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A diagram is introduced for visualizing matrix product states which makes transparent a connection between
matrix product factorizations of states and operators, and complex weighted finite state automata. It is then
shown how one can proceed in the opposite direction: writing an automaton that “generates” an operator gives
one an immediate matrix product factorization of it. Matrix product factorizations have the advantage of
reducing the cost of computing expectation values by facilitating caching of intermediate calculations. Thus
our connection to complex weighted finite state automata yields insight into what allows for efficient caching
in matrix product algorithms. Finally, these techniques are generalized to the case of multiple dimensions.
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I. MOTIVATION

Straightforward representations of quantum systems tend
to grow exponentially with increasing system size. Thus, if
one wants to have a hope of simulating a large quantum
system, one needs to pick a clever method for representing it.
Such a representation needs to have three properties: it must
have a scaling law that makes large systems tractable, it
needs to faithfully duplicate the properties of the original
system, and it needs to allow one to compute expectation
values without returning to the expensive representation.

Matrix product states �1–5� have been popular in the last
couple of decades because they exhibit all three properties:
they grow linearly with the size of the system, they tend to
produce good approximations for many interesting systems
�4�, and they allow for O�N� calculations of expectations for
tensor product operators �where N is the size of the system�.
Most operators are not tensor products, but one can always
write them as a sum of tensor product operators. A general
operator would require an exponential amount of terms to do
this, but fortunately most operators of interest require only
O�N� terms. Thus, the cost of computing an expectation for a
matrix product is usually O�N2�. This result can be im-
proved, however, by using matrix product operators. Indeed,
if one can factor an operator into a matrix product �in addi-
tion to factoring the state�, then one can reduce the O�N2�
calculation into a O�N� calculation.

In practice, one can do even better than this. A typical use
of a matrix product state is as an ansatz for the variational
method.1 This technique involves sweeping through the ma-
trices and locally optimizing each site. Naively, this would

require O�N2� computation time at each site �N terms in the
operator, O�N� for each term�, but if one performs the
“sweep” by moving from adjacent site to adjacent site, then
one can cache the old results of computations in such a way
as to achieve O�1� computation time per site for an overall
running time of O�N� per sweep.

In the past, this O�1� behavior has typically been achieved
by writing a special caching algorithm for each Hamiltonian
�3�. However, by writing a caching code that works with
matrix product operators, one can achieve this in a general
way for all Hamiltonians; one need only supply as input a
matrix product factorization of an operator. Thus we see that
it is incredibly useful to be able to write down a matrix
factorization for operators of interest.

In this paper, we shall present techniques that help sim-
plify and clarify the construction of matrix product operators.
Our path toward this simplification proceeds by showing that
matrix product states and matrix product operators can be
thought of as finite complex weighted automata. This equiva-
lence allows us to recast the problem of supplying a matrix
product factorization for an operator as the problem of con-
structing a complex weighted finite automaton. The corre-
spondence between matrix product operators and complex
weighted finite automata opens up the door for applying
techniques across the usually disparate subjects of matrix
product algorithms and finite automata. Thus, for example,
operations defined on finite automata, which are regularly
used to construct and understand finite automata, can now be
applied to matrix product operators.

The connection we establish between matrix product
states and complex weighted finite state automata can be
viewed as a formalization of the intuition behind much of the
language used to describe these states. For example, finitely
correlated states �8�, an early version of matrix product
states, were first conceived of by thinking about the tensor
index connecting different matrices in matrix product states
as a memory used in constructing, one subsystem at a time, a
quantum state. Similarly, much language used to describe
matrix product operators speaks of the tensor index connect-
ing different matrices as a signal or correlation between ad-

*gcross@phys.washington.edu
†dabacon@cs.washington.edu
1This idea was originally proposed by Ostlund and Rommer �6�. It

was inspired, however, by the density matrix renormalization group
algorithm �originally proposed by White �7�� which has proven to
be a very effective means of finding quantum ground states.
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jacent subsystems. One of our contributions in this paper is
to point out that these intuitions can be formalized in that
matrix product states can be thought of as complex weighted
finite automata and that this view extends to matrix product
operators. This latter property allows for us to engineer ma-
trix product operators designing finite automata and to apply
the techniques and methods of finite automata in this pro-
cess.

A review of the paper is as follows. We begin with some
background material that presents a pedagogical introduction
to matrix product states. Then we will introduce the key to
our method: a type of diagram that allows one to visualize
matrix product states in a way that makes transparent the
type of state that they generate. Although the application of
these diagrams to matrix product states is different, the dia-
grams themselves are not: rather, they will be shown to be
merely variants of complex weighted finite state automata.
Once this connection has been made, it will be shown how
one can obtain a matrix product factorization of a state or
operator by starting with an automaton that generates the
“pattern” of the operator, and then translating this automaton
into a set of matrix factors. It will then be shown how this
process generalizes to multiple dimensions, where the au-
tomata connection is particularly insightful.

II. ONE-DIMENSIONAL CHAINS

A. Background

Consider a quantum system with N independent observ-
ables, such as the Z spin components of a linear one-
dimensional chain of spin-1

2 particles. In general, the repre-
sentation of this system must be expressed as a tensor with N

indices, Ai1,i2,. . .,iN
. Each element of this tensor represents the

amplitude of a particular system configuration; for example
A↓↑↑↓ gives the amplitude of a particular system of four par-
ticles being in the ↓↑ ↑↓ state. Part of the difficulty in simu-
lating quantum mechanical systems arises from the fact that,
when one adds another particle to a system, one must add
another index to the representing tensor. Thus, the informa-
tion needed to represent a quantum state in general grows
exponentially with the number of particles.

Fortunately, it turns out that not all quantum states require
the full content of an N-index tensor. Some states are special
in that they are separable, which means that their N-index
tensor can be factored into the outer product of N one-index
tensors,

����¯
= A�B�C� ¯ . �1�

This representation is very nice because it grows only lin-
early with the number of observables; since it is so nice, in
fact, it is not surprising that it comes with a price: it cannot
be used to model systems with any entanglement.

It would be nice to be able to add some entanglement into
the above representation in such a way that we do not cause
it to revert back to the full N-index tensor. For example,
suppose that the observables corresponding to indices � and
� in �1� are maximally entangled—i.e., their state is given by

�↑↑� + �↓↓� � �1 0

0 1
	 ,

where the matrix elements correspond to configuration am-
plitudes as shown in the following table:

� = ↓ � = ↑

� = ↓ 1 0

� = ↑ 0 1

�Note that we are not normalizing our states; this will not be
a concern for the purpose of our discussion.�

There is no way to obtain the above matrix by taking the
outer product of two vectors—A� and B� in �1�—but one
could obtain it by taking the inner product of two matrices,
such as

A�i = �0 1

1 0
	 = Bi�, 


i

A�iBi� = �1 0

0 1
	 .

Thus, we see that we could represent our state in the form

����¯
= 


i

A�iBi�C� ¯ .

This had the desired result—we were able to add a small
amount of entanglement to our separable state without
greatly enlarging it. The inner index i can be thought of as a
“bond” between two of the particles that allows them to
communicate to each other. If one wished, one could put a
bond between all the particles in the �linear one-dimensional�
chain,

�����¯
= 


i,j,k

A�iBi�jC j�kDk�¯ , �2�

at which point one would obtain what is called a “matrix
product state.” This method is not limited to representations
of states; it is also possible to likewise factor operators into
so-called “matrix product operators” �6�

������¯����������¯� = 

i,j,k

A���iBi���jC j���kDk��� ¯ .

Matrix product states have gained much interest in the last
decade because they turn out to have entanglement proper-
ties that are sufficient to represent many systems of interest.
Furthermore, they are very flexible: one can add additional
inner indices whenever one wants to introduce entanglement
between two particles, forming tensor networks that can rep-
resent systems in any number of dimensions and with any
lattice structure.

In this paper, it will prove useful to distinguish between
two types of indices: the indices being summed over, which
correspond to entanglement introduced between observables,
and those not, which correspond to the observables them-
selves. Thus, the former will be denoted by subscripts and
the latter will be denoted by superscripts; for example, �2�
should appear in the form

�����¯ = 

i,j,k

Ai
�Bij

�C jk
� Dk

�
¯ .
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B. Matrix product diagram

Consider the four-particle W state

��� = �↓↑↑↑� + �↑↓↑↑� + �↑↑↓↑� + �↑↑↑↓� ,

which is a sum over all possible states in which one and only
one particle has spin down. A matrix product representation
of this state is

�����¯ = 

i,j,k

Ai
�Bij

�C jk
� Dk

�,

where � is the index of the spin component of the first par-
ticle, � is the index of the second particle, etc., and the
tensors on the right-hand side are given by

A↑ = �1 0 �, A↓ = �0 1 � ,

B↑ = C↑ = �1 0

0 1
	, B↓ = C↓ = �0 1

0 0
	 ,

D↑ = �0

1
	, D↓ = �1

0
	 .

Alternatively, one may use the following notation. Instead
of writing a separate matrix for each value of the superscript
indices, instead label each matrix element by a value of the
observable. Furthermore, adopt the convention that when
taking the inner product between matrices, one should mul-
tiply the matrix elements together by using the outer product.
This allows us to express our state in the more compact �and
hopefully transparent� form

� = �↑ ↓ �

A

· �↑ ↓

0 ↑
�

B

· �↑ ↓

0 ↑
�

C

· �↓

↑
�

D

�3�

To illustrate that this factorization of our state works, we
step through the multiplication of the matrices, starting with
the two on the right:

� = ��↑ ↓ � · ��↑ ↓

0 ↑
	 · �↑ ↓

0 ↑
	 · �↑

↓
	���

= �↑ ↓ � · ��↑ ↓

0 ↑
	 · �↑↓ + ↓↑

↑↑
	��

= �↑ ↓ � · �↑↑↓ + ↑↓↑ + ↓↑↑

↑↑↑
	�

= ↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑ .

This factorization may be equivalently expressed in the form
of the diagram in Fig. 1�a�, which was obtained directly from
the matrices in �3�. The nodes correspond to indices, and the
edges correspond to matrix elements. The matrices were
treated as a table of weights for edges connecting each set of
nodes. That is, for each 2�2 matrix Mij, the elements were
mapped to edges as shown in Fig. 1�c�. Where a matrix edge
was zero, the edge was omitted. The nodes shared between
edges indicate common indices being summed over.

The arrows place an ordering on the indices. They are not
strictly necessary to define the diagrams, but they are useful
because they allow one to view the diagram in terms of
paths. Specifically, each choice of indices corresponds to a
“walk” from the left side of the diagram to the right. For
example, the choice i=0, j=0,k=1 corresponds to the walk
as shown in Fig. 1�b�.

Each possible walk from the left to the right generates a
term in our sum, so that the walk shown in Fig. 1�b� gener-
ates the term ↑↑ ↓↑. As discussed earlier, edges which do not
appear in the diagram correspond to vanishing matrix ele-
ments; this may be thought of as disallowing a walk between
certain nodes, as any term which tries to include nonexistent
edges is multiplied by zero and thus does not contribute to
the sum. For example, in Fig. 1�a�, note that there is no path
that returns to the top from the bottom �such as i=0, j=1,
k=0�.

1. Extension to operators

We are not restricted to labeling edges of matrix product
diagrams with states; the tensors at each site may be objects
with any number of superscript indices. This allows us to
factor operators as well as states, resulting in a matrix prod-
uct operator,2 which recall has the form

������¯����������¯� = 

i,j,k,l

Ai
���Bij

���C jk
���Dk

���
¯ .

For example, if we were to take the matrix product represen-
tation for the W state, as given in �3�, and replace ↑ with the
identity matrix and ↓ with the Pauli Z spin matrix �which we
will denote by Z� then we would obtain the diagram in Fig.
2. This operator represents the action of a magnetic field in
the z direction coupling to each of the particles.

C. Weighted finite automata states

Up to this point we have considered our state to be an
N-dimensional tensor, where N is the number of observables.
Let us now use a different but equivalent description that is
applicable when all of our observables are of the same kind
�e.g., z components of spin�. First, we define a set � to be our
“alphabet:” it contains all the possible values for our observ-
able. For example, for a spin-1

2 chain, we shall choose � :
= �0,1� where 0 labels the spin-up state and 1 labels the
spin-down state. Then we may describe our state as a func-
tion that maps strings of length N of the alphabet � to com-
plex numbers: f :�N→C.

We can generalize this function. Suppose that the size of
our system is itself a variable—that is, we want to consider
systems with one particle, two particles, etc., and to have the
descriptions for all of these systems captured in a single

2Matrix product operators were originally introduced by Verstra-
ete, Garcia-Ripoll, and Cirac �9�, but they were used as density
operators—i.e., as representations of states, rather than of Hamilto-
nians or other physical operators. McCulloch, however, later
showed how many classes of physical operators can be factored,
and discussed why it can be useful to write them in this form �10�.
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function. Then we can make our function a map not from �N,
but from ��, the set of all finite-length strings of � symbols.

When phrased in this form, it can be shown that saying
that our state has a matrix product representation is equiva-
lent to saying that the function f can be computed by a spe-
cial kind of weighted finite automaton. A complex weighted
finite automaton3 is defined by a 5-tuple, �Q ,� ,W ,� ,	�,
where �1� Q is a finite set of states; �2�. � is a finite alphabet;
in our case, we shall let �= �0,1� for the two possible values
of the z component of spin; �3� W :Q���Q→C is the
weight function; we may equivalently represent this function
as a set of complex Q�Q matrices, Wa for each symbol a in
our alphabet �; �4� � :1�Q is the �complex-valued� initial

distribution; �5� 	 :Q�1 is the �complex-valued� final dis-

tribution.
For a string a0a1 . . .aN���, the output of our automaton

is defined to be

f�a0a1 ¯ aN� = � · Wa0
· Wa1

¯ WaN
· 	 . �4�

A finite state automaton can be thought of as a machine
which moves from one state to another based on an input
signal. To see a simple example of this, we consider a sim-
plification of a weighted finite automata called a determinis-

tic finite automaton, which outputs either 0 �“reject”� or 1
�“accept”�. The values of all matrices—Wa, �, and 	—are
restricted to be either 1 or 0, and there may only be one
nonzero matrix element of each row of each matrix. For
example, the following machine accepts �or “recognizes”� all
strings that end in either two 0’s or two 1’s and rejects all
others:

�1� Q: = �A,B,C,D,E�

�2� �: = �0,1�

�3� W0: = �
0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 1 0 0 0

0 1 0 0 0
�, W1: = �

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

0 0 0 1 0
�

�4� � = �1 0 0 0 0 �

�5� 	 = �
0

0

1

0

1
� .

While this is the canonical form, it is not very transparent.
The diagram in Fig. 3 is an equivalent method of defining
this automaton. The unconnected arrow on the far left indi-
cates that the system should start in state A. C and E are
shaded to indicate that they are the states that the machine

3Complex weighted automata are a generalization of real-
weighted finite automata, which were originally introduced by Cu-
lik and Kari as a technique for compressing grayscale images
�11–13�. It is worth noting that Latorre devised a very similar algo-
rithm for image compression motivated by matrix product states,
though without making the connection to finite state automata �14�.
This is interesting because it shows how the separate fields of quan-
tum physics and computer science have independently converged to
the same idea.

(b)

(a)

(c)

FIG. 1. Matrix product diagrams. �a� Diagram representing the
matrix product form of the W state. Each possible walk from left to
right generates a term in the state, as illustrated in �b�. �b� Example
walk through the matrix product state illustrated in �a�, which gen-
erates the term ↑↑ ↓↑. �c� Mapping of edges to matrix elements.

FIG. 2. Matrix product diagram for a magnetic field operator.

FIG. 3. �Color online� Example finite state automaton which
recognizes any string that ends in either two 0s or two 1’s.
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accepts—that is, the machine outputs one �as the value for f ,
not to be confused with the symbol 1 in the alphabet� if and
only if it is currently in such a state at the end of a string;
otherwise, it outputs zero. The arrows indicate how the ma-
chine should transition between states in response to a sym-
bol; for example, the machine will move from state A to state
B if the first symbol is a 0, and to state D if the first symbol
is a 1.

This machine works by using states B through E as a sort
of “memory.” States B and D are used for the machine to
remember that the last symbol it saw �respectively a 0 or a 1�
was different from the one before it; states C and E are used
for the machine to remember that it has already seen two
symbols of a kind.

Note that for each state there is one and only one transi-
tion for each symbol, and this transition has weight 1; this is
due to our restriction that our machine had to be a determin-
istic finite automaton. Removal of this restriction allows us
to have zero or multiple transitions for each symbol at each
state, and also to give a weight to each transition. Because of
this, each input string can have multiple paths, or even no
paths through our diagram; for each possible path we asso-
ciate a weight equal to the product of all the weights along
the path; furthermore, there may be more than one initial
state, and each initial state and final state may itself have a
weight. The output of our automaton is the sum of all
weights of all paths from all inital to all final states. This
procedure is not an extension of our definition of a weighted
finite automaton, but rather a restatement of it, as it is im-
plicit in �4�.

Also, note that in this light a matrix product state can be
seen as just a special case of a weighted finite automaton.
Each of the nodes on the diagrams drawn earlier is a state,
with the edges between them labeling transitions. In a matrix
product state, however, there is a separate transition matrix
for each position in the string; that is, the third symbol al-
ways passes through the same region on the graph, and no
other symbol passes through this same region, whereas in a
finite state automaton all states are potentially accessible to
all symbols. �Equivalently, one could say that a matrix prod-
uct state is a weighted finite automaton in which all the tran-
sition matrices are block diagonal.�

The ability to share states allows one to write down very
compact representations of states in weighted finite automa-

ton form. For example, the W state can expressed as an au-
tomaton with only two states, as shown in Fig. 4�a�.

Again, observe that our states act as a form of memory.
When the machine is in state A, it has not yet seen a 1. When
the machine is in state B, it has already seen a 1. Upon seeing
a 1, it either transitions from A to B, or dies if it is already in
B �i.e., outputs 0 for the state�. With this manner of thinking,
it is easy to see how to extend this machine to output the
state

110000 . . . + 011000 . . . + 001100 . . . + . . . ,

that is, the set of states with two neighboring 1’s; we already
have a state, B, which indicates that the machine has seen
one 1, so all we have to do is add another state, C, which
indicates that it has seen two 1’s. We also have to update the
transitions so that the machine dies unless the two states are
neighbors. The result is shown in Fig. 4�b�.

Just as it is possible to view a matrix product state as a
special case of a weighted finite state automaton, it is always
possible to construct a matrix product state from a weighted
finite automaton. To do this, one creates a copy of all the
states of the automaton for each particle in the system, and
remaps the transitions so that one is always moving from one
set of states to another. Finally, one removes all but the initial
transition in the leftmost set of states and all but the final
transition in the rightmost set of states. For example, for the
state just described the matrix product representation would
be as shown in Fig. 5, where the faded state and edges indi-
cate that they have been removed.

At this point, note that we have obtained a factorization of
the nearest neighbor coupling operator,

XXII + IXXI + IIXX .

To see this, we observe that this has the same pattern as the
state

1100 + 0110 + 0011,

which is what we just factored above. Using the same form
for the diagram, we see that the matrix factorization is

�I X 0 � · �
I X 0

0 0 X

0 0 I
� · �

I X 0

0 0 X

0 0 I
� · �

0

X

I
� .

Thus, we see that we now have a method for factoring op-
erators. �1� Write down a weighted finite automaton which
generates the pattern of the operator. �2� Translate this into a

(b)

(a)

FIG. 4. �Color online� Examples of finite state automata that
recognize quantum states. Finite state automaton recognizing �a� the
W state and �b� a state with neighboring 1’s.

FIG. 5. �Color online� Example of converting a finite state au-
tomaton �in this case, for the W state� into a matrix product state
diagram. Note how some edges have been faded in order to indicate
that they have been removed.
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matrix product operator diagram. �3� Write down matrices
based on the diagram.

This method is most efficient for operators that are trans-
lationally invariant. If an operator has additional position-
dependent structure, then one should incorporate this struc-
ture into the matrix product diagrams, rather than into the
weighted finite automata. To see what is meant by this, sup-
pose our coupling operator took the peculiar form

XXII + IXZI + IIXX .

It is still possible to write down a weighted finite automaton
for this operator, as shown in Fig. 6�a�. However, as you can
see, capturing this position-dependent behavior requires the
addition of several states, which means that our matrix fac-
tors would have to be much larger. Thus, rather than pro-
ceeding in this way, it would be better to note that this op-
erator looks almost like the previous operator except with a Z

in a special place, and then proceed by modifying the previ-
ous diagram in that single spot to obtain the diagram shown
in Fig. 6�b�, which corresponds to the factorization

�I X 0 � · �
I X 0

0 0 X

0 0 I
� · �

I X 0

0 0 Z□

0 0 I
� · �

0

X

I
� .

Thus we see that when encoding translationally invariant
behavior in an operator it is better to work with weighted
finite automata, and when encoding position-dependent be-
havior it is better to work with matrix product diagrams. Of
particular significance in this result is that natural operations
on finite automata, such as constructing unions, concatena-
tions, and intersections of their languages, can now be put to
use in constructing matrix product operators of increasing
complexity. Recently, methods for engineering complex
quantum systems, with effective Hamiltonians which are ex-
tremely complicated have become important for quantum
computation �15–17�. Finding matrix product factorizations

for these Hamiltonians is a nontrivial task. However, the
above finite automaton picture brings to bear a new set of
tools for obtaining such factorizations.

D. Calculation of expectations

In the preceding section we have demonstrated a method
for obtaining a factorization of an operator by thinking about
these operators as a complex weighted finite automaton. In
this section, we shall show how a matrix factorization of an
operator allows us to compute expectations of matrix product
states efficiently.

We shall use “box-and-line” notation to represent a net-
work of tensors that is being partly or fully contracted; so,
for example, the tensor network

����� = 

ijkl

AiBijk
� Ckl

�D jl
��

is represented by the diagram shown in Fig. 7, where the
boxes represent tensors, edges connecting boxes represent
summed �internal� indices, and edges with arrows indicate
external indices. With this notation, we see that the matrix
product state given by

S���� = 

ijk

�S1�i
��S2�ij

��S3� jk
� �S4�k

�

is represented by the diagram in Fig. 8�a� and the expectation
value of this state with respect to some operator

O����������,������ is given by the diagram in Fig. 8�b�. If this
were the best we could do, then the matrix product state
would not have helped us very much because we would still
need to perform an exponential amount of calculations. For-
tunately, we can improve upon this if we can factor O into
matrix product form,

O����������,������ = 

i�,j�,k�

�O1�i
����O2�ij

����O3� jk
����O4�k

���,

so that our tensor network now becomes that shown in Fig.
8�c�.

This sum is now performed in two stages; first, we sum
the site and operator matrix at each index to form “transfer
matrices”

(b)

(a)

FIG. 6. �Color online� An example of what happens to an au-
tomaton �a� and a matrix product state �b� when translational invari-
ance is lost.

FIG. 7. An example of using box-and-line notation to represent
a network of tensors.
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�E1�I � �E1��i,i�,i�� = 

�,��

�S1
��

i�
���O1�

i�
����S1�i

�, . . . ,

thus forming the new tensor network shown in Fig. 9, and
then we contract the new network.4 This procedure takes
O�3N� matrix multiplications, and the largest matrices that
we ever need to form are the En matrices. Thus we see that
computing expectation values for a matrix product operator
is an O�N� procedure.5

E. Energy minimization and caching

Up to now, we have discussed how to perform operations
on matrix product states that are known. In general, however,
one will want to investigate systems for which the eigen-

states are unknown. In this case, matrix product states pro-
vide an ansatz for the variational method. That is, one as-
sumes that a ground state has a particular matrix product
form, and then searches for the matrix elements which give
the lowest-energy state representable in that form; put an-
other way, one seeks the matrix product state S that mini-
mizes the normalized expectation value of the Hamiltonian

f�S� =
�S�H�S�

�S�S�
.

The hope is that the result of this process will be a reasonable
approximation to the true ground state.

In general finding the global minimizer of f is an NP-
complete problem6 �19�. Fortunately, a local search heuristic
suffices for many systems of interest: at each step in the
minimization process, all but one of the site matrices are held
constant, and then the energy is minimized with respect to
the single remaining matrix.

Suppose we are varying over the third matrix. Recall that
the expectation of an operator can be represented by a dia-
gram of the form shown in Fig. 9; since we are holding all
but the third matrix constant, we can form the matrix O3

which is the contraction of all the tensors in the network save
S3 and its conjugate, as shown in Fig. 10. We see now that
the energy as a function of S3 is just the quadratic ratio form

f�S3� =
S3

� · H3 · S3

S3
� · N3 · S3

,

where H3 and N3 are the aforementioned tensor contractions
for O=H and O=I, respectively. It can be shown that mini-
mizing the above form �a Rayleigh quotient� is equivalent to
solving the generalized eigenvalue problem

4We note here that there is an alternative viewpoint of matrix
product states which considers the transfer matrices themselves to
be the primary object of interest. So-called “finitely correlated
states” �8� are characterized �somewhat abstractly� by a map E :A
� B→B, which in essence produces transfer matrices �tensors in
some finite-dimensional tensor space B→B� from observables �op-
erators in a C� algebra A�.

5Recently, we learned of similar results by Murg et al. �18�.

6NP-complete problems are the hardest problems in the complex-
ity class NP �nondeterministic polynomial time� and are widely
suspected to be computationally intractable.

(b)

(a)

(c)

FIG. 8. Box-and-line notation applied to matrix product
states.�a� Matrix product state by itself. �b� Expectation of an arbi-
trary state. �c� Expectation of a matrix product operator.

FIG. 9. Building transfer matrices for the expectation of a ma-
trix product operator.
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H3 · S3 = 
N3 · S3,

and then picking the eigenvector S3 with the smallest value
for 
. The cost of solving this eigenvalue problem depends
only on the size of the site matrix S3, not on the number of
sites, N; however, it also relies on H3, which in general is
very expensive to calculate.

Fortunately, if we can factor H into a matrix product op-
erator, then computing H3 is cheap. As in the previous sec-
tion, we observe that we may form Ei matrices by contract-
ing Si

�, Oi, and Si together at each site; furthermore, we may
also contract all of the Ei matrices to the left of site 3 to form
L3 and all of the Ei matrices to the right of site 3 to form R3.
The result of this is the form shown in Fig. 11.

Computing Li and Ri at some site i would naively be an
O�N� operation; however, by using caching we can instead
make it an amortized7

O�1� operation. To see why, note that
Li and Ri may be computed recursively:

L1 = I, Li = Li−1 · Ei−1, RN = I, Ri = Ri+1 · Ei+1.

So once we have R1 we already have R2 through RN. Thus, if
we start by minimizing the energy with respect to site 1, and
then sweep to the right �i.e., site 2, site 3, up to site N�, then
although it took us O�N� time to compute R1, we get the Ri

matrices for all of the rest of the sites up through N for free.
Once we hit site N, we start moving left back through
N−1, N−2, etc., and at each step it only takes us one addi-
tional matrix multiplication to compute Ri from Ri+1. Thus
the time needed at each step to compute Ri is amortized
O�1�; by a similar argument, we see the same for the Li

matrices. This process is illustrated in Fig. 12.
The notion of using caching to speed up these calculations

is not a new one; the same process has already been de-
scribed by Verstraete, Porras, and Cirac �3�. However,
whereas their process is limited to one- and two-body opera-
tors, our procedure works for any form of operator that can
be written in matrix product form; furthermore, the process
is the same for all such operators, rather than requiring a new
process for each class of operator—e.g., one-body, two-body,
etc.

To summarize: if we can factor our Hamiltonian into a
matrix product operator, then we can calculate our matrices
Hi and Ni needed to optimize a site matrix from matrices
that can be calculated using a recursion rule. By caching the
intermediate steps of the recursion, and moving through the
sites to be optimized in order from left to right and back, we
can calculate Hi and Ni in amortized O�1� time.

III. ARBITRARY-DIMENSIONAL GRAPH

A. Motivation

Matrix product states were designed for studying one-
dimensional systems, and that is where they excel. Nothing

7By “amortized” here we mean that although it takes O�N� time to
initialize L1 and R1 at the first step, it takes O�1� for all remaining
steps, and there are typically at least N steps, so on average the
operation takes O�1� time per step.

FIG. 10. Formation of a matrix that allows us to express the
expectation of O in quadratic form with respect to site 3.

FIG. 11. Tensor contractions used to compute L3 and R3

FIG. 12. Use of recursion and caching to calculate L and R in
amortized O�1� time at each site.
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technically stops one from using them to study higher-
dimensional systems, however—as long as one is willing to
effectively reduce these systems into a one-dimensional sys-
tem by imposing an ordering; for example, on a 6�6 two-
dimensional grid one could impose the ordering shown in
Fig. 13�a�.

However, there is a price one pays for doing this. Suppose
that one wants to represent a Hamiltonian on a 6�6 grid
which consists of four-site X terms arranged in a square as
shown in Fig. 13�b�. The automaton which encodes such a
Hamiltonian takes the form shown in Fig. 13�c�. The states in
the middle �D–G� act as a memory which tells the automa-
ton how many sites it has walked past since the second X.
This is needed so that the automaton can put the last two X’s
in the correct place on the following row. The number of
states required here grows with the number of columns in the
grid.

We see that, although we can write down such an automa-
ton, and so form a matrix product representation of this op-

erator, it is less than ideal because the representation depends
on the size of the grid. This comes from the fact that infor-
mation can only flow in one direction; ideally, we would like
the information that an X has been placed on one row to
somehow go directly down one row rather than having to
sweep through the rest of the current row first. We could, of
course, adjust the ordering to sweep down columns instead
of across rows, but then we lose the ability to cheaply send
information across a row; using matrix product states, there
is no way we can make it easy to communicate in two direc-
tions simultaneously.

B. Tensor network diagrams

The previous section has described the limitations of ma-
trix product states. These limitations come from the fact that
each tensor is connected by indices to only two other tensors.
�Or, equivalently, we might say that the problem is that each
site is directly entangled with only two other sites.� We can
get a more powerful representational form, as for example
was done using the concept of projected entangled pairs in
�20,21�, by using a more complicated index structure; for
example, we could use the following structure:

������� = 

ijkl

A�Bi
�Cijk

� DlE jl
��Fkl

� . �5�

In this example, we see that there are many different types of
factors that are possible. The first, A�, is a simple outer-
product factor; this indicates that there is no entanglement
between � and any of the other observables. The second two
tensors, Bi

� and Cij
� , are connected by an inner product—i.e.,

a sum over the subscript index i—and so we see that � and �
have some entanglement between them. � is also entangled
with � and � through the index j and � through the index k;
this illustrates that entanglement may be shared between one
observable and any number of others, and that those other
observables need not be directly adjacent to a factor in the
above. Note that the factor D does not have a superscript; it
does not give any direct information about an observable, but
rather �in a manner of speaking� it coordinates communica-
tion between observables. On the other hand, E jl

�� has two
superscripts, so that it gives information about two observ-
ables at once. Finally, note that the index l is shared between
three tensors; putting the same index in multiple places al-
lows several observables to be simultaneously entangled
with each other.

One possible diagram with the above tensor structure is
that shown in Fig. 14�a�. Just as in the one-dimensional ma-
trix product states, we may put arrowheads on the edges, and
think of our states as being generated by walks through the
diagram. However, now there are points where our walk may
split into many paths �in this case, the indices j and k� which
are taken simultaneously. Whenever these two paths rejoin,
they must rejoin at the same node or else the walk is rejected.
For example, Fig. 14�b� illustrates an invalid choice of path,
whereas Fig. 14�c� illustrates a correct choice. This rule for
the rejoining of paths is just a restatement of the fact that
only one value may be picked for each index for each term in
the sum.

(b)

(a)

(c)

FIG. 13. �Color online� A total ordering is imposed on the two-
dimensional grid in �a�; this allows us to write down a finite state
automaton representation of the 4X operator shown in �b�, where
the X’s represent the locations of the X operators on the grid and at
all other sites there are I operators. �c� The resulting finite state
automaton needed for the operator in �b� given the total ordering
shown in �a� is less than ideal.
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Note that, although there is a partial ordering on the steps
in our walk, there is not a total ordering. That is, although
our arrowheads tell us that a link from C must be chosen
before a link from E or F, they do not tell us whether a link
from E should be chosen before F, or vice versa. This con-
trasts with the one-dimensional case, where there is a total
ordering.

C. Weighted finite signaling agents

Recall that in Sec. II C we showed that matrix product
diagrams are equivalent to defining a weighted finite automa-
ton which encodes the state. If we wanted, we could simi-
larly relate our generalized tensor network states to weighted
finite automata. There is a catch, though: automata require
the system to be in a concrete “state” at any moment in time,
and they also require there to be a total ordering of the input.
Our tensor network state diagrams have neither of these
properties.

To see why these properties are absent, we return to Fig.
14�a�. For the B transition, the system picks one of the states
in i in response to the first input symbol, so both properties
hold. For the C transition, however, the system picks two
new states for the system—one from j and one from k—in
response to the second input symbol. At this point, not only
is the system in multiple states, but the symbol to which it
will respond next is not defined, since the order of E and F

has not been specified.
Of course, we could force these properties to be present

by combining indices j and k into a single index m that
unifies them �i.e., m=1 would be equivalent to j=1,k=1;
m=2 would be equivalent to j=1,k=2, etc.�. We would then
have to replace our tensors E and F with a single tensor G. It
is possible that in this particular situation we would obtain
something simpler, but in general this process will result in
much larger and more complicated tensors than we started
with.

Thus, instead of thinking in terms of states, it proves more
useful to think in terms of signals. Each site corresponds to
an agent that receives signals from channels, makes a �non-
deterministic, weighted� decision based on these incoming
signals and an input symbol, and then sends signals to output
channels. i, j, k, l, and the rest of the unlabeled nodes above
correspond to our channels, and B–F correspond to our
agents.

To see how this works in practice, we consider how one
might design an agent to generate the 4X Hamiltonian �Fig.
13�b�� discussed in Sec. III A. We allow our agents to receive
signals from two directions: up and left, and to send signals
in two directions: down and right; the flow of information is
illustrated in Fig. 15.

The gray circles represent sites �or “agents”� in our sys-
tem, and the arrows represent links �or “channels”�. At each
site is an agent, which is a rank-5 tensor with an index cor-
responding to each channel and an index corresponding to
the input symbol. The �slightly grayed� arrows on the outside
of the diagram that connect to only one node implement the
boundary conditions; they do this by starting the system with
a particular set of “initial” signals, sent through the top and
left boundary channels, and then accepting only those inputs
that cause the signal received from the bottom and right
boundary channels to be one of the valid “final” signals.

Each signal is an integer that corresponds to an index in a
tensor; it often proves convenient, though, to map these in-

(b)

(a)

(c)

FIG. 14. Tensor product state diagrams. �a� Diagram represent-
ing the tensor product structure of Eq. �5�. �b� An invalid walk
through �a�. �c� An acceptable walk through �a�.

FIG. 15. Flow of information for finite signaling agent on two-
dimensional grid.
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tegers to names in order to make clear the working of the
agent. For example, Table I�a� gives the signal names that we
use for the agent recognizing our 4X Hamiltonian.

We define an agent by specifying how it reacts to incom-
ing signals. In this case, there are two incoming signals: one
from above, and one from the left. Since the agent is nonde-
terministic, it can have several possible reactions to the in-
coming signals, each corresponding to a symbol it recognizes
�or generates� and signals that it sends right and down. For
our 4X Hamiltonian, our agent takes the form defined in
Table I�b�.

To see what is going on, consider Fig. 16�a�, which illus-
trates the agent accepting four X’s on the grid. The back-
ground at each point is shaded to indicate which of the above
transitions is taking place at that point. Note that the grid is
divided into three general regions: the exterior �shaded
white�, the boundary �shaded dark gray�, and the interior
�shaded light gray�. Inside the boundary and the interior, X’s
are excluded because there is no transition that includes
them. The boundary has the role of forbidding additional
squares of X’s from being accepted in the exterior, since we
have chosen our transitions so that boundaries can only be
continued in one direction �vertical or horizontal�. As Fig.
16�b� illustrates, a second group of X’s which is in the exte-

rior of the first group results in an intersecting boundary that
causes the pattern to be rejected.

Now that we have written down an agent that accepts
squares with 4 X’s, we see that we have immediately ob-
tained a factorization of the Hamiltonian which contains a
term for each possible placement of these operators. This
factorization—which can be thought of as a “projected
entangled-pair operator” �i.e., the natural generalization of
projected entangled-pair states to represent operators�—is a
tensor network with the tensors located at the grid points;
links between nodes indicate that the corresponding indices
of the two tensors should be summed over. The tensors at
each node are of rank 6—four of the dimensions correspond
to the links, and two of the dimensions correspond to the
physical quantum operator. There are only eight nonzero el-
ements of this tensor, corresponding to the eight entries in
Table I: �0,0 ,0 ,0 , I� , �0,0 ,1 ,1 ,X� , �1,0 ,3 ,2 ,X�, etc.

D. Calculation of expectations using recursion

Assume that we have a tensor network state and a factor-
ization of an operator which has the same network structure
as the state. As in Sec. II D, we see that the expectation of

TABLE I. These tables define a finite signaling agent which
recognizes the 4X Hamiltonian.

�a� For convenience, labels are assigned to index numbers in or-

der to give intuitive names to the signals.

Name Index number

Exterior 0

Boundary with X 1

Boundary 2

Interior with X 3

Interior 4

�b� The transition table defining the finite signaling agent.

Input signals Symbol Output signals

↑ Exterior
� I �

Exterior →

← Exterior Exterior ↓

↑ Exterior
� X �

Boundary with X →

← Exterior Boundary with X ↓

↑ Boundary with X
� X �

Interior with X →

← Exterior Boundary ↓

↑ Exterior
� X �

Boundary →

← Boundary with X Interior with X ↓

↑ Exterior
� I �

Boundary →

← Boundary Interior ↓

↑ Boundary
� I �

Interior →

← Exterior Boundary ↓

↑ Interior with X
� X �

Interior →

← Interior with X Interior ↓

↑ Interior
� I �

Interior →

← Interior Interior ↓

(b)

(a)

FIG. 16. Transitions experienced by an agent for two possible
terms. �a� A term accepted by the agent. �b� A term rejected by the
the agent due to intersecting boundaries.

FIG. 17. Tensor network giving the expectation of some opera-
tor with respect to the site shown in Fig. 14�a�. Note that the index
l connects three tensors.
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the operator may be reduced to the contraction of a network
of “transfer matrices;” for example, for the peculiar state
shown in Sec. III B, calculating the expectation of our opera-
tor is equivalent to contracting a tensor network of the form
shown in Fig. 14�a�.8

We may wish to minimize the energy with respect to some
site n. As discussed in Sec. II E, we can reduce this to an
eigenvalue problem for the matrix consisting of the contrac-
tion of �essentially� all of the transfer matrices except the one
at n. This contraction can be expressed as a set of recursion
rules; for example, for a two-dimensional grid we have the
following rules:

Oi,j = Li,j · Ai,j · Bi,j · Ri,j ,

Li,j = Li−1,j · Ci−1,j, L1,j = I ,

Ri,j = Ri+1,j · Ci+1,j, RN,j = I ,

Ci,j = Ai,j · Ei,j · Bi,j ,

Ai,j = Ai,j−1 · Ei,j−1, Ai,1 = I ,

Bi,j = Bi,j+1 · Ei,j+1, Bi,N = I .

�The · operation is implicitly over only the connected indi-
ces.�

The computation of O33 is illustrated in Fig. 17. As was
the case in Sec. II E, as long as we move from each site to an
adjacent site, it takes us only �amortized� O�1� time to cal-
culate Oij. In Fig. 18, for example, we see that to compute
O43 we need only calculate C33 and then L43.

Unfortunately, it is intractable to contract arbitrarily large
multidimensional tensor networks. �Formally, Schuch et al.

�23� have shown that this is a #P-complete9 problem.� This is
because whenever one contracts together tensors with more
than two indices, one obtains a larger tensor. For example,
when taking the dot product between two four-index tensors
one obtains a six-index tensor



f

AabcdBdefg = Cabcefg.

These extra indices result in “double bonds” between ten-
sors. �We have already seen multiple bonds when computing
the E matrices, as shown in Fig. 11.�

Thus, as we contract each row, the size of our tensors
increases by some factor, which means that the cost of con-
tracting a tensor network in general grows exponentially
with the size of the network. Fortunately, there is a lossy
compression technique which involves approximating a row
resulting from a contraction with a new row with fewer
bonds; this has been used successfully to model hard-core
bosons in a two-dimensional optical lattice �24�.

IV. CONCLUSION

In this paper, we have introduced a type of diagram for
representing matrix product states. We used this to demon-
strate that there is a formal equivalence between matrix prod-
uct states and operators and complex weighted finite state
automata. This equivalence was used to present a method by
which one could factor a matrix product operator by reason-
ing about these complex weighted finite state automata. We
then showed how such a matrix product factorization of an
operator allows one to compute expectations of that operator
in O�N� time, and to perform energy minimization at an am-
ortized cost of only O�1� per step. A generalization of this
procedure was presented that allows one to carry the same
process through for systems with more than one spatial di-
mensions.

As a closing remark, we note that this formalism is inter-
esting not only because of its practical application in simu-
lating physical systems, but also because it relates our ability
to efficiently simulate physical systems with a broader theory
�the automata hierarchy or formal language theory� which
deals with the fundamental limits of computation. It would
be interesting to see whether there are other insights from
this theory that could be used to improve techniques for
simulating physical systems.

8Again, there is an alternative viewpoint that considers the trans-
fer matrices themselves to be the primary object of interest. In
particular, there is a generalization of finitely correlated states,
known as “contour correlated states” �22�, which characterizes
quantum states on a two-dimensional lattice by a map E :A

� B�−→B�+ that can be thought of as taking observables in the
lattice region  �members of a C� algebra A� to a transfer matrix
in the tensor space B�−→B�+, which transports information
through the region  from its lower left contour �− to its upper
right contour �+. This lattice is dual to the lattice used by our
agents, so the case where the region  is a single tile corresponds to
a transfer matrix derived from an agent on the corresponding vertex
in our lattice, with the minor difference that our agents use a dif-
ferent direction �upper left to lower right� for the flow of informa-
tion on the lattice.

9#P-complete problems are the counting equivalent of NP-
complete problems, and are widely thought to be computationally
intractable.

FIG. 18. Use of recursion to calculate O33.
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