
1 Introduction
The original formal study of finite state systems (neural

nets) is from 1943 by McCulloch and Pitts [14]. In 1956
Kleene [13] modeled the neural nets of McCulloch and Pitts
by finite automata. In that time similar models were pre-
sented by Huffman [12], Moore [17], and Mealy [15]. In 1959,
Rabin and Scott introduced nondeterministic finite automata
(NFA) in [21].

The finite automata theory is a well developed theory. It
deals with regular languages, regular expressions, regular
grammars, NFAs, deterministic finite automata (DFAs), and
various transformations among the previously listed
formalisms. The final product of the theory towards practical
implementation is a DFA.

DFA then runs theoretically in time �(n), where n is the
size of the input text. However, in practice we have to consider
CPU cache that rapidly influences the speed. CPU has two
level caches displayed in Fig. 1. The level 1 (L1) cache is lo-
cated on chip. It takes about 2–3 CPU cycles to access data in
L1 cache. The level 2 (L2) cache may be on chip or may be
external. It has about 10 cycles access time. The main mem-
ory access takes 150–200 cycles and hard disc drive access
takes even 106 times more time. Therefore it is obvious that
CPU cache significantly influences DFA run. We cannot con-
trol the CPU cache use directly, but knowing the CPU cache
strategies we can implement the DFA run in a way so that
CPU cache would be most likely efficiently used.

We distinguish two kinds of use of DFA. For each of them
we describe the most suitable implementation. In Section 2
we define nondeterministic finite automaton and discuss its

usage. Section 3 then describes general techniques for DFA
implementation. It is mostly suitable for DFA that is run most
of the time. Since DFA has a finite set of states, this kind of
DFA has to have cycles. Recent results in the implementation
using CPU cache are discussed in Section 4. On the other
hand we have a collection of DFAs each representing some
document (e.g., in the form of complete index in case of
factor or suffix automata). Such DFA is used only when prop-
erties of the corresponding document are examined. Such
automaton usually does not have cycles. There are different
requirements for implementation of such DFA. Suitable im-
plementations are described in Section 5.

2 Nondeterministic finite automaton
Nondeterministic finite automaton (NFA) is a quintuple (Q, �,

�, q0, F), where Q is a finite set of states, � is a set of input sym-
bols, � is a mapping � �Q Q� () ()� � �� � , q Q0 � is an initial
state, and F Q� is a set of final states. Deterministic finite
automaton (DFA) is a special case of NFA, where � is a mapping
Q Q� � � .

In the previous definition we talk about completely defined
DFA, where there is for each source state and each input sym-
bol exactly one destination state defined. However, there is also
partially defined DFA, where there is for each source state and
each input symbol at most one destination state defined. The
partially defined DFA can be transformed to completely de-
fined DFA introducing a new state (so called sink state) which
has a self loop for each symbol of � and into which all non-
-defined transitions of all states lead.

There are also NFAs with more than one initial state. Such
NFAs can be transformed to NFAs with one initial state intro-
ducing a new initial state from which �-transitions lead to all
former initial states.

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 51

Acta Polytechnica Vol. 47 No. 6/2007

Finite Automata Implementations
Considering CPU Cache

J. Holub

The finite automata are mathematical models for finite state systems. More general finite automaton is the nondeterministic finite automaton
(NFA) that cannot be directly used. It is usually transformed to the deterministic finite automaton (DFA) that then runs in time �(n), where
n is the size of the input text. We present two main approaches to practical implementation of DFA considering CPU cache. The first
approach (represented by Table Driven and Hard Coded implementations) is suitable forautomata being run very frequently, typically
having cycles. The other approach is suitable for a collection of automata from which various automata are retrieved and then run. This
second kind of automata are expected to be cycle-free.

Keywords: deterministic finite automaton, CPU cache, implementation.

L2 CacheCPU Core RAML1 Cache

Fig. 1: Memory Cache Hierarchy 2
b

0 3

c

4

d

1
a

d

dc

Fig. 2: A deterministic finite automaton

NFA accepts a given input string w � �
* if there exists a

path (a sequence of transitions) from the initial state to a final
state spelling w. The problem occurs when for a pair (q, a),
q Q� , a � � (i.e., state q of NFA is active and a in the current
input symbol) there are more possibilities how to continue:

1. There are more than one transitions labeled by a outgo-
ing from state q. That is � (,)q a �1.

2. There is an �-transition in addition to other transitions
outgoing from the same state.

In such a case NFA cannot decide, having only the knowl-
edge of the current state and current input symbol, which
transition to take. Due to this nondeterminism NFA cannot be
directly used. There are two options:
1. We can transform NFA to the equivalent DFA using the

standard subset construction [21]. However, it may lead to
an exponential increase of number of states (2Q NFA states,
where QNFA is the number of states of the original NFA).
The resulting DFA then runs in linear time with respect to
the size of the input text.

2. We can simulate the run of NFA in a deterministic way.
We can use Basic Simulation Method [7, 6] usable for
any NFA. For NFA with a regular structure (like in the
exact and approximate pattern matching field) we can use
Bit Parallelism [16,7,6,10] or Dynamic Programming [16,
8, 6] simulation methods which improve the running time
of the Basic Simulation Method in this special case. The
simulation runs slower than DFA however the memory
requirements are much smaller. Practical experiments
were given in [11].

3 Deterministic finite automaton
implementation
Further in the text we do not consider simulation tech-

niques. We consider only DFA. DFA runs theoretically in time
�()n , where n is the size of the input text.

There are two main techniques for implementation of
DFA:
1. Table Driven (TD): The mapping � is implemented as a

transition matrix of size Q � � (transition table). The
current state number is held in a variable qcurr and the
next state number is retrieved from the transitiontable
from line qcurr and column a, where a is the current input
symbol.

2. Hard Coded (HC) [22]: The transition table � is repre-
sented as a programming language code. For each state
there is a place starting with a state-label. Then there is a
sequence of conditional jumps, where based on the cur-
rent input symbol the corresponding goto command to
the destination state-label is performed.

3.1 Table Driven
An example of TD implementation is shown in Fig. 3. For

partially defined DFA one have to either transform it to a
completely defined DFA or handle the case when a undefined
transition should be used.

Obviously TD implementation is very efficient for com-
pletely defined DFA or DFAs with non-sparse transition table.
It can be also very efficiently used in programs, where DFA is
constructed from a given input and then it is run. In such a
case it can be easily stored into the transition matrix. The
code for the DFA run is then independent on the content of
the transition matrix. TD implementation is also very conve-
nient for a hardware implementation, where the transition
matrix is represented by a memory chip.

3.2 Hard Coded
An example of HC implementation is shown in Fig. 4. The

implementation can work with partially defined DFA in this
case.

HC implementation may save some space when used for
partially defined DFA, where the transition matrix would be
sparse. It cannot be used in programs, where DFA is con-
structed from the input. When DFA is constructed, a hard
coded part of the program has to be generated in a program-
ming language, then compiled and executed. This technique
would need calls of several programs (compiler, linker, the
DFA program itself) and would be very inefficient.

Note that we cannot use the recursive descent [1] ap-
proach from LL(k) top-down parsing, where each state could
be represented by a function calling recursively a function
representing the following state. In such a case the system
stack would overflow since DFA would return from the func-
tion calls only at the end of the run. There would be as many
nested function calls as the size of the input text. However,
Ngassam’s implementation [18] uses a function for each state,
but the function (with the current input symbol given as a pa-
rameter) returns an index of the next state and then the next
state function (with the next input symbol given as a parame-
ter) is called.

52 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 6/2007

2

b

0

3

41

a dc

1

4

4

4

3

3

2

int DFA_TD(){

int state=0,symbol;

while((symbol= getchar())!= EOF) {

state= transition_table[state][symbol];

}

returnis_final[state];

}

transition_table:

-

- -

- -

- - -

- - - -

-

Fig. 3: Table Driven implementation of DFA from Fig. 2

4 DFA with cycles

TD and HC implementations (and their combination cal-
led Mixed-Mode – MM) were heavily examined by Ngassam
[20, 18]. His implementations use a data structure that most
likely will be stored in CPU cache. For each of TD and HC
implementationshe developed three strategies to use CPU
cache efficiently: Dynamic State Allocation (DSA), State pre-
-ordering (SpO), and Allocated Virtual Caching (AVC).

DSA strategy has been suggested in [19] and was proved to
outperform TD when a large-scale DFA is used to recognize
very long strings that tend to repeatedly visit the same set
of states. SpO relies on a degree of prior knowledge about
the orderin which states are likely to be visited at run-time. It
was shown that the associated algorithm outperforms its TD
counterpart no matter the kind of string being processed.
AVC strategy reorders the transition table at run time and also
leads to better performance when processing strings that visit
a limited number of states.

Ngassam’s approach can be efficiently exploited in DFA,
where some states are frequently visited (like in DFA with
cycles). In both TD and HC Ngassam’s implementations the
transition table is expected to have the same number of items
in each row (i.e., each state having the same number of out-
going transitions). Ngassam’s implementation uses a fixed-
-size structure for each row of the transition table. Therefore

for sparse transition matrix the method is not so memory
efficient.

5 Acyclic DFA
Another approach is used for acyclic DFA. In these autom-

ata each state is visited just once during the DFA run. Suffix
automaton and factor automaton (automaton recognizing all
suffixes and factors of the given string, respectively) [3, 4] are
of such kind. Given a pattern they verify if the pattern is a suf-
fix or a factor of the original string in time linear with the
length of pattern regardless the size of the original string.

An efficient implementation of the suffix automaton (also
called DAWG – Direct Acyclic Word Graph) was created by
Balík [2]. An implementation of the compact version of the
suffix automaton called compact suffix automaton (also cal-
led Compact DAWG) was presented by Crochemore and
Holub in [9].

Both these implementations are very efficient in terms of
memory used (about 1.1–5 bytes per input string symbol).
The factor and suffix automata are usually built over whole
texts typically several megabytes long. Instead of storing the
transition tableas a matrix like in TD implementation, whole
automaton is used in a bit stream. The bit stream contains a
sequence of states each containing a list of all outgoing transi-
tions (i.e., sparse matrix representation).

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 53

Acta Polytechnica Vol. 47 No. 6/2007

int DFA_HC(){

int symbol;

state0:if ((symbol= getchar())== EOF) return0;

switch(symbol){

case ’a’: goto state1;

case ’d’: goto state4;

default:return(-1);

};

state1:if ((symbol= getchar())== EOF) return0;

switch(symbol){

case ’b’: goto state2;

case ’c’: goto state3;

default:return(-1);

};

state2:if ((symbol= getchar())== EOF) return0;

switch(symbol){

case ’c’: goto state3;

case ’d’: goto state4;

default:return(-1);

};

state3:if ((symbol= getchar())== EOF) return0;

switch(symbol){

case ’d’: goto state4;

default:return(-1);

};

state4:if ((symbol= getchar())== EOF) return1;

return(-1);

}

Fig. 4: Hard Coded implementation of DFA from Figure 2

The key feature of both implementations is a topological
ordering of states. It ensures that we never get back in the bit
stream when traversing the automaton. This minimizes main
memory (or hard disc drive) accesses.

Balík’s implementation is focused on the smallest memory
used. It uses some data compression techniques. It also ex-
ploits the fact that both factor and suffix automata are homo-
geneous automata [5], where each state has all incoming tran-
sitions labeled by the same symbol. Therefore the label of in-
coming transition is stored in the destination state. The out-
going transition then only points to the destination state,
where the corresponding transition label is stored.

On the other hand Holub’s implementation considers
also the speed of traversing. Each state contains all outgoing
transitions together with their transition labels like in Fig. 5.
(However, the DFA represented in Fig. 5 is neither suffix nor
factor automaton.) It is not so memory efficient like Balík’s
implementation but it reduces main memory (or hard disc
drive) accesses. It exploits the locality of data – principle used
by CPU cache. When a state isreached during the DFA run,
whole segment around the state is loaded into CPU cache
(from main memory or hard disc drive). The decision which
transition to take is done based only on the information in the
segment (in the CPU cache) and no other accessesto other
segments (i.e., possible memory/HDD accesses) are needed.
While in Balík’s implementation one needs to access all the
destination states to retrieve the transition labels of the cor-
responding transitions. Holub’s implementation uses at most
as many main memory/HDD accesses as many states are
traversed.

6 Conclusion
The paper presents two approaches to DFA implementa-

tion considering CPU cache. The first approach is suitable
for DFA with cycles where we expect some states are vis-
ited frequently. HC and TD implementations for DFA with
non-sparse transition table were discussed.

On the other hand the other approach is suitable for acy-
clic DFA with a sparse transition table. This approach saves
memory used but it runs slower than the previous one – in-
stead of direct transition table access (coordinates given by the
current state and the current input symbol) a linked list of
outgoing transition of a given state is linearly traversed.
However, reducing the memory used for the transition table
increases the probability that the next state is already in the
CPU cache which also increases the speed of DFA run.

The first approach is suitable for the DFAs that are run-
ning all the time like for example an anti-virus filter on a
communication line. On the other hand the second approach
is suitable for a collection of DFAs from which one is selected
and then it is run. That is for example a case of suffix or factor

automata build over a collection of documents stored in hard
disk. The task is then for a given pattern find all documents
containing the pattern.

Acknowledgment
This research has been partially supported by the Ministry

of Education, Youth and Sports under research program
MSM 6840770014 and the Czech Science Foundation as pro-
ject No. 201/06/1039.

References
[1] Aho, A. V., Sethi, R., Ullman, J. D.: Compilers – Principles,

Techniques and Tools. Addison-Wesley, Reading, MA,
1986.

[2] Balík, M.: DAWG versus Suffix Array. In: J.-M.
Champarnaud, D. Maurel (eds.): Implementation and Ap-
plication of Automata, number 2608 in Lecture Notes in
Computer Science, p. 233–238. Springer-Verlag, Hei-
delberg, 2003.

[3] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D.,
Chen, M. T., Seiferas, J.: The Smallest Automaton Rec-
ognizing the Subwords of a Text. Theor. Comput. Sci.,
Vol. 40 (1985), No. 1, p. 31–55.

[4] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D.,
McConnel, R.: Complete Inverted Files for Efficient
Text Retrieval and Analysis. J. Assoc. Comput. Mach.,
Vol. 34 (1987), No. 3, p. 578–595.

[5] Champarnaud, J.-M.: Subset Construction Complexity
for Homogeneous Automata, Position Automata and
ZPC-Structures. Theor. Comput. Sci., Vol. 267 (2001),
No. 1–2, p. 17–34.

[6] Holub, J.: Simulation of Nondeterministic Finite Automata in
Pattern Matching. Ph.D. Thesis, Czech Technical Univer-
sity in Prague, Czech Republic, 2000.

[7] Holub, J.: Bit Parallelism – NFA Simulation. In: B. W.
Watson, D. Wood (eds.): Implementation and Application of
Automata, number 2494 in Lecture Notes in Computer
Science, p. 149–160. Springer-Verlag, Heidelberg,
2002.

[8] Holub, J.: Dynamic Programming—NFA Simulation.
In: J.-M. Champarnaud, D. Maurel (eds.): Implementa-
tion and Application of Automata, number 2608 in Lecture
Notes in Computer Science, p. 295–300. Springer-
-Verlag, Heidelberg, 2003.

[9] Holub, J., Crochemore, M.: On the Implementation of
Compact DAWG’s. In: J.-M. Champarnaud, D. Maurel
(eds.): Implementation and Application of Automata, number
2608 in Lecture Notes in Computer Science, p. 289–294.
Springer-Verlag, Heidelberg, 2003.

54 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 6/2007

2

b

3

c

4

d

0

a d dc0 10 0 0

1state number:

bitstream:

Fig. 5: A sketch of bitstream implementation of DFA from Fig. 2

[10] Holub, J., Iliopoulos, C. S., Melichar, B., Mouchard, L.:
Distributed String Matching Using Finite Automata.
In: R. Raman, J. Simpson (eds.): Proceedings of the 10th

Australasian Workshop On Combinatorial Algorithms,
p. 114–128, Perth, WA, Australia, 1999.

[11] Holub, J., Špiller, P.: Practical Experiments with NFA
Simulation. In: L. Cleophas, B. W. Watson (eds.): Pro-
ceedings of the Eindhoven FASTAR Days 2004, TU
Eindhoven, The Netherlands, 2004, p. 73–95.

[12] Huffman, D. A.: The Synthesis of Sequential Switching
Circuits. J. Franklin Institute, Vol. 257 (1954), p. 161–190,
275–303.

[13] Kleene, S. C.: Representation of Events in Nerve Nets
and Finite Automata. Automata Studies, (1956), p. 3–42.

[14] McCulloch, W. S., Pitts, W.: A Logical Calculus of the
Ideas Immanent in Nervous Activity. Bull. Math. Biophys-
ics, Vol. 5 (1943), p. 115–133.

[15] Mealy, G. H.: A Method for Synthetizing Sequential
Circuits. Bell System Technical J., Vol. 34 (1955), No. 5,
p. 1045–1079.

[16] Melichar, B.: Approximate String Matching by Finite
Automata. In: V. Hlaváč, R. Šára (eds.): Computer Analysis
of Images and Patterns, number 970 in Lecture Notes in
Computer Science, p. 342–349. Springer-Verlag, Berlin,
1995.

[17] Moore, E. F.: Gedanken Experiments on Sequential Ma-
chines. Automata Studies, 1956, p. 129–153.

[18] Ngassam, E. K.: Towards Cache Optimization in Finite Au-
tomata Implementations. Ph.D. Thesis, University of Preto-
ria, South Africa, 2006.

[19] Ngassam, E. K., Kourie, D. G., Watson, B. W.: Reorder-
ing Finite Automatata States for Fast String Recognition.
In: J. Holub, M. Šimánek (eds.): Proceedings of the Prague
Stringology Conference ’05, Czech Technical University in
Prague, Czech Republic, 2005, p. 69–80.

[20] Ngassam, E. K., Kourie, D. G., Watson, B. W.: On Im-
plementation and Performance of Table-Driven DFA-
-Based String Processors. In: J. Holub, J. Ž�árek (eds.):
Proceedings of the Prague Stringology Conference ’06, Czech
Technical University in Prague, Czech Republic, 2006,
p. 108–122.

[21] Rabin, M. O., Scott, D.: Finite Automata and Their
Decision Problems. IBM J. Res. Dev., Vol. 3 (1959),
p. 114–125.

[22] Thompson, K.: Regular Expression Search Algorithm.
Commun. Assoc. Comput. Mach., Vol. 11 (1968),
p. 419–422.

Ing. Jan Holub, Ph.D.
e-mail: holub@fel.cvut.cz

Department of Computer Science and Engineering

Czech Technical University in Prague
Faculty of Electrical Engineering
Karlovo nám. 13
121 35 Prague 2, Czech Republic

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 55

Acta Polytechnica Vol. 47 No. 6/2007

