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1 Introduction and Basic Results

In this paper we report on some results about finite automata presentable
structures, an area of research first proposed in a Khoussainov-Nerode paper
in 1995 [1]. The topic of automata presentable structures is new, under
development and is on the edge of interactions between automata theory,
(universal) algebra, model theory and complexity theory.

One motivation for the development of the theory of FA presentable
structures comes from the theory of computable structures, the area devoted
to understanding the effective content of results in model theory and algebra.
We refer the interested reader to the Handbook of Recursive Mathematics
[2], the Handbook of Computability Theory [3] and the survey paper [4].
In the theory of computable structures one naturally assumes that there
are unbounded resources for performing computations and hence the basic
model of computation is the one of Turing. Cenzer, Nerode and Remmel
suggest the idea of considering feasible computations (e.g. polynomial time
computations) and investigate the effect of such computations on results in
algebra and model theory. Research in this area has grown into the theory
of feasible structures (e.g. polynomial time structures), or more generally
into feasible mathematics [5] [6] [7].

In [1] Khoussainov-Nerode suggest the development of a finer theory,
the theory of structures presented by automata. Informally, a structure A
of a finite signature is automatic if its domain and all the atomic relations
are recognised by finite automata. Then any structure B isomorphic to A
is called finite automaton (FA) presentable. In this case A is a FA
presentation of B. In [1] it is shown that any automatic structure can
be characterised in terms of congruences of finite index of a certain partial
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free monoid. This generalises the known Myhill-Nerode theorem about FA
recognisable languages. Another somewhat unexpected result is the next
theorem proved in [1] that shows how FA presentable structures differ from
computable or even polynomial time computable ones.

Theorem 0 [1] The first order theory of any FA presentable structure
is decidable. Moreover, if A is automatic, then there exists an algorithm
that applied to any first order definition of any relation produces a finite
automaton that recognises the relation.

Indeed there are computable (even polynomial) structures, such as the
arithmetic (ω, 0, S, + ×, ≤) for instance, whose first order theories are
not computable and may even decide the ω-jump of the computable degree.

Consideration of automatic structures poses several natural questions.
We are concerned with one of them which is the following:

What structures have or do not have FA presentations?

As mentioned above, one possible answer to this question is given in [1]
in terms of congruences of finite index over a certain partial free monoid.
However, this answer is not satisfactory in the sense that it does not explain
what the isomorphism types of FA presentable structures look like. In this
paper we give some answers to this question by giving algebraic characteri-
sations of certain FA presentable structures over unary alphabet. Here are
some of these results which we wish to report at this stage.

The first theorem concerns structures of the type (A, f), where f is a
bijection on A, called permutation structures.

Theorem 1 A permutation structure (A, f) is FA presentable if and only
if the number of infinite f -orbits is finite and there exits a finite bound on
the sizes of all finite f -orbits.

The next result concerns structures of the type (A,E), where E is an
equivalence relation on A, called equivalence structures.

Theorem 2 An equivalence structure (A,E) is FA presentable if and only
if the number of infinite E-equivalence classes is finite and there exists a
finite bound on the sizes of all finite E-equivalence classes.

Finally, the third result concerns linearly ordered sets. We recall that
ω is the type of the ordering of the natural numbers, ω? is the type of
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the ordering of negative integers, and n is the type of a linear order on n

elements.

Theorem 3 A linearly ordered set (L,≤) is FA presentable if and only if it
is isomorphic to a finite sum of linearly ordered sets of the type ω , ω? or n.

We would like to make a few comments about the theorems above. On
the one hand, we note that the notion of a FA presentable structure is a
computability-theoretic (or more precisely automata-theoretic) notion. The
notion of isomorphism type of a structure, on the other hand, is an algebraic
notion (or if one wishes a set-theoretic notion). The theorems above show
what effect FA presentability makes on isomorphism types and manifest the
relationship between finite automata and isomorphism types of structures.
We point out that the theorems do not refer to some computability–theoretic
notions such as Kleene-Mostowski hierarchy, recursive ordinals or automata-
theoretic terminology in describing the isomorphism types of FA presentable
structures. This is, in fact, another essential difference between the theory
of FA presentable structures and the theory of computable (polynomial time
computable) structures. In the latter case, characterisations of computably
presentable structures (if any) usually involve some computability-theoretic
terminology by stating, for instance, that certain invariants of a structure
belong to a some level of the Kleene–Mostwoski hierarchy or correspond to
some recursive ordinal.

The paper is organised in four parts. In the next section we give a
formal definition of FA presentable structures and provide several examples.
In Section 3 we outline the proof of the theorems above. The last section
reports on work in progress and discusses some open questions.

2 Definitions and Examples

We begin with giving definitions of automatic and FA presentable struc-
tures. We need some preliminary notions. Let Σ be a finite alphabet.
Suppose that the symbol 3 does not belong to Σ. Consider words ui =
σi1 . . . , σini from Σ?, where i = 0, . . . , n−1. The convolution u0?. . .?un−1

of these words is defined as follows. If for all i, j < n ni = nj, then the
convolution is

(σ01, . . . , σ(n−1)1), . . . , (σ0n0 , . . . , σ(n−1)n0
).
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Otherwise, let m be the maximal length of the words u0, . . . , un−1. Add to
the right end of each ui the necessary number of symbols 3 to get words of
length m. Call these new words u′i, i = 0, . . . , n− 1. Then the convolution
of the n-tuples u0, . . . , un−1 is u′0 ? . . . ? u

′
n−1. This convolution is a word of

the new alphabet (Σ
⋃
{3})n. Thus, for any n–ary relation R on Σ? we can

consider the subset R? ⊂ (Σ
⋃
{3})n obtained from R using convolution,

that is,
R? = {u0 ? . . . ? un−1|(u0, . . . , un−1) ∈ R}.

Definition 1 1) An n-variable automaton on Σ is a finite automaton
over the alphabet (Σ

⋃
{3})n. 2) An n-ary relation R on Σ? is FA recog-

nisable, if its convolution R? is recognisable by an n–variable automaton.

Let A be a structure of fixed signature (Pn1
1 , . . . , Pnkk , c0, . . . , ct) that

contains predicate and constant symbols only. If a structure contains oper-
ation symbols, then we identify this structure with the relational structure
by replacing all the operations with their graphs.

Definition 2 The structure A is automatic over Σ if its domain and the
basic relations are FA recognisable. An isomorphism from A to a structure
B is called a FA presentation of B.

Now we present several examples of FA presentable structures.

Example 1 The structure (Q,≤), where Q is the set of rationals and ≤ is
the usual ordering of the rationals, possesses a FA presentation.

Indeed, we use the coding of Rabin [8]. Let Σ = {0, 1} and let D be
a set such that α101 ∈ D if and only if α ∈ Σ? and α does not have the
subword 101. It is clear that D is a recognisable subset of Σ?. Consider the
lexicographic linear ordering � on the set Σ?. This ordering is recognisable
by a 2–variable automaton. Thus the linear ordered set (D,�) is automatic.
It is not hard to see that (D,�l) is isomorphic to (Q,≤).

One can find automatic presentations of the structures in the examples
below.

Example 2 Any ordinal ωn has a FA presentation.

Example 3 Any free unary structure A possesses a FA presentation.
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Example 4 Any finitely generated abelian group possesses a FA presenta-
tion.

Example 5 Any countable vector space over a finite field possesses a FA
presentation.

Example 6 The structure (ω,+,≤) possesses a FA presentation.

At the end of this section we note that by Theorem 0 (see introduction)
the first order theories of all structures provided in the examples above
are decidable. In particular, the decidability of the theory of Presburger
arithmetic (ω,+,≤) follows. Along these lines, any structure whose first
order theory is not decidable can not have FA presentation. In particular,
the arithmetic (ω, 0, S,+,×,≤) and the ring F [t] of polynomilas with one
variable t over any field F can not have FA presentations since their theories
are known to be undecidable. An example of a structure whose first order
theory is decidable but which does not possess a FA presentation is the
absolutely free algebra of signature (f, c), where c is a constant and f is
a binary functional symbol. Some of these facts and above examples are
known from [1].

3 Proofs of Theorems

In this section we basically outline (in more or less details) the proof of
Theorem 1 and Theorem 2 stated in the introduction. The proof of Theorem
1 is exemplary since the proofs of Theorem 2 and Theorem 3 follow similar
patterns and are even easier. We will not include the proof of Theorem 3
as it can be presented using methods developed in the proofs of Theorem 1
and Theorem 2.

Our assumption is that the alphabet Σ is unary and so Σ = {1}. We also
restrict ourselves to considering those automatic structures over {1} whose
domains are {1}?. This will simplify our discussion and the technical side
of the proofs.

Our proofs of the necessary parts of the theorems are somewhat tech-
nical and require consideration of certain types of finite automata and the
introduction of some notions and notations. Since all the theorems concern
structures containing binary predicate symbols (the graph of a unary func-
tion, the symbol for equivalence relation, the symbol for linear order), we
will deal with 2-variable automata over the alphabet {1} and convolutions
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of binary relations on the set {1}?. So let Ω = {1,3}2. Let A = (S, I, T, F )
be a FA over Ω.

Definition 3 The

(
1
1

)
-chain is defined as the minimal set X of states such

that:

1. I ⊂ X,

2. For all s ∈ X if (s,

(
1
1

)
, s′) ∈ T , then s′ ∈ X.

Clearly there exists exactly one

(
1
1

)
-chain X. Elements of X are called

X-states. Using states from X we give the next definition.

Definition 4 For any x ∈ X, we define the (x,

(
1
3

)
) − chain from x as

the minimal set Y of states such that:

1. x ∈ Y ,

2. For all s ∈ Y if (s,

(
1
3

)
, s′) ∈ T , then s′ ∈ Y .

Clearly there exists exactly one

(
1
3

)
− chain from x. Elements of

the (x,

(
1
3

)
) − chain other than x itself will be called (x,

(
1
3

)
)-states.

Sometimes we call these chains

(
1
3

)
− chains without specifying the X-

states. The notion of (x,

(
3

1

)
) − chain is defined similarly. Now we are

ready to give the following definition.

Definition 5 The automaton A is reduced if it satisfies the following con-
ditions:

1. For all s ∈ S, σ ∈ Ω, T (s, σ) contains at most one element.

2. If s is a (x,

(
1
3

)
)-state ( (x,

(
3

1

)
)-state, X-state ), then T (s, σ) is

defined if and only if σ =

(
1
3

)
(σ =

(
3

1

)
, σ =

(
1
1

)
, respectively).
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3. For all distinct x, x′ ∈ X, no pair of the sets (x,

(
1
3

)
) − chain,

(x,

(
3

1

)
) − chain, (x′,

(
1
3

)
) − chain, (x′,

(
3

1

)
) − chain have el-

ements in common.

4. For all x ∈ X, T (x,

(
1
1

)
) is defined.

5. For all x ∈ S, T (x,

(
3

3

)
) is undefined.

Now we state the following lemma whose proof follows from the men-
tioned generalised Myhill-Nerode theorem and can be found in [1].

Lemma 1 A binary relation R on Σ? is FA recognisable if and only if the
convolution of R can be recognised by a reduced automaton. 2

This lemma allows us to consider reduced automata only. We will be refering
to this fact without specifically mentioning it. Now we begin our proofs.

Proof of Theorem 1. We first prove the sufficient condition. As-
sume that U = (U, f) is a permutation structure. For a ∈ U , the set
{. . . , f−1(a), a, f(a), . . .} is called an orbit of the structure. The cardinality
of the orbit is its size. We assume that U has finitely many orbits of infinite
size and there exists a number n such that the sizes of all finite orbits are
bounded by n. First, we note that the structure (Z,S), where S(k) = k+ 1,
is a permutation structure. It is easy to see that this structure has a FA
presentation over the alphabet {1}. Let Um be a permutation structure
whose orbits are all of size m. Again it is easy to give a FA presentation
of Um over the alphabet {1}. If U1 = (U1, f1) and U2 = (U2, f2) are per-
mutation structures with U1

⋂
U2 = ∅, then the sum of these structures is

the permutation structure (U1
⋃
U2, f1

⋃
f2). We note that the sum of two

FA presentable permutation structures is again FA presentable. It is clear
that the permutation structure U is a finite sum of permutation structures
isomorphic to (Z,S), Um for some m ≤ n, and a finite number of orbits of
size less than n. Hence U has a FA presentation over the unary alphabet
{1}.

We now prove the necessary part of the theorem. It is sufficient to
show the result for automatic permutation structures since a FA presentable
structure is isomorphic to some automatic structure.
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Let U = (U, f) be an automatic permutation structure, and A the 2-
variable reduced finite automaton which recognises the graph of f . Consider
the X-chain of A. The chain can be thought of as consisting of its tail and
its loop. Let t be the length of the tail and l be the length of the loop of X.

We write a for 1a when unambiguous. Further we write a ≤ b to mean
|1a| ≤ |1b|. Now we define the following equivalence relation on the set of
words {1}∗:

a ∼ b if and only if (a = b) or (a, b ≥ t and a ≡ b(mod l))

We denote the ∼-equivalence class of a by [a], or [a]∼ to avoid ambiguity.
We set

T = {[a]|a < t} and L = {[a]|a ≥ t}.

Note that T and L depend on A.

Remark 3.1 |T | = t and |L| = l. Also, [a] ∈ T if and only if [a] = {a}.

Now, with every orbit C, we associate a sequence {si(C)} of∼-equivalence
classes

s0(C), s1(C), s2(C), . . . ,

defined as follows. Let u be the shortest word in C. Then

si(C) = [f i(u)],

where f0(w) = w, fn+1(w) = f(fn(w)), n ∈ ω.
Define [a](C) to be the restriction of [a] to the orbit C.
The following remark will be used without reference.

Remark 3.2 An orbit C is infinite if and only if f i(u) 6= f j(u) for all
i 6= j ∈ ω.

Claim 3.1 Suppose that {si(C)} ⊂ L. If si(C) = si+p(C) for some i and
p 6= 0, then si+1(C) = si+p+1(C).

Proof. Say a = f i(u) and a′ = f i+p(u), where u is the shortest word
in C. Further if a ∼ a′ then a′ = a + k0l for some k0 ∈ Z. Suppose that
f(a) = b. Then we are required to show that f(a′) ≡ b(mod l).

We have the following cases:
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1. a > b

Then A accepts

(
1
1

)b( 1
3

)j
, where j = a − b, since f(a) = b. Note

that

(
1
1

)b+k0l( 1
3

)j
is also accepted by A since {si(C)} ⊂ L. So

f(a′) = f(a+ k0l) = f(b+ j + k0l) = b+ k0l ≡ b(mod l), as required.

2. a ≤ b

Then A accepts

(
1
1

)a(
3

1

)j
, where j = b− a, since f(a) = b.

But thenA also accepts

(
1
1

)a+k0l (
3

1

)j
by the condition of the claim.

So f(a′) = f(a+ k0l) = a+ j + k0l = b+ k0l ≡ b(mod l), as required.

Claim 3.2 Let C and D be any orbits with {si(C)},{si(D)} ⊂ L and
{si(C)} ∩ {si(D)} 6= ∅. Then {si(C)} and {si(D)} are eventually equal.
Further, if {si(C)} and {si(D)} are both periodic, then {si(C)} = {si(D)}.

Indeed, suppose that the sequences are not disjoint. Then there is some
element common to both. So by repeated use of claim 3.1, we have that the
sequences are eventually equal. The second part of the claim also follows
from Claim 3.1.

Claim 3.3 Let C be a finite orbit. Then {si(C)} is periodic.

Say |C| = n. Then for all c ∈ C, since f is a bijection, we have that
fn(c) = c. Hence si(C) = si+n(C) for all i ∈ ω. Thus {si(C)} is periodic,
with period n.

Note that the number of words in a finite orbit is equal to the period of
its associated sequence.

Claim 3.4 Let C be an infinite orbit. Then {si(C)} is eventually periodic.

If C were infinite, then {si(C)} must contain a finite number of elements
from T and some elements from L. If all elements were from T , then since T
is finite, C would also be finite. Hence there exists a j such that sk(C) ∈ L
for all k ≥ j. Using the proof of 3.1, we see that {si(C)} becomes eventually
periodic.
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Claim 3.5 There are finitely many sequences of the type {si(C)} which are
not contained in L.

It follows from the fact that T is finite and any element from T is in
exactly one orbit of U .

Claim 3.6 There are finitely many sequences {si(C)} representing finite
orbits which are completely contained in L.

Consider two distinct finite orbits whose sequences are contained in L. Then
since each is periodic, by claim 3.2 they are disjoint.

Thus the collection of such sequences forms a pairwise disjoint collection.
Hence, since |L| is finite, there are only finitely many such sequences.

Claim 3.7 There is bound on the size of finite orbits.

Combining, since there are finitely many associated sequences for finite
orbits, and each sequence represents orbits of a fixed size (namely the pe-
riodicity of the sequence), there is a finite bound on the size of all finite
orbits.

Claim 3.8 There are finitely many sequences of the type {si(C)} whose
periodic parts are contained in L.

Consider two sequences whose periodic parts are contained in L. Suppose
further that the periodic parts are not equal. Then by claim 3.2 the periodic
parts can not be eventually equal and hence must be disjoint. Thus, since
|L| is finite, the set of all distinct sequences with periodic parts contained
in L is finite.

Claim 3.9 Suppose that {si(C)} represents some infinite orbit. Then it
represents at most a finite number of infinite orbits.

In order to prove the claim we need some simple subclaims. The sub-
claims below are not restricted to infinite orbits or their associated se-
quences.

Subclaim 3.1 Let C be an orbit and [a] ∈ {si(C)}. Then there is some
j ∈ Z such that for all a′ ∈ [a](C) we have that f(a′) = a′ + j.
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Consider any a′ ∈ [a](C). Let f(a′) = b.
We have two cases:

1. a′ ≤ b

Then since f(a′) = b, the automaton A accepts

(
1
1

)a(
3

1

)j
, for some

j ∈ ω.

2. a′ > b

Then the computation of f(a′) = b is

(
1
1

)b( 1
3

)j
, for some j ∈ ω+.

Note that the required j is dependent only on the class [a](C) and not
on any of its elements.

Subclaim 3.2 Let s = {si} be some sequence with period n. Then there is
some ∆s ∈ Z such that for all C with {si(C)} = {si}, and for all a ∈ C we
have that fn(a) = a+ ∆s.

Given any a ∈ C, define ∆a = |fn(a)| − |a|. Then

∆f(a) = |fn+1(a)| − |f(a)| = (|fn(a)|+ j)− (|a|+ j) = |fn(a)| − |a| = ∆a,

where j is from the previous subclaim. Hence, letting ∆s = ∆a for any
a ∈ C is well defined and has the required property.

Now, consider an infinite orbit C and the periodic part of the sequence
{si(C)} representing it. Then ∆s > 0, for otherwise if ∆s = 0 then we would
have a finite orbit, and ∆s < 0 is impossible since {si(C)} is well defined
for all i ∈ ω. Letting a′ be the smallest word in [a], we have that if [a′] is
in the periodic part of {si(C)}, then [a′](C) = {a′ + k∆s|k ∈ ω} is infinite
and contains all but finitely many elements from [i]∆s = {i + k∆s|k ∈ ω},
for i = a′ (mod ∆s).

So let C and D be two distinct orbits with the same periodic part to
their associated sequences. Then for all a ∈ C and b ∈ D with a ∼ b we
have that [a](C) ∩ [b](D) = ∅. For if the orbits shared at least one element
in common, they would have to be identical.

Hence to every [a](C) we can associate a unique [i]∆s in a 1-1 manner.
Thus over the set of all such infinite orbits, we can have at most finitely many
such [a](C)’s, each one contained in one of the finitely many [i]∆s . And hence
there are a finite number of infinite orbits with the same periodic parts to
their sequences.
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Since orbits with identical sequences certainly have the periodic parts of
their sequences the same, the claim is proved.

Claim 3.10 There are finitely many infinite orbits.

Combining, we have that the set of all sequences which represent infinite
orbits is finite. Further, each sequence represents a finite number of orbits.
Hence the claim follows.

Claims 3.7 and 3.10 prove the necessary part of Theorem 1. Hence we
have proved Theorem 1.

Proof of Theorem 2. We recall that an equivalence structure E is
a pair (E, ρ) where ρ is an equivalence relation on E. For a ∈ E, denote by
[a]ρ the ρ-equivalence class containing a, and |[a]ρ| its cardinality. Define

Inv(E) = {(n,m)|E has exactly m ρ-equivalence classes of size n}

where m,n represent cardinals. It is not hard to see that two equivalence
structures E1 and E2 are isomorphic if and only if Inv(E1) = Inv(E2).

If E1 and E2 are equivalence structures with E1
⋂
E2 = ∅, then the sum

of these equivalence structures is (E1
⋃
E2, ρ1

⋃
ρ2). The following is not

hard to prove.

Lemma 2 The sum of two FA presentable equivalence structures is FA pre-
sentable. 2

Let En be an infinite equivalence structure whose equivalence classes all
have the same finite size n. Then one can see that En has a FA presentation
over {1}. Clearly the equivalence structure whose elements are all equivalent
is also FA presentable over {1}. Hence we have the next lemma which proves
the sufficient part of Theorem 2.

Lemma 3 If for the equivalence structure E the number of infinite equiva-
lence classes is finite and the sizes of all finite equivalence classes are bounded
by some natural number n, then E has a FA presentation over a unary al-
phabet. 2

Now we prove the necessary part of Theorem 2. Consider an automatic
equivalence structure E , with say L(A) = ρ.
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Define I to consist of exactly one representative from every infinite ρ-
class as follows. a ∈ I if a is the smallest representative from the infinite
class [a]ρ such that [a]∼ ∈ L.

We shall show that I is finite.

Remark 3.3 Distinct words from I are not ρ-related.

Claim 3.11 Consider some a ∈ I. Then there is some set of natural num-
bers, {n1, . . . , np} and a number m such that (a, a + nj + mi) ∈ ρ for all
i ∈ ω and 1 ≤ j ≤ p.

Indeed, let s(a) be the last X-state in the computation of

(
1
1

)|
a|. Since

a is minimal, there is a

(
3

1

)
-chain from s(a). This chain must contain a

loop in order to recognise infinitely many elements. Let m be the length

of the loop on the

(
3

1

)
-chain. Each accept state on this chain is at some

distance from s(a), namely nj.

Claim 3.12 Consider a ∈ I, and b ∈ [a]∼. Then if a ≡ b(mod m) then
(a, b) ∈ ρ.

Indeed, suppose b = a + mi0 for some i0 ∈ ω. Then (a, b + nj) ∈ ρ, by
claim 3.11. Similarly, (b, b + nj) ∈ ρ. By the symmetry of ρ, we have that
(b + nj, b) ∈ ρ. By the transitivity of ρ we then have that (a, b) ∈ ρ, as
required.

Now, let a 6= b ∈ [a]∼ ∈ L with a, b ∈ I. Then since (a, b) 6∈ ρ, we
have that a 6≡ b(mod m). Hence we can associate a unique congruence
class modulo m to each distinct element of I

⋂
[a]∼, in a 1-1 manner. Thus

|I
⋂

[a]∼| ≤ m. But since L is finite, we have that I is finite.

Define F to consist of the smallest representative from each finite ρ-class.
We shall show that there exists B ∈ ω such that for all a ∈ F , |[a]ρ| ≤ B.

Remark 3.4 Consider a ∈ F . Then (a, a+ nj) ∈ ρ for finitely many nj.

Indeed, since a is the smallest word in its equivalence class, it is only related
to words which are larger than it, other than itself. Hence (a, a + nj) ∈ ρ
for finitely many nj .

Then there is a

(
3

1

)
-chain from s(a), with accept states at the nj

positions. Thus,

13



Remark 3.5 [a]ρ has the same cardinality as {s ∈ (s(a),

(
3

1

)
)|s ⊂ F}.

But there are finitely many accept states, say B. Thus for all a ∈ F ,
|[a]ρ| ≤ B, as required. Thus we have proved Theorem 2.

4 Some Questions and Plans For Future Work

We are in the process of characterising the isomorphism types of all
FA presentable structures over a unary alphabet. Our goal is to give a
general characterisation of the the isomorphism types of all FA presentable
structures (over an arbitrary alphabet) in a suitable terminology.

We think that certain classes of FA presentable structures have decidable
theories. For example, we intend to prove that the theory of the class of all
FA presentable structures over a unary alphabet is decidable. So we pose a
more general question.

Question 1 Let Σ be an alphabet. Is it true that the first order theory of the
class of all FA presentable structures (of fixed signature) over Σ is decidable?

Theorem 0 in the introduction states that the first order theory of any
automatic structure is decidable. On the other hand, it is well known that
if a theory is decidable, then one can effectively carry out a Henkin type of
construction to build a model of the theory whose satisfaction predicate is
decidable (see for example [4] for a proof of this result). Of course the model
constructed need not be an automatic one. A construction of an automatic
model of the decidable theory would require a deeper understanding of the
Henkin method and would be a bridging point between automata theory
and model theory. Hence we naturally pose the next question.

Question 2 Which decidable first order theories have automatic models?

By Theorem 2 the least ordinal that does not have a FA presentation
over a unary alphabet is ω2. On the other hand, in [1] it is proved for
all natural positive n, the ordinal ωn has a FA presentation. So our next
question concerns the problem as to what finite automata can or can not do
in terms of presentation of ordinals.

Question 3 What is the least ordinal without a FA presentation?
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Finally, we note that one can develop the theory of structures presented
by tree automata as well as Büchi and Rabin automata. However, we de-
cided not to raise these topics in this paper since the study of FA presentable
structures already presents its own interesting problems and promises fur-
ther developments.
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