wai and Yai.
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If we define

gl(k) =

La∑
j=1

Y
lj
ai (k)xjk, l = 1, 2 . . . , La (69)

hl(k) =
egl(k) − e−gl(k)

egl(k) + e−gl(k)
, l = 1, 2 . . . , La (70)

then we have

v̂i(xk) =

La∑
l=1

W l
ai(k)hl(k) (71)

where La is the total number of hidden nodes in the action
network. By applying the chain rule, the adaptation of the action
network is summarized as follows.

The hidden-to-output layer of the action is updated as

ΔW l
ai(k) = −βa

∂Eai(k)

∂v̂i(xk)

∂v̂i(xk)

∂W l
ai(k)

= −βaeai(k)hl(k). (72)

The input-to-hidden layer of the action is updated as

ΔY l
ai(k) = −βa

∂Eai(k)

∂v̂i(xk)

∂v̂i(xk)

∂Y l
ai(k)

= −βa
∂Eai(k)

∂v̂i(xk)

∂v̂i(xk)

∂hl(k)

∂hl(k)

∂gl(k)

∂gl(k)

∂Y l
ai(k)

= −βaeai(k)W
l
ai(k)

[
1

2

(
1− g2l (t)

)]
xlk. (73)

Details on neural training algorithm can be also found in [24].
Remark 4.1: Using neural networks, we can implement

the proposed iterative ADP algorithm effectively. As neural
networks are used, it should be pointed out that the neural-
networked-based optimization is generally related to local
optimum. To overcome this problem, many improved training
algorithms are proposed to achieve the global optimum. De-
creasing the learning rate is an effective method to achieve
the global optimum, and it is also recommended to initialize
the weights of the neural network to small values to obtain the
global approximation results effectively [10]. Many other im-
proved training algorithms are proposed to achieve the global
optimum [9], [10], such as momentum algorithm, variable
learning rate algorithm, and Levenberg–Marquardt algorithm.
In this paper, we adopt small learning rates for training the critic
and action networks to achieve the global optimal solution.

V. SIMULATION STUDIES

To evaluate the performance of our iterative ADP algorithm
with finite approximation errors, we choose two examples with
quadratic utility functions for numerical experiments.

Example 5.1: Our first example is chosen as the example in
[11] and [27]. Consider the following discrete-time nonaffine
nonlinear system:

xk+1 = F (xk, uk) = xk + sin
(
0.1x2

k + uk

)
. (74)

The initial state is x0 = 1. Since F (0, 0) = 0, xk = 0 is an
equilibrium state of system (74). However, since (∂F (xk, uk)/

Fig. 2. Curve of the approximation errors.

∂xk)(0, 0) = 1, nonlinear system (74) is marginally stable at
xk = 0 and the equilibrium xk = 0 is not attractive. Let the
performance index function be in quadratic form, which is
expressed as

J(x0, u0) =
∞∑

k=0

(
xT
kQxk + uT

kRuk

)
(75)

where matrix Q = R = I , and I denotes the identity matrix
with suitable dimensions.

Neural networks are used to implement the iterative ADP
algorithm. The critic and action networks are chosen as three-
layer BP neural networks with the structures of 1–8–1 and
1–8–1, respectively. Neural networks are used to implement
the iterative ADP algorithm, and the neural network structure
diagram of the algorithm can be also seen in [24], [28], and [36].
Let θ = 8 and Ψ(xk) = xT

kQxk to initialize the algorithm.
The curve of the approximation errors defined in (45) is

displayed in Fig. 2.
We choose a random array of state variable in [−1, 1] to

train the neural networks. For each iterative step, the critic and
action networks are trained for 1000 steps under the learning
rate α = 0.001 so that the approximation error is reached. The
iterative ADP algorithm runs for 35 iteration steps to guarantee
the convergence of the iterative performance index function. To
show the effectiveness of the proposed iterative ADP algorithm,
we choose four different global training precision values of neu-
ral networks. The approximation errors of the neural networks
are chosen as ε = 10−6, ε = 10−4, ε = 10−3, and ε = 10−1.
The trajectory of the iterative performance index function is
shown in Fig. 3(a)–(d) for the approximation errors of the
neural networks ε = 10−6, ε = 10−4, ε = 10−3, and ε = 10−1,
respectively.

For approximation error ε = 10−6, implement the approxi-
mate optimal control for system (74). Let the implementation
time Tf = 20, and the trajectories of the control and state
are displayed in Fig. 4(a). For approximation error ε = 10−4,
and the trajectories of the control and state are displayed in
Fig. 4(b). When the approximation error ε = 10−3, we can see
that the iterative performance index functions are not mono-
tone. The trajectories of the control and state are displayed in
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Fig. 3. Trajectories of the iterative performance index functions. (a) Approxi-
mation error ε = 10−6. (b) Approximation error ε = 10−4. (c) Approximation
error ε = 10−3. (d) Approximation error ε = 10−1.

Fig. 4. Control and state trajectories. (a) Approximation error ε = 10−6.
(b) Approximation error ε = 10−4. (b) Approximation error ε = 10−3.
(d) Approximation error ε = 10−1.

Fig. 4(c). When the approximation error ε = 10−1, we can see
that the iterative performance index functions are not conver-
gent. In this situation, the control system is not stable and the
trajectories of the control and state are displayed in Fig. 4(d).

Example 5.2: The second example is chosen as the example
in [21] and [25]. We consider the following system:

x1(k + 1) =
[
x2
1(k) + x2

2(k) + u(k)
]
cos (x2(k))

x2(k + 1) =
[
x2
1(k) + x2

2(k) + u(k)
]
sin (x2(k)) . (76)

Let xk = [x1(k), x2(k)]
T denote the system state vector and

uk = u(k) denote the control. The performance index function
is defined as in (75) of Example 1.

The initial state is x0 = [1,−1]T . From system (76), we can
see that xk = 0 is an equilibrium state and the autonomous
system F (xk, 0) is unstable. We also use neural networks to

Fig. 5. Curve of the approximation errors.

Fig. 6. Trajectories of the iterative performance index functions. (a) Approxi-
mation error ε = 10−8. (b) Approximation error ε = 10−4. (c) Approximation
error ε = 10−3. (d) Approximation error ε = 10−1.

implement the iterative ADP algorithm. The critic and action
networks are chosen as three-layer BP neural networks with
the structures of 2–8–1 and 2–8–1, respectively. We also use
the critic network to approximate the iterative performance
index functions and use the action network to approximate the
iterative control laws.

Let θ = 8 and Ψ(xk) = xT
kQxk to initialize the algorithm.

The iterative ADP algorithm runs for 35 iteration steps to
guarantee the convergence of the iterative performance index
function. The curve of the converged approximation errors is
displayed in Fig. 5.

To show the effectiveness of the proposed iterative ADP
algorithm, we also choose four different approximation pre-
cision values of neural networks. For each iterative step, the
critic and action networks are trained for 1500 steps under
the learning rate α = 0.001 so that the approximation error
is reached. First, let the approximation errors of the neural
networks be ε = 10−8, ε = 10−4, ε = 10−3, and ε = 10−1. The
trajectories of the iterative performance index function are
shown in Fig. 6(a)–(d), respectively.
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Fig. 7. Control and state trajectories. (a) State trajectories for approximation
error ε = 10−8. (b) Control trajectory for approximation error ε = 10−8.
(c) State trajectories for approximation error ε = 10−4. (d) Control trajectory
for approximation error ε = 10−4.

Fig. 8. Control and state trajectories. (a) State trajectories for approximation
error ε = 10−3. (b) Control trajectory for approximation error ε = 10−3.
(c) State trajectories for approximation error ε = 10−1. (d) Control trajectory
for approximation error ε = 10−1.

For approximation error ε = 10−8, implement the approxi-
mate optimal control for system (76). Let the implementation
time Tf = 40. The trajectories of the state are displayed in
Fig. 7(a), and the corresponding control trajectory is displayed
in Fig. 7(b). For approximation error ε = 10−4, the trajectories
of the state are displayed in Fig. 7(c) and the corresponding con-
trol trajectory is displayed in Fig. 7(d). When the approximation
error ε = 10−3, we can see that the iterative performance index
functions are not completely converged within 35 iteration
steps. The trajectories of the state are displayed in Fig. 8(a), and
the corresponding control trajectory is displayed in Fig. 8(b).

When the approximation error ε = 10−1, we can see that the
iterative performance index functions are not convergent. The
control system is not stable. The trajectories of the state are
displayed in Fig. 8(c), and the corresponding control trajectory
is displayed in Fig. 8(d).

VI. CONCLUSION

In this paper, an effective iterative ADP algorithm has been
proposed to solve optimal control problems for infinite-horizon
discrete-time nonlinear systems. When the iterative control law
and the iterative performance index function in each iteration
cannot be accurately obtained, it has been shown that the
iterative performance index functions can converge to the finite
neighborhood of the optimal performance index function if
the convergence conditions are satisfied. Neural networks are
used to implement the iterative ADP algorithm. Finally, two
simulation examples are given to illustrate the performance of
the proposed algorithm.

REFERENCES

[1] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB ap-
proach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[2] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear
HJB solution using approximate dynamic programming: Convergence
proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4,
pp. 943–949, Aug. 2008.

[3] S. N. Balakrishnan and V. Biega, “Adaptive-critic-based neural networks
for aircraft optimal control,” J. Guid., Control, Dyn., vol. 19, no. 4,
pp. 893–898, Jul./Aug. 1996.

[4] R. Beard, “Improving the closed-loop performance of nonlinear systems,”
Ph.D. dissertation, Rensselaer Polytechnic Inst., Troy, NY, 1995.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Cambridge, MA: Athena Scientific, 1996.

[6] T. Cheng, F. L. Lewis, and M. Abu-Khalaf, “A neural network solution
for fixed-final time optimal control of nonlinear systems,” Automatica,
vol. 43, no. 3, pp. 482–490, Mar. 2007.

[7] R. Enns and J. Si, “Helicopter trimming and tracking control using direct
neural dynamic programming,” IEEE Trans. Neural Netw., vol. 14, no. 4,
pp. 929–939, Aug. 2003.

[8] S. Ferrari, J. E. Steck, and R. Chandramohan, “Adaptive feedback control
by constrained approximate dynamic programming,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 982–987, Aug. 2008.

[9] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design.
Boston, MA: PWS-Kent, 1996.

[10] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ: Prentice-Hall, 1999.

[11] N. Jin, D. Liu, T. Huang, and Z. Pang, “Discrete-time adaptive dynamic
programming using wavelet basis function neural networks,” in Proc.
IEEE Symp. Approx. Dyn. Programm. Reinforcement Learn., Honolulu,
HI, USA, Apr. 2007, pp. 135–142.

[12] R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algorithms
for autonomous deployment and localization of sensor nodes,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 6, pp. 663–675,
Nov. 2010.

[13] G. G. Lendaris, “Higher level application of ADP: A next phase for the
control field?” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4,
pp. 901–912, Aug. 2008.

[14] F. L. Lewis and V. G. Kyriakos, “Reinforcement learning for partially
observable dynamic processes: Adaptive dynamic programming using
measured output data,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 41, no. 1, pp. 14–25, Jan. 2011.

[15] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic
programming for feedback control,” IEEE Circuits Syst. Mag., vol. 9,
no. 3, pp. 32–50, Third Quarter, 2009.

[16] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE
Trans. Autom. Control, vol. 51, no. 8, pp. 1249–1260, Aug. 2006.



LIU AND WEI: OPTIMAL CONTROL APPROACH FOR DISCRETE-TIME NONLINEAR SYSTEMS 789

[17] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic
learning techniques for engine torque and air-fuel ratio control,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 988–993,
Aug. 2008.

[18] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission control
scheme for CDMA cellular networks,” IEEE Trans. Neural Netw., vol. 16,
no. 5, pp. 1219–1228, Sep. 2005.

[19] J. Mao and C. G. Cassandras, “Optimal control of multi-stage discrete
event systems with real-time constraints,” IEEE Trans. Autom. Control,
vol. 54, no. 1, pp. 108–123, Jan. 2009.

[20] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32,
no. 2, pp. 140–153, May 2002.

[21] E. M. Navarro-Lopez, “Local feedback passivation of nonlinear discrete-
time systems through the speed-gradient algorithm,” Automatica, vol. 43,
no. 7, pp. 1302–1306, Jul. 2007.

[22] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[23] J. Seiffertt, S. Sanyal, and D. C. Wunsch, “Hamilton–Jacobi–Bellman
equations and approximate dynamic programming on time scales,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 918–923,
Aug. 2008.

[24] J. Si and Y.-T. Wang, “On-line learning control by association and re-
inforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[25] H. Sira-Ramirez, “Non-linear discrete variable structure systems in quasi-
sliding mode,” Int. J. Control, vol. 54, no. 5, pp. 1171–1187, May 1991.

[26] K. G. Vamvoudakis and F. L. Lewis, “Multi-player non-zero-sum games:
Online adaptive learning solution of coupled Hamilton–Jacobi equations,”
Automatica, vol. 47, no. 8, pp. 1556–1569, Aug. 2011.

[27] F. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems with
ε-error bound,” IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 24–36, Jan.
2011.

[28] F. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An
introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47,
May 2009.

[29] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge Univ., Cambridge, U.K., 1989.

[30] Q. Wei and D. Liu, “Adaptive dynamic programming with stable value
iteration algorithm for discrete-time nonlinear systems,” in Proc. Int. Joint
Conf. Neural Netw., Brisbane, Australia, Jun. 2012, pp. 1–6.

[31] Q. Wei and D. Liu, “A novel optimal control scheme for discrete-time
nonlinear systems using iterative adaptive dynamic programming,” IEEE
Trans. Autom. Sci. Eng., submitted for publication.

[32] Q. Wei, H. Zhang, and J. Dai, “Model-free multiobjective approximate
dynamic programming for discrete-time nonlinear systems with gen-
eral performance index functions,” Neurocomputing, vol. 72, no. 7–9,
pp. 1839–1848, Mar. 2009.

[33] P. J. Werbos, “A menu of designs for reinforcement learning over
time,” in Neural Networks for Control, W. T. Miller, R. S. Sutton, and
P. J. Werbos, Eds. Cambridge, MA: MIT Press, 1991, pp. 67–95.

[34] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York:
Van Nostrand, 1992, ch. 13.

[35] Q. Yang, J. B. Vance, and S. Jagannathan, “Control of nonaffine nonlinear
discrete-time systems using reinforcement-learning-based linearly param-
eterized neural networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 38, no. 4, pp. 994–1001, Aug. 2008.

[36] H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking
control scheme for a class of discrete-time nonlinear systems via the
greedy HDP iteration algorithm,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 38, no. 4, pp. 937–942, Aug. 2008.

[37] H. Zhang, Q. Wei, and D. Liu, “An iterative adaptive dynamic pro-
gramming method for solving a class of nonlinear zero-sum differential
games,” Automatica, vol. 47, no. 1, pp. 207–214, Jan. 2011.

Derong Liu (S’91–M’94–SM’96–F’05) received the
B.S. degree in mechanical engineering from East
China Institute of Technology (now Nanjing Univer-
sity of Science and Technology), Nanjing, China, in
1982; the M.S. degree in automatic control theory
and applications from the Chinese Academy of Sci-
ences, Beijing, China, in 1987; and the Ph.D. degree
in electrical engineering from the University of Notre
Dame, Notre Dame, IN, in 1994.

He was a Product Design Engineer with China
North Industries Corporation, Jilin, China, from

1982 to 1984. He was an Instructor with the Graduate School of the Chinese
Academy of Sciences from 1987 to 1990. He was a Staff Fellow with Gen-
eral Motors Research and Development Center, General Motors Corporation,
Warren, MI, from 1993 to 1995. He was an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering, Stevens Institute of Technology,
Hoboken, NJ, from 1995 to 1999. He joined the University of Illinois, Chicago,
in 1999 and became a Full Professor of electrical and computer engineering and
of computer science in 2006. He was selected for the “100 Talents Program” by
the Chinese Academy of Sciences in 2008. He has published 10 books (five
research monographs and five edited volumes).

Prof. Liu is an Elected Member of the Board of Governors of the Interna-
tional Neural Network Society. He was a member of the Conference Editorial
Board of the IEEE Control Systems Society (1995–2000). He was an Elected
AdCom Member of the IEEE Computational Intelligence Society (2006–2008).
He was the General Chair of the 2007 International Symposium on Neural
Networks (Nanjing, China); the 2009 IEEE Conference on Service Operations,
Logistics, and Informatics (Chicago, IL); and the 2008 IEEE International
Conference on Networking, Sensing and Control (Sanya, China). He is the
General Chair of the 2014 IEEE World Congress on Computational Intelligence
(Beijing, China). He serves as an Associate Editor of Neurocomputing and
the International Journal of Neural Systems. He was an Associate Editor
of Automatica (2006–2009), the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS (1997–1999), the
IEEE TRANSACTIONS ON SIGNAL PROCESSING (2001–2003), the IEEE
TRANSACTIONS ON NEURAL NETWORKS (2004–2009), the IEEE Computa-
tional Intelligence Magazine (2006–2009), and the IEEE Circuits and Systems
Magazine (2008–2009). He was the Letters Editor of the IEEE TRANSAC-
TIONS ON NEURAL NETWORKS (2006–2008). He was the Founding Editor of
the IEEE Computational Intelligence Society’s Electronic Letter (2004–2009).
Currently, he is the Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS and an Associate Editor of the IEEE
TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. He was a recipient
the Michael J. Birck Fellowship from the University of Notre Dame (1990),
the Harvey N. Davis Distinguished Teaching Award from Stevens Institute of
Technology (1997), the Faculty Early Career Development (CAREER) Award
from the National Science Foundation (1999), the University Scholar Award
from the University of Illinois (2006), and the Overseas Outstanding Young
Scholar Award from the National Natural Science Foundation of China (2008).
He is also a member of Eta Kappa Nu.

Qinglai Wei received the B.S. degree in automa-
tion, the M.S. degree in control theory and control
engineering, and the Ph.D. degree in control theory
and control engineering, from Northeastern Univer-
sity, Shenyang, China, in 2002, 2005, and 2008,
respectively.

From 2009 to 2011, he was a Postdoctoral Fellow
with the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China.
He is currently an Assistant Research Fellow with the

same institute. His research interests include neural-networks-based control,
adaptive dynamic programming, optimal control, nonlinear system, and their
industrial applications.


