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Abstract: A monoid S1 obtained by adjoining a unit element to a 2-testable semigroup S is said to be 2-testable. It is
shown that a 2-testable monoid S1 is either inherently non-finitely based or hereditarily finitely based, depend-
ing on whether or not the variety generated by the semigroup S contains the Brandt semigroup of order five.
Consequently, it is decidable in quadratic time if a finite 2-testable monoid is finitely based.
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1. Introduction

In the present article, all varieties are varieties of semigroups, that is, classes of semigroups that are closed under
the formation of homomorphic images, subsemigroups, and arbitrary direct products. A variety is finitely based if its
identities are finitely axiomatizable. A semigroup is finitely based if it generates a finitely based variety. The finite
basis problem asks when a given finite semigroup is finitely based. This problem has been intensely investigated as
early as the 1960s and is still open. Refer to the surveys of Shevrin and Volkov [20] and Volkov [27] for more information
on semigroup varieties and the finite basis problem.

It is well known that the idempotent-generated 0-simple semigroup

A2 =
〈
a, b

∣∣a2 = aba = a, b2 = 0, bab = b
〉

of order five plays several important roles in the theory of semigroup varieties. For instance, Trahtman [25] showed that
the variety A2 generated by the semigroup A2 coincides with the class of 2-testable semigroups, that is, semigroups that

∗ E-mail: ewl@sfu.ca

1

Brought to you by | Nova Southeastern University
Authenticated

Download Date | 2/27/17 11:46 PM



Finite basis problem for 2-testable monoids

satisfy any identity formed by a pair of words that begin with the same letter, end with the same letter, and share the
same set of factors of length two. The variety A2 also coincides with the variety generated by all aperiodic 0-simple
semigroups [5] and is essential in the recent discovery and description of a new infinite series of limit varieties [16].

The semigroup A2 is also an important example that is related to semigroups with very extreme and contrasting equational
properties. By the early 1980s, Trahtman [22, 24] had proven that the semigroup A2 is finitely based by the identities

x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx. (1)

Recently, the semigroup A2 was shown to satisfy the stronger property of being hereditarily finitely based [9], that is,
every semigroup in the variety A2 is finitely based. On the other hand, the semigroup A2 can be used to construct
non-finitely based semigroups. Volkov [26] demonstrated that the direct product of the semigroup A2 with any finite
group is non-finitely based. Trahtman [23] proved that the monoid A1

2 obtained from A2 by adjoining a unit element is
non-finitely based, and Sapir [19] even proved that A1

2 is inherently non-finitely based in the sense that any locally
finite variety containing it is non-finitely based.

Since the variety A2 coincides with the class of 2-testable semigroups [25], it is reasonable to refer to a monoid S1 as
a 2-testable monoid whenever S is a semigroup from A2. Motivated by the contrasting equational properties of the
semigroups A2 and A1

2, the present article is an in-depth investigation of the finite basis problem for 2-testable monoids.
The non-finitely based monoid A1

2 is vacuously 2-testable. It is routine to verify that the Brandt semigroup

B2 =
〈
c, d

∣∣ c2 = d2 = 0, cdc = c, dcd = d
〉

of order five satisfies the identities (1) and so belongs to the variety A2. Therefore the monoid B1
2 is also 2-testable;

this monoid is not only non-finitely based [18] but is also inherently non-finitely based [19].

Remark 1.1.
Up to isomorphism and anti-isomorphism, A1

2 and B1
2 are the only monoids that are minimal with respect to being non-

finitely based [14]. Consequently, the semigroups A2 and B2 are the smallest possible examples of a finitely based
semigroup S for which the monoid S1 is non-finitely based.

For any semigroup or monoid S, let VAR {S} denote the semigroup variety generated by S. It is easy to show that if
S and T are semigroups such that S ∈ VAR {T}, then S1 ∈ VAR

{
T 1}; see also Almeida [1, Lemma 7.1.1]. Since the

monoid B1
2 is inherently non-finitely based [19], a 2-testable monoid S1 is also inherently non-finitely based whenever

B2 ∈ VAR {S}. It is thus natural to examine the finite basis problem for 2-testable monoids S1 for which B2 /∈ VAR {S}.
The main goal of the present article is to show that such monoids must be hereditarily finitely based, thereby establishing
a dichotomy for 2-testable monoids with respect to the finite basis property.

Theorem 1.2.
Let S be any semigroup in the variety A2.

(i) If B2 ∈ VAR {S}, then the monoid S1 is inherently non-finitely based.

(ii) If B2 /∈ VAR {S}, then the monoid S1 is hereditarily finitely based.

Consequently, any 2-testable monoid is either inherently non-finitely based or hereditarily finitely based.

Remark 1.3.
(i) For any semigroup S in the variety A2, the semigroup B2 belongs to the variety VAR {S} if and only if S does not

satisfy the identity xy2x ≈ xyx [6]. Therefore, in the presence of Theorem 1.2, checking the finite basis property
of a finite 2-testable monoid S1 is a problem of complexity O(|S|2).

(ii) Varieties generated by 2-testable monoids will be identified in a sequel article [13].

There are six sections in the present article. Notation and background material are given in Section 2. Main arguments
of the proof of Theorem 1.2(ii) are given in Section 3, while the finer details are deferred to Sections 4–6.
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2. Preliminaries

Most of the notation and background material of this article are given in this section. Refer to the monograph of Burris
and Sankappanavar [2] for more information on universal algebra.

2.1. Letters and words

Let X be a fixed countably infinite alphabet throughout. Denote by X+ and X∗ the free semigroup and the free monoid
over X respectively. Elements of X and X∗ are referred to as letters and words respectively.

Let x be any letter and w be any word. Then

• the content of w, denoted by con (w), is the set of letters occurring in w;

• the head of w, denoted by h (w), is the first letter occurring in w;

• the tail of w, denoted by t (w), is the last letter occurring in w;

• the initial part of w, denoted by ini (w), is the word obtained from w by retaining the first occurrence of each
letter;

• the final part of w, denoted by fin (w), is the word obtained from w by retaining the last occurrence of each letter;

• x is simple in w if x occurs exactly once in w;

• w is simple if any letter occurs at most once in w;

• w is quadratic if any letter occurs at most twice in w.

Note that by definition, the empty word is simple and any simple word is quadratic.

Let w be any quadratic word. If w = axbxc for some x ∈ X and a, b, c ∈ X∗ with x /∈ con (abc), then the distance
between the two occurrences of x in w is the length of b. If x1, . . . , xr are all the non-simple letters of w, then the
separation degree of w is the sum d1 + · · ·+ dr , where di is the distance between the two occurrences of xi in w.

2.2. Identities and varieties

An identity is written as u ≈ v where u, v ∈ X+. A semigroup S satisfies an identity u ≈ v if for any substitution φ
from X into S, the elements uφ and vφ of S coincide. A variety V satisfies an identity u ≈ v if every semigroup in V
satisfies u ≈ v; this is indicated by V � u ≈ v.

Let Σ be any set of identities. An identity u ≈ v is deducible from Σ if any semigroup that satisfies the identities in Σ
also satisfies u ≈ v; this is indicated by Σ ` u ≈ v or u Σ≈ v. The variety defined by Σ is the class of all semigroups
that satisfy all identities in Σ; in this case, Σ is a basis for the variety. A variety is finitely based if it possesses a finite
basis. The subvariety of a variety V defined by Σ is denoted by VΣ.

An identity σ deletes to an identity σ ′ if, up to renaming of letters, σ ′ is obtained from σ by removing all occurrences of
some letters in σ . For example, the identity xyxyzx ≈ zx2y deletes to the identities a2x7a ≈ x7a2 and p2y2 ≈ y2p.

For any varieties U and V such that U ⊆ V, the interval [U,V] is the set of all subvarieties of V containing U. The
lattice of subvarieties of V is denoted by L(V). Note that L(V) = [0,V] where 0 is the variety of trivial semigroups.
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2.3. Some 2-testable monoids

It is routine to check that the subsets

A0 = {0, b, ab, ba}, L2 = {a, ba}, R2 = {a, ab}, and N2 = {0, b}

of A2 are subsemigroups of A2, and that the subset

B0 = {0, d, cd, dc}

of B2 is a subsemigroup of B2. Note that L2 is a left-zero semigroup, R2 is a right-zero semigroup, and N2 is a null
semigroup. The variety VAR {B0} is the unique maximal subvariety of both the varieties VAR {A0} and VAR {B2} [6]; a
description of all subvarieties of VAR {B0} is given by Lee [7]. Let A1

0 , B1
0, L1

2 , R1
2 , and N1

2 be the varieties generated by
the 2-testable monoids A1

0, B1
0 , L1

2, R1
2 , and N1

2 , respectively.

An identity u ≈ v is quadratic if the words u and v are quadratic. Define a relation $ on X∗ by u $ v if the words u and
v can be obtained from one another by rearrangement of letters. It is easy to verify the following well-known results.

Lemma 2.1.
Let u ≈ v be any identity. Then

(i) L1
2 � u ≈ v if and only if ini (u) = ini (v);

(ii) R1
2 � u ≈ v if and only if fin (u) = fin (v).

Further, if the identity u ≈ v is quadratic, then

(iii) N1
2 � u ≈ v if and only if u $ v.

Lemma 2.2.
Let u ≈ v be any quadratic identity such that con (u) = con (v). Then

(i) A1
0 � u ≈ v if and only if u ≈ v does not delete to any of the following identities:

x2 ≈ x, xy ≈ yx, xyx ≈ x2y, xyx ≈ yx2, x2y ≈ yx2, (2)
xy2x ≈ x2y2, xy2x ≈ y2x2, xyxy ≈ x2y2, xyxy ≈ y2x2, x2y2 ≈ y2x2; (3)

(ii) B1
0 � u ≈ v if and only if u ≈ v does not delete to any identity in (2).

Proof. Part (i) follows from Edmunds [3, Lemma 4.1 and the proof of Proposition 3.2(a)]. Part (ii) follows from
Edmunds [3, proof of Proposition 3.1(i)].

Proposition 2.3.
(i) The variety A1

0 ∨ L1
2 ∨ R1

2 is defined by the identities

xyxzx ≈ xyzx, x2yx ≈ xyx, xyx2 ≈ xyx, x3 ≈ x2. (F)

(ii) The variety A1
0 ∨ L1

2 is defined by the identities (F) and

xyxy ≈ xy2x. (I)

4
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(iii) The variety A1
0 ∨ R1

2 is defined by the identities (F) and

xyxy ≈ yx2y. (J)

(iv) The variety A1
0 is defined by the identities (F), (I), and (J).

Remark 2.4.
Note that if a letter x occurs three or more times in a word w, then all except the first and last occurrences of x in w can
be eliminated by the identities (F). Therefore any word can be converted by the identities (F) into a unique quadratic
word.

Proof of Proposition 2.3. Parts (ii)–(iv) are consequences of Edmunds [3, Propositions 3.2(a)] and Lee [11, Propo-
sition 3.3 and Corollary 3.4]. Therefore it remains to verify part (i).

It is routine to show that the monoids A1
0, L1

2, and R1
2 satisfy the identities (F). Therefore, to complete the proof, it

suffices to show that any identity u ≈ v of the variety A1
0 ∨ L1

2 ∨ R1
2 is deducible from the identities (F). Since the

variety A1
0 ∨ L1

2 ∨ R1
2 satisfies the identities (F), it follows from Remark 2.4 that the words u and v can be assumed to

be quadratic. Hence u and v can be written as u = s1u1 · · · smum and v = t1v1 · · · tnvn, where

• the letters of s1 ∈ X∗ and s2, . . . , sm ∈ X+ are all simple in u,

• the letters of u1, . . . , um−1 ∈ X+ and um ∈ X∗ are all non-simple in u,

• the letters of t1 ∈ X∗ and t2, . . . , tn ∈ X+ are all simple in v,

• the letters of v1, . . . , vn−1 ∈ X+ and vn ∈ X∗ are all non-simple in v.

Since the identity u ≈ v is satisfied by the monoids A1
0, L1

2, and R1
2 , it follows from Lemmas 2.1 and 2.2(i) that

(a) ini (u) = ini (v) and fin (u) = fin (v),

(b) u ≈ v does not delete to any identity from {(2), (3)};

specifically,

(c) u ≈ v does not delete to the identity xyxy ≈ x2y2.

Since u and v are quadratic words, it follows from (b) that m = n, si = ti, and ui $ vi for all i. Therefore v = s1v1 · · · smvm.
It then follows from (a) and (c) that ui = vi for all i, whence the identity u ≈ v is trivial. Consequently, the identity
u ≈ v is deducible from the identities (F).

3. Proof of Theorem 1.2(ii)

It is routine to show that the semigroup C0 with the following multiplication table satisfies the identities (1) and so
belongs to the variety A2:

C0 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 a a
b 0 a b c 0 a
c 0 a b c a a
d 0 0 0 0 d d
e 0 0 0 0 e e

5
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The semigroups A0, B0, L2, R2, and N2 are isomorphic to the subsemigroups

{0, a, b, e}, {0, a, b, d}, {b, c}, {d, e}, and {0, a}

of C0 respectively. Let A0 = VAR {A0}, B0 = VAR {B0}, B2 = VAR {B2}, C0 = VAR {C0}, and C1
0 = VAR {C 1

0 }.

Lemma 3.1.
The variety C0 is the subvariety of A2 that is largest with respect to not containing the semigroup B2.

Proof. This follows from Lee [6, Theorem 3.6] and Lee and Volkov [15, Theorem 4.2(iii)].

A complete description of the interval [B0,A2] can be found in Lee [12, Figure 5]. The varieties C0 (denoted in Lee [12]
by B2) and A2 are very close since the interval [C0,A2] coincides with the chain C0 ⊂ B2 ∨ C0 ⊂ A2.

Lemma 3.2.

C1
0 = A1

0 ∨ L1
2 ∨ R1

2.

Proof. Since the monoids A1
0, L1

2, and R1
2 are embeddable in C 1

0 , the inclusion A1
0 ∨ L1

2 ∨ R1
2 ⊆ C1

0 holds. It is
routine to show that the monoid C 1

0 satisfies the identities (F) so that the inclusion C1
0 ⊆ A1

0 ∨ L1
2 ∨ R1

2 holds by
Proposition 2.3(i).

Theorem 3.3.
The variety C1

0 is hereditarily finitely based. Equivalently, any semigroup that satisfies the identities (F) is finitely
based.

Theorem 3.3 will be established over the next three sections. Restrictions on identities that can be used to define
varieties in the interval

[
A0,C1

0
]

are given in Section 4. These restrictions are then used in Sections 5 and 6 to show
that all subvarieties of C1

0 are finitely based. Specifically, all subvarieties of C1
0 that contain the variety A0 ∨ B1

0 are
shown to be finitely based in Proposition 5.1, while those that do not contain the variety A0∨B1

0 are shown to be finitely
based in Proposition 6.1.

Let S1 be any 2-testable monoid such that B2 /∈ VAR {S}. By Lemma 3.1, the semigroup S belongs to the variety C0 so
that the monoid S1 belongs to the variety C1

0. By Theorem 3.3, the monoid S1 is hereditarily finitely based.

4. Identities of varieties containing A0

Recall from Proposition 2.3(i) and Lemma 3.2 that the variety C1
0 is defined by the identities (F). Since most equational

deductions in the remainder of this article are deductions within the equational theory of the semigroup C 1
0 , it is

convenient to write Σ1  Σ2, where Σ1 and Σ2 are any sets of identities, to stand for the deduction (F) ∪ Σ1 ` Σ2.

Two words are said to be disjoint if they do not share any common letter. A word of length at least two is said to be
connected if it cannot be written as a product of two disjoint nonempty words. An identity u ≈ v is connected if the
words u and v are connected.

Lemma 4.1.
Let u and v be any words.

(i) Suppose that u = u1 · · · um (respectively, v = v1 · · · vn) where u1, . . . , um (respectively, v1, . . . , vn) are pairwise
disjoint words each of which is either connected or a singleton. Then A0 � u ≈ v if and only if m = n and
A0 � ui ≈ vi for all i.

6
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(ii) Suppose that either u or v is a simple word. Then A0 � u ≈ v if and only if u = v.

(iii) Suppose that u and v are connected words. Then A0 � u ≈ v if and only if con (u) = con (v).

Proof. These results follow from the proof of part 4 of the first proposition in Edmunds [4].

For any ` and r from the set
N? = {0, 1, 2, . . . ,∞,∞+ 1},

define the words

p(`) =






∅ if ` = 0,
p1 · · ·p` if 1 ≤ ` <∞,
p2

1p2 if ` =∞,
p2

1 if ` =∞+ 1,

and q(r) =






∅ if r = 0,
q1 · · ·qr if 1 ≤ r <∞,
q1q2

2 if r =∞,
q2

2 if r =∞+ 1.

Lemma 4.2.
Each variety in the interval

[
A0,C1

0
]

is defined within the variety C1
0 by quadratic identities of the form

p(`)uq(r) ≈ p(`)vq(r) (4)

where

(1†) `, r ∈ N?;

(2†) u, v ∈ X+ are connected and quadratic;

(3†) p(`), u, q(r) are pairwise disjoint and p(`), v, q(r) are pairwise disjoint;

(4†) A0 � u ≈ v so that con (u) = con (v);

(5†) ` = 0 if h (u) = h (v);

(6†) r = 0 if t (u) = t (v).

Proof. It suffices to consider a variety in the interval
[
A0,C1

0
]

of the form C1
0 {ξ}, where

ξ : a ≈ b

is any nontrivial, quadratic identity of the variety A0, and show that

C1
0 {ξ} = C1

0 {ξ1, . . . , ξk} (5)

for some identities ξ1, . . . , ξk of the form (4) that satisfy conditions (1†)–(6†). By Lemma 4.1(ii), the words a and b are
non-simple. By Remark 2.4 and Lemma 4.1(i),

a = s1u1s2u2 · · · skuksk+1 and b = s1v1s2v2 · · · skvksk+1

where

• s1, . . . , sk+1 ∈ X∗ are simple;

• u1, . . . , uk , v1, . . . , vk ∈ X+ are quadratic and connected;

7
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• s1, u1, . . . , sk , uk , sk+1 are pairwise disjoint and s1, v1, . . . , sk , vk , sk+1 are pairwise disjoint;

• A0 � ui ≈ vi (so that con (ui) = con (vi)) for all i ∈ {1, . . . , k}.

Without loss of generality, assume that con
(
p(`)q(r)

)
∩ con (ab) = ∅ for all `, r ∈ N?.

First consider the case when k = 1. Then the identity ξ is s1u1s2 ≈ s1v1s2, so that the equation (5) holds with the
identity ξ1 being p(`)u1q(r) ≈ p(`)v1q(r), where ` = |s1| and r = |s2|.

Now suppose that k ≥ 2. Denote by γ1 the substitution

x 7→
{
q1 if x = h (s2),
q2

2 if x occurs after h (s2) in a.

Then
ξ  s1u1q1q2

2
(F)
≈ aγ1

ξ
≈ bγ1

(F)
≈ s1v1q1q2

2 ` ξ1 : s1u1q1q2
2 ≈ s1v1q1q2

2

where q1 = ∅ if and only if s2 = ∅, whence the identity ξ1 is equivalent to p(`)u1q(r) ≈ p(`)v1q(r) with ` = |s1| and
r ∈ {∞,∞+ 1}. For 1 < i < k , denote by γi the substitution

x 7→






p2
1 if x occurs before t (si) in a,
p2 if x = t (si),
q1 if x = h (si+1),
q2

2 if x occurs after h (si+1) in a.

Then
ξ  p2

1p2uiq1q2
2

(F)
≈ aγi

ξ
≈ bγi

(F)
≈ p2

1p2viq1q2
2 ` ξi : p2

1p2uiq1q2
2 ≈ p2

1p2viq1q2
2

where p2 = ∅ if and only if si = ∅, and q1 = ∅ if and only if si+1 = ∅, whence the identity ξi is equivalent to
p(`)uiq(r) ≈ p(`)viq(r) with `, r ∈ {∞,∞+ 1}. Finally, denote by γk the substitution

x 7→
{
p2

1 if x occurs before t (sk ) in a,
p2 if x = t (sk ).

Then
ξ  p2

1p2uksk+1
(F)
≈ aγk

ξ
≈ bγk

(F)
≈ p2

1p2vksk+1 ` ξk : p2
1p2uksk+1 ≈ p2

1p2vksk+1

where p2 = ∅ if and only if sk = ∅, whence the identity ξk is equivalent to p(`)ukq(r) ≈ p(`)vkq(r) with ` ∈ {∞,∞ + 1}
and r = |sk+1|. Hence the deduction ξ  {ξ1, . . . , ξk} holds and the inclusion C1

0 {ξ} ⊆ C1
0 {ξ1, . . . , ξk} is established.

It remains to verify the deduction {ξ1, . . . , ξk}  ξ so that the equation (5) holds. For each i, the word ui is connected
so that the letter hi = h (ui) occurs at least twice in ui. Therefore ui

(F)
≈ h2

i ui. Similarly, the letter ti = t (vi) occurs at
least twice in the word vi so that vi

(F)
≈ vit2i . The deduction {ξ1, . . . , ξk}  ξ then follows since

a = s1u1s2u2s3u3 · · · skuksk+1
(F)
≈
(
s1u1s2h2

2
)
u2s3u3 · · · skuksk+1

ξ1≈ s1v1s2
(
h2

2u2
)
s3u3 · · · skuksk+1

(F)
≈ s1v1

(
t21s2u2s3h2

3
)
u3 · · · skuksk+1

ξ2≈ s1
(
v1t21

)
s2v2s3

(
h2

3u3
)
· · · skuksk+1

(F)
≈ s1v1s2v2

(
t22s3u3s4h2

4
)
u4 · · · skuksk+1

ξ3≈ . . .
(F)
≈ . . .

ξ4≈ . . .
(F)
≈ s1v1s2v2 · · · sk−1vk−1

(
t2k−1skuksk+1

)

ξk≈ s1v1s2v2 · · · sk−1
(
vk−1t2k−1

)
skvksk+1

(F)
≈ s1v1s2v2 · · · sk−1vk−1skvksk+1 = b.
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E.W.H. Lee

Now each identity ξi is of the form (4) and it is easy to see that it satisfies conditions (1†)–(4†). Suppose that
h (u) = h (v) = h. Since u and v are connected words, the letter h occurs more than once in both u and v. Therefore

ξi  uq(r)
(F)
≈ h|p(`)|uq(r)

ξi≈ h|p(`) |vq(r)
(F)
≈ vq(r) ` uq(r) ≈ vq(r),

whence the identity ξi can be chosen to satisfy condition (5†). By a symmetrical argument, each identity ξi can also be
chosen to satisfy condition (6†).

5. Proof of Theorem 3.3: subvarieties containing A0 ∨ B1
0

Proposition 5.1.
Any variety in the interval

[
A0 ∨ B1

0,C1
0
]

is finitely based.

Proof. Let V be any variety in the interval
[
A0 ∨ B1

0,C1
0
]
.

Case 1: A1
0 ⊆ V. Then V ∈

[
A1

0,C1
0
]

and V is shown to be finitely based in Subsection 5.1.

Case 2: A1
0 * V. Then V is shown to be finitely based in Subsection 5.2.

5.1. Varieties in
[
A1

0,C1
0
]

The main result of this subsection, Proposition 5.8, establishes the finite basis property of every variety in the interval[
A1

0,C1
0
]
.

Lemma 5.2.
Let V be any subvariety of C1

0.

(i) If R1
2 /∈ V, then the variety V satisfies the identity

hxyxyh ≈ hxy2xh. (6)

(ii) If L1
2 /∈ V, then the variety V satisfies the identity

hxyxyh ≈ hyx2yh. (7)

Proof. (i) It follows from Almeida [1, Proposition 10.10.2(b)] that the identity xyxy ≈ xy2x defines the subvariety of
C1

0 that is largest with respect to not containing R2. Suppose that R1
2 /∈ V. Let φ be the substitution z 7→ h2zh2 for all

z ∈ X . Then it follows from Lee [8, Theorem 2] that the variety V satisfies the identity (xyxy)φ ≈ (xy2x)φ. It is easy to
deduce that the variety V also satisfies the identity (6).

(ii) This is symmetrical to part (i).

The identities

λm : p(m)xyxy ≈ p(m)yx2y, ρm : xyxyq(m) ≈ xy2xq(m),

where m ∈ N?, are required in the present subsection. It is straightforward to verify the following lemma.
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Finite basis problem for 2-testable monoids

Lemma 5.3.
The following deductions hold:

(i) λ0  λ1  · · ·  λ∞  λ∞+1  (7);

(ii) ρ0  ρ1  · · ·  ρ∞  ρ∞+1  (6).

Lemma 5.4.
Let u ≈ v be any quadratic, connected identity of the variety A1

0 .

(i) If ini (u) = ini (v) and t (u) = t (v), then (6)  u ≈ v.

(ii) If h (u) = h (v) and fin (u) = fin (v), then (7)  u ≈ v.

(iii) If h (u) = h (v) and t (u) = t (v), then {(6), (7)}  u ≈ v.

Proof. (i) Suppose that ini (u) = ini (v) and t (u) = t (v). Then by Lemma 2.1(i), the identity u ≈ v is satisfied by the
variety A1

0 ∨ L1
2 . Recall from Proposition 2.3(ii) that the variety A1

0 ∨ L1
2 is defined by the identities {(F), (I)}. It follows

that there exists a deduction sequence

u = w0 ⇒ w1 ⇒ . . . ⇒ wr = v (8a)

where each deduction wj ⇒ wj+1 involves an identity from {(F), (I)}. (Recall that a deduction w ⇒ w′ involves an
identity z ≈ z′ if there exist words h, t ∈ X∗ and an endomorphism φ of X+ such that w = h(zφ)t and w′ = h(z′φ)t.) For
each j , since the identity u ≈ wj is satisfied by the variety A0 and the word u is connected, it follows from Lemma 4.1

that wj is a connected word with con (wj ) = con (u). Let t = t (u) = t (v). Since the deductions u
(F)
≈ ut and v

(F)
≈ vt follow

from the connectedness of the words u and v, multiplying every word in the sequence (8a) on the right by the letter t
results in the deduction sequence

u ⇒ w0t ⇒ w1t ⇒ . . . ⇒ wrt ⇒ v

(where the first and last deductions involve identities from (F)). Hence there is no loss in generality to assume that
every word in the sequence (8a) ends with the letter t.

Suppose that the deduction wj ⇒ wj+1 in (8a) involves the identity (I). Then wj = abxyc and wj+1 = abyxc for some
x, y ∈ X+, a, c ∈ X∗, and b ∈ {xy, yx}.

Case 1: c = ∅. Then t = t (x) = t (y) by assumption. Since b ∈ {xy, yx}, the letter t also occurs in b. Therefore

wj = abxy
(F)
≈ abtyx2yt

(6)
≈ abtyxyxt

(F)
≈ abyx = wj+1.

Case 2: c 6= ∅. Since the word wj is connected, there exists a letter z that is common to both its factors abxy and c.
Since b ∈ {xy, yx}, the letter z is common to ab and c. Therefore

wj = abxyc
(F)
≈ abzyx2yzc

(6)
≈ abzyxyxzc

(F)
≈ abyxc = wj+1.

It follows from Cases 1 and 2 that any deduction wj ⇒ wj+1 in (8a) that involves the identity (I) can be replaced by a
deduction sequence that involves identities from {(F), (6)}. Consequently, the deduction (6)  u ≈ v holds.

(ii) This is symmetrical to part (i).

(iii) Suppose that h (u) = h (v) and t (u) = t (v). By Proposition 2.3(iv), the variety A1
0 is defined by the identities

{(F), (I), (J)}. Hence there exists a deduction sequence

u = w0 ⇒ w1 ⇒ . . . ⇒ wr = v (8b)
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where each deduction wj ⇒ wj+1 involves an identity from {(F), (I), (J)}. For each j , since the identity wj ≈ u is
satisfied by the variety A0 and the word u is connected, it follows from Lemma 4.1 that wj is a connected word with

con (wj ) = con (u). Let h = h (u) = h (v) and t = t (u) = t (v). Since the deductions u
(F)
≈ hut and v

(F)
≈ hvt follow from the

connectedness of the words u and v, multiplying every word in the sequence (8b) on the left by the letter h and on the
right by the letter t results in the deduction sequence

u ⇒ hw0t ⇒ hw1t ⇒ . . . ⇒ hwrt ⇒ v

(where the first and last deductions involve identities from (F)). Hence there is no loss in generality to assume that
every word in the sequence (8b) begins and ends with the letters h and t respectively.

By arguments in the proof of part (i), any deduction wj ⇒ wj+1 in (8b) that involves the identity (I) can be replaced
by a deduction sequence that involves identities from {(F), (6)}. By symmetry, any deduction wj ⇒ wj+1 in (8b) that
involves the identity (J) can be replaced by a deduction sequence that involves identities from {(F), (7)}. Consequently,
the deduction {(6), (7)}  u ≈ v holds.

Lemma 5.5.
Let u ≈ v be any quadratic, connected identity of the variety A1

0 such that con (uv)∩ con
(
p(`)q(r)

)
= ∅ for some `, r ∈ N?.

(i) If ini (u) = ini (v) and t (u) 6= t (v), then C1
0
{
(6), uq(r) ≈ vq(r)

}
= C1

0 {ρr}.

(ii) If h (u) 6= h (v) and fin (u) = fin (v), then C1
0
{
(7), p(`)u ≈ p(`)v

}
= C1

0 {λ`}.

Proof. (i) Suppose that ini (u) = ini (v) and t (u) = x 6= y = t (v). Since con (u) = con (v) by Lemma 4.1(iii), it follows
from Lemma 2.2(i) that the identity u ≈ v does not delete to any identity in {(2), (3)}. Hence

u = axbycx and v = dyexfy

for some a, b, c, d, e, f ∈ X∗ with y ∈ con (ab) \ con (c) and x ∈ con (de) \ con (f). Let φ be the substitution z 7→ x for all
z ∈ con (u) \ {x, y}. Then xy

((
uq(r)

)
φ
) (F)
≈ xy2xq(r) and xy

((
vq(r)

)
φ
) (F)
≈ xyxyq(r) imply the deduction uq(r) ≈ vq(r)  ρr .

Hence
C1

0
{
(6), uq(r) ≈ vq(r)

}
= C1

0
{
(6), uq(r) ≈ vq(r), ρr

}
. (9a)

Note that

(a) if some simple letter z of the word u belongs to the factor c, then the identity u ≈ v deletes to the identity
y2z ≈ w for some w ∈ {zy2, yzy};

(b) if both occurrences of some non-simple letter z of the word u belong to the factor c, then the identity u ≈ v
deletes to the identity y2z2 ≈ w for some w ∈ {z2y2, zyzy, yz2y}.

In both (a) and (b), the identity u ≈ v deletes to some identity from {(2), (3)}, contradicting an earlier observation. Thus
neither (a) nor (b) is possible, whence each letter in the factor c is the last occurrence of some non-simple letter of the
quadratic word u, that is, each letter in c has a first occurrence somewhere in a or b. Therefore

uq(r)
(F)
≈ axb

(
xcy2cx

)
q(r)

(6)
≈ axbxcycyxq(r)

(F)
≈ axbc

(
xy2xq(r)

) ρr≈ axbcxyxyq(r)
(F)
≈ axbcxyq(r) = u′q(r),

that is, the deduction {(6), ρr}  uq(r) ≈ u′q(r) holds where u′ = axbcxy is a connected word. Hence

C1
0
{
(6), uq(r) ≈ vq(r), ρr

}
= C1

0
{
(6), u′q(r) ≈ vq(r), ρr

}
. (9b)

Observe that each identity in {(F), (6), ρr} is formed by a pair of words with the same initial part. Therefore, since the
identity uq(r) ≈ u′q(r) is deduced from the identities {(F), (6), ρr}, it follows that
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Finite basis problem for 2-testable monoids

(c) ini (u′) = ini (u) = ini (v).

By Lemma 2.2(i), the variety A1
0 satisfies the identities {(F), (6), ρr} so that

(d) A1
0 � u′ ≈ u ≈ v.

Now since t (u′) = y = t (v), it follows from (c), (d), and Lemma 5.4(i) that the deduction (6)  u′ ≈ v holds; this deduction,
together with the deduction ρr  (6) in Lemma 5.3(ii), imply that

C1
0
{
(6), u′q(r) ≈ vq(r), ρr

}
= C1

0 {ρr}. (9c)

The result is now obtained by combining (9a), (9b), and (9c).

(ii) This is symmetrical to part (i).

Lemma 5.6.
Let u ≈ v be any quadratic, connected identity of the variety A1

0 such that con (uv)∩ con
(
p(`)q(r)

)
= ∅ for some `, r ∈ N?.

(i) If h (u) = h (v) and t (u) 6= t (v), then C1
0
{
(6), (7), uq(r) ≈ vq(r)

}
= C1

0 {(7), ρr}.

(ii) If h (u) 6= h (v) and t (u) = t (v), then C1
0
{
(6), (7), p(`)u ≈ p(`)v

}
= C1

0 {(6), λ`}.

(iii) If h (u) 6= h (v) and t (u) 6= t (v), then C1
0
{
(6), (7), p(`)uq(r) ≈ p(`)vq(r)

}
= C1

0 {λ` , ρr}.

Proof. (i) Suppose that h (u) = h (v) and t (u) = x 6= y = t (v). Since con (u) = con (v) by Lemma 4.1(iii), it follows
from Lemma 2.2(i) that the identity u ≈ v does not delete to any identity in {(2), (3)}. Hence

u = axbycx and v = dyexfy

for some a, b, c, d, e, f ∈ X∗ with y ∈ con (ab) \ con (c) and x ∈ con (de) \ con (f). The deduction uq(r) ≈ vq(r)  ρr can be
obtained by following the proof of Lemma 5.5(i). Hence

C1
0
{
(6), (7), uq(r) ≈ vq(r)

}
= C1

0
{
(6), (7), uq(r) ≈ vq(r), ρr

}
. (10a)

The deduction {(6), ρr}  uq(r) ≈ u′q(r), where u′ = axbcxy, can also be obtained by following the proof of Lemma 5.5(i).
Hence

C1
0
{
(6), (7), uq(r) ≈ vq(r), ρr

}
= C1

0
{
(6), (7), u′q(r) ≈ vq(r), ρr

}
. (10b)

Now since u′ ≈ v is a quadratic, connected identity of the variety A1
0 such that h (u′) = h (v) and t (u′) = t (v), the

deduction {(6), (7)}  u′ ≈ v holds by Lemma 5.4(iii). Further, the deduction ρr  (6) holds by Lemma 5.3(ii). Therefore

C1
0
{
(6), (7), u′q(r) ≈ vq(r), ρr

}
= C1

0 {(7), ρr}. (10c)

The result is now obtained by combining (10a), (10b), and (10c).

(ii) This is symmetrical to part (i).

(iii) This can be established with slight modifications to arguments in the proofs of parts (i) and (ii). But complete details
are given here for the sake of clarity, since some details of the proof of part (i) were omitted due to similarities with the
proof of Lemma 5.5(i).

Suppose that h (u) = x 6= y = h (v) and t (u) = z 6= t = t (v). Since con (u) = con (v) by Lemma 4.1(iii), it follows from
Lemma 2.2(i) that the identity u ≈ v does not delete to any identity in {(2), (3)}. The assumption h (u) = x 6= y = h (v)
implies that

u = xa1yb1xc1 and v = ya2xb2yc2
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for some ai, bi, ci ∈ X∗ with y ∈ con (b1c1) \ con (a1) and x ∈ con (b2c2) \ con (a2). The assumption t (u) = z 6= t = t (v)
implies that

u = d1ze1tf1z and v = d2te2zf2t

for some di, ei, fi ∈ X∗ with t ∈ con (d1e1) \ con (f1) and z ∈ con (d2e2) \ con (f2). Let φ be the substitution h 7→ x
for all h ∈ con (uq(r)) \ {x, y}. Then

((
p(`)uq(r)

)
φ
)
yx

(F)
≈ p(`)xy2x and

((
p(`)vq(r)

)
φ
)
yx

(F)
≈ p(`)yxyx imply the deduction

p(`)uq(r) ≈ p(`)vq(r)  λ` . Let χ be the substitution h 7→ z for all h ∈ con
(
p(`)u

)
\{z, t}. Then zt

((
p(`)uq(r)

)
χ
) (F)
≈ zt2z q(r)

and zt
((

p(`)vq(r)
)
χ
) (F)
≈ ztzt q(r) imply the deduction p(`)uq(r) ≈ p(`)vq(r)  ρr . Hence

C1
0
{
(6), (7), p(`)uq(r) ≈ p(`)vq(r)

}
= C1

0
{
(6), (7), p(`)uq(r) ≈ p(`)vq(r), λ` , ρr

}
. (11a)

Consider the word u written in the form u = xa1yb1xc1 above. Note that

(a) if some simple letter h of the word u belongs to the factor a1, then the identity u ≈ v deletes to the identity
hy2 ≈ w for some w ∈ {yhy, y2h};

(b) if both occurrences of some non-simple letter h of the word u belong to the factor a1, then the identity u ≈ v
deletes to the identity h2y2 ≈ w for some w ∈

{
yh2y, yhyh, y2h2}.

In both (a) and (b), the identity u ≈ v deletes to some identity from {(2), (3)}, contradicting an earlier observation. Thus
neither (a) nor (b) is possible, whence each letter in the factor a1 is the first occurrence of some non-simple letter of the
quadratic word u, that is, each letter in a1 has a second occurrence somewhere in b1 or c1. Therefore

p(`)uq(r)
(F)
≈ p(`)

(
xa1y2a1x

)
b1xc1q(r)

(7)
≈ p(`)xya1ya1xb1xc1q(r)

(F)
≈
(
p(`)xy2x

)
a1b1xc1q(r)

λ`≈ p(`)yxyxa1b1xc1q(r)
(F)
≈ p(`)yxa1b1xc1q(r) = p(`)u′q(r),

that is, the deduction
{(7), λ`}  p(`)uq(r) ≈ p(`)u′q(r) (11b)

holds where u′ = yxa1b1xc1 is a connected word such that h (u′) = h (v) and t (u′) = t (u). Now consider the word v
written in the form v = d2te2zf2t above. By a symmetrical argument, the deduction

{(6), λ`}  p(`)vq(r) ≈ p(`)v′q(r) (11c)

is obtained where v′ = d2te2f2tz is a connected word such that h (v′) = h (v) and t (v′) = t (u). It follows from (11a), (11b)
and (11c) that

C1
0
{
(6), (7), p(`)uq(r) ≈ p(`)vq(r)

}
= C1

0
{
(6), (7), p(`)u′q(r) ≈ p(`)v′q(r), λ` , ρr

}
. (11d)

Since u′ ≈ v′ is a quadratic, connected identity of A1
0 with h (u′) = h (v′) and t (u′) = t (v′), the deduction {(6), (7)}  u′ ≈ v′

holds by Lemma 5.4(iii); this deduction, together with the deduction {λ` , ρr}  {(6), (7)} in Lemma 5.3, imply that

C1
0
{
(6), (7), p(`)u′q(r) ≈ p(`)v′q(r), λ` , ρr

}
= C1

0 {λ` , ρr}. (11e)

The result is now obtained by combining (11d) and (11e).

Lemma 5.7.
Let σ : p(`)uq(r) ≈ p(`)vq(r) be the identity (4) that satisfies conditions (1†)–(6†) in Lemma 4.2. Suppose that the variety
A1

0 satisfies the identity σ . Then C1
0 {σ} = C1

0 (Σ1 ∪ Σ2) for some Σ1 ⊆ {(6), (7)} and some Σ2 ⊆ {λ` , ρr}.
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Proof. Since A1
0 is a monoid, it follows from condition (3†) of Lemma 4.2 that the variety A1

0 also satisfies the identity
u ≈ v. There are four cases determined by the conditions ini (u) = ini (v) and fin (u) = fin (v).

Case 1: ini (u) = ini (v) and fin (u) = fin (v). By Lemma 2.1, the identity σ is satisfied by the monoids L1
2 and R1

2 . Since
C1

0 = A1
0 ∨ L1

2 ∨ R1
2 by Lemma 3.2, the identity σ is also satisfied by the variety C1

0. Hence C1
0 {σ} = C1

0.

Case 2: ini (u) = ini (v) and fin (u) 6= fin (v). Since h (u) = h (v), it follows from condition (5†) of Lemma 4.2 that the
identity σ is uq(r) ≈ vq(r). By Lemma 2.1(ii), the identity σ is not satisfied by the monoid R1

2 . Hence

(a) C1
0 {σ} = C1

0
{
(6), uq(r) ≈ vq(r)

}

by Lemma 5.2(i). If t (u) 6= t (v), then C1
0 {σ}

(a)
= C1

0
{
(6), uq(r) ≈ vq(r)

}
= C1

0 {ρr} by Lemma 5.5(i). If t (u) = t (v), then the

identity σ is u ≈ v by condition (6†) of Lemma 4.2, whence C1
0 {σ}

(a)
= C1

0 {(6), u ≈ v} = C1
0 (6) by Lemma 5.4(i).

Case 3: ini (u) 6= ini (v) and fin (u) = fin (v). By an argument that is symmetrical to Case 2, the variety C1
0 {σ} is either

C1
0 {λ`} or C1

0 (7).

Case 4: ini (u) 6= ini (v) and fin (u) 6= fin (v). Then

(b) C1
0 {σ} = C1

0
{
(6), (7), p(`)uq(r) ≈ p(`)vq(r)

}

by Lemmas 2.1 and 5.2. There are four subcases determined by the conditions h (u) = h (v) and t (u) = t (v).

4.1: h (u) = h (v) and t (u) = t (v). Then the identity σ is u ≈ v by conditions (5†) and (6†) in Lemma 4.2. Hence
C1

0 {σ}
(b)
= C1

0 {(6), (7), u ≈ v} = C1
0 {(6), (7)} by Lemma 5.4(iii).

4.2: h (u) = h (v) and t (u) 6= t (v). Then the identity σ is uq(r) ≈ vq(r) by conditions (5†) in Lemma 4.2. Hence

C1
0 {σ}

(b)
= C1

0
{
(6), (7), uq(r) ≈ vq(r)

}
= C1

0 {(7), ρr} by Lemma 5.6(i).

4.3: h (u) 6= h (v) and t (u) = t (v). This is symmetrical to Subcase 4.2 so that C1
0 {σ} = C1

0 {(6), λ`}.

4.4: h (u) 6= h (v) and t (u) 6= t (v). Then C1
0 {σ}

(b)
= C1

0
{
(6), (7), p(`)uq(r) ≈ p(`)vq(r)

}
= C1

0 {λ` , ρr} by Lemma 5.6(iii).

Proposition 5.8.
Any variety in the interval

[
A1

0,C1
0
]

is finitely based.

Proof. Let V be any variety in the interval
[
A1

0,C1
0
]
. Then V = C1

0 Σ for some set Σ of identities of the variety A1
0 .

By Lemma 4.2, the identities in the set Σ can be chosen to be of the form (4) that satisfy conditions (1†)–(6†).

Let σ : p(`)uq(r) ≈ p(`)vq(r) be any identity from the set Σ. By condition (3†) of Lemma 4.2, the variety A1
0 satisfies

the identity u ≈ v. Then it follows from Lemma 5.7 that C1
0 {σ} = C1

0 (Σσ1 ∪ Σσ2 ) for some Σσ1 ⊆ {(6), (7)} and some
Σσ2 ⊆ {λ` , ρr}. Since the identity σ is arbitrarily chosen from the set Σ, repeating the same argument on every identity
in Σ yields C1

0 Σ = C1
0 (Σ1 ∪ Σ2) for some Σ1 ⊆ {(6), (7)} and some Σ2 ⊆ {λn, ρn | n ∈ N?}. It follows from Lemma 5.3

that V = C1
0 (Σ1 ∪ Σ′2) for some finite subset Σ′2 of Σ2.

5.2. Varieties in
[
A0 ∨ B1

0,C1
0
]

not containing A1
0

The main result of this subsection, Proposition 5.12, establishes the finite basis property of every variety in the interval[
A0 ∨ B1

0,C1
0
]

that does not contain the variety A1
0 .

Lemma 5.9.
Let V be any subvariety of C1

0 such that A1
0 /∈ V. Then the variety V satisfies the identity

hxyxyh ≈ hx2y2h. (12)
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Proof. It follows from Torlopova [21] that the identity xyxy ≈ x2y2 defines the subvariety of C1
0 that is largest with

respect to not containing the semigroup A0. Suppose that A1
0 /∈ V. Let φ be the substitution z 7→ h2zh2 for all z ∈ X .

Then it follows from Lee [8, Theorem 2] that the variety V satisfies the identity (xyxy)φ ≈ (x2y2)φ. It is easy to deduce
that the variety V also satisfies the identity (12).

Let x and y be any distinct non-simple letters of a quadratic word w. If w ∈ X∗xX∗xyX∗yX∗, then x and y form a
standoff pair in w. A quadratic word with no standoff pairs is said to be peaceful.

Lemma 5.10.
Let w be any connected, quadratic word. Then the deduction (12)  w ≈ wπ holds for some peaceful, connected,
quadratic word wπ .

Proof. Suppose that the letters x and y form a standoff pair in w. Then w = axbxycyd for some a, b, c, d ∈ X∗.
Since the word w is connected, its factors axbx and ycyd share some common letter h. Further, the word w is quadratic
so that the letter h is neither x nor y. Therefore

w
(F)
≈ axbhx2y2hcyd

(12)
≈ axbhxyxyhcyd

(F)
≈ axbyxcyd = wx,y,

that is, the identities {(F), (12)} can be used to convert the word w into a word wx,y in which the letters x and y no
longer form a standoff pair. In other words, the identities {(F), (12)} reconciled the standoff pair x and y. Observe that
in the process of reconciliating a standoff pair x and y,

• the distance between the two occurrences of x is increased by one;

• the distance between the two occurrences of y is increased by one;

• the distance between the two occurrences of any other non-simple letter remains unchanged.

Therefore the separation degree of the resulting word wx,y is at least two greater than the separation degree of w. It is
easy to see that the word wx,y is connected and quadratic such that w $ wx,y.

There are at most |w|! words that are $-related to the word w. Among all these |w|! words, one must possess the greatest
possible separation degree, say d. By the above observations, the process of reconciliation can only be repeated on w
at most bd/2c times. When no more reconciliation can be performed, the word is then the required peaceful, connected,
quadratic word wπ .

Lemma 5.11.
Let u and v be peaceful, connected, quadratic words such that the identity u ≈ v does not delete to any identity in (2).
Then the identity u ≈ v does not delete to any identity in (3).

Proof. Working toward a contradiction, suppose that the identity u ≈ v deletes to some identity in (3). By symmetry,
it suffices to assume that the identity u ≈ v deletes to one of the following identities: xy2x ≈ x2y2, xyxy ≈ x2y2,
yxyx ≈ x2y2, and y2x2 ≈ x2y2. Hence the word u is either

axbycydxe or axbycxdye or aybxcydxe or aybycxdxe

for some a, b, c, d, e ∈ X∗ with x, y /∈ con (abcde), and

v = a′xb′xc′yd′ye′

for some a′, b′, c′, d′, e′ ∈ X∗ with x, y /∈ con (a′b′c′d′e′). If c′ = ∅, then the letters x and y form a standoff pair in the
word v. If c′ 6= ∅ and every letter in the factor c′ is non-simple in the word v, then v contains some standoff pair. If
c′ 6= ∅ and some letter in the factor c′ is simple in the word v, then it is easy to show that the identity u ≈ v deletes to
some identity in (2).
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Proposition 5.12.
Any variety in the interval

[
A0 ∨ B1

0,C1
0
]

that does not contain the variety A1
0 is finitely based.

Proof. Let V be any variety in the interval
[
A0 ∨ B1

0,C1
0
]

such that A1
0 * V. Then it follows from Lemma 5.9 that

V = C1
0 ((12) ∪ Σ) for some set Σ of identities of the variety A0 ∨ B1

0. By Lemma 4.2, the identities in the set Σ can be
chosen to be of the form (4) that satisfy conditions (1†)–(6†).

Let σ : p(`)uq(r) ≈ p(`)vq(r) be any identity from the set Σ. By condition (3†) of Lemma 4.2,

(a) B1
0 � u ≈ v.

Since the words u and v are connected and quadratic by condition (2†) of Lemma 4.2, it follows from Lemma 5.10 that
the deduction

(b) (12)  {u ≈ uπ , v ≈ vπ}

holds for some peaceful, connected, quadratic words uπ and vπ . Hence

(c) C1
0 {(12), σ} = C1

0 {(12), σπ}

where σπ is the identity p(`)uπq(r) ≈ p(`)vπq(r). By Lemma 2.2(ii), the variety B1
0 satisfies the identity (12). Therefore it

follows from (a) and (b) that the variety B1
0 satisfies the identity uπ ≈ vπ , whence by Lemma 2.2(ii), the identity uπ ≈ vπ

does not delete to any identity in (2). By Lemma 5.11, the identity uπ ≈ vπ also does not delete to any identity in (3).
Hence by Lemma 2.2(i), the variety A1

0 satisfies the identity uπ ≈ vπ so that

(d) A1
0 � σπ .

Since the identity σ is arbitrarily chosen from the set Σ, the construction of σπ from σ can be repeated on every
other identity in Σ to obtain the set Σπ = {σπ | σ ∈ Σ} where each identity in Σπ satisfies (c) and (d). Now
the variety C1

0 Σπ belongs to the interval
[
A1

0,C1
0
]

and so is finitely based by Proposition 5.8. Therefore the variety

V = C1
0 ((12) ∪ Σ)

(c)
= C1

0 (12) ∩ C1
0 Σπ is also finitely based.

6. Proof of Theorem 3.3: subvarieties not containing A0 ∨ B1
0

Proposition 6.1.
Any subvariety of C1

0 that does not contain the variety A0 ∨ B1
0 is finitely based.

Proof. Let V be any subvariety of C1
0 that does not contain the variety A0 ∨B1

0. Then there are two cases depending
on whether A0 * V or B1

0 * V.

Case 1: A0 * V. Then the variety V satisfies the identity xyxy ≈ x2y2, since this identity defines the subvariety of C1
0

that is largest with respect to not containing the semigroup A0 [21]. Any variety that satisfies the identities (F) and
xyxy ≈ x2y2 is finitely based [28, Chapter 3]; see also Luo and Zhang [17].

Case 2: A0 ⊆ V and B1
0 * V. There are two subcases depending on whether or not the variety V contains the subvariety

N1
2 of B1

0.

2.1: N1
2 ⊆ V. Then V ∈

[
A0 ∨N1

2,C1
0
]

and B1
0 * V, and V is shown to be finitely based in Subsection 6.1.

2.2: N1
2 * V. Then V ∈

[
A0,C1

0
]

and N1
2 * V, and V is shown to be finitely based in Subsection 6.2.

Lemma 6.2.
Suppose that the identity u ≈ v deletes to the identity u′ ≈ v′. Then the deduction u ≈ v  hu′h ≈ hv′h holds.
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Proof. Suppose that the identity u′ ≈ v′ is obtained from the identity u ≈ v by removing all occurrences of the letters
x1, . . . , xr . Denote by φ the substitution xi 7→ h for all i ∈ {1, . . . , r}. Then

u ≈ v  hu′h
(F)
≈ h(uφ)h ≈ h(vφ)h

(F)
≈ hv′h ` hu′h ≈ hv′h.

6.1. Varieties in
[
A0 ∨N1

2,C1
0
]

not containing B1
0.

The main result of this subsection, Proposition 6.8, establishes the finite basis property of every variety in the interval[
A0 ∨N1

2,C1
0
]

that does not contain the variety B1
0.

Lemma 6.3.
Let V be any variety in the interval

[
A0 ∨N1

2,C1
0
]

such that B1
0 /∈ V. Then the variety V satisfies one of the following

identities:

hxyxh ≈ hx2yh, (13)
hxyxh ≈ hyx2h, (14)
hx2yh ≈ hyx2h, (15)
hxyh ≈ hyxh. (16)

Proof. By assumption, some identity σ of the variety V is not satisfied by the monoid B1
0; by Remark 2.4, this identity

can be chosen to be quadratic. By Lemmas 2.1(iii) and 2.2, the identity σ deletes to one of the identities from (2) except
x2 ≈ x. The result now follows from Lemma 6.2.

The following small semigroups are required in the proof of the next lemma:

I =
〈
a, b

∣∣a2 = ba = 0, ab = a, b2 = b
〉
,

J =
〈
a, b

∣∣a2 = ab = 0, ba = a, b2 = b
〉
,

K =
〈
a, b

∣∣a2 = b2 = ba = 0
〉
.

More information on the monoids I1, J1, and K 1 can be found in Lee [10, Section 1.3].

Lemma 6.4.
The varieties C1

0 (13), C1
0 (14), C1

0 (15), and C1
0 (16) constitute the following subsemilattice of the lattice of all semigroup

varieties:

s sss@
@
�
�

C1
0 (13) C1

0 (14)

C1
0 (15)

C1
0 (16)

Proof. The inclusion C1
0 (15) ⊆ C1

0 (13) holds since

(15)  hxyxh
(F)
≈ hx(hyx2h)

(15)
≈ hxhx2yh

(F)
≈ hx2yh ` (13).

By symmetry, the inclusion C1
0 (15) ⊆ C1

0 (14) also holds. It is easy to verify that the inclusion C1
0 (16) ⊆ C1

0 (15) and
the intersection C1

0 (13) ∩ C1
0 (14) = C1

0 (15) hold. The varieties C1
0 (13), C1

0 (14), C1
0 (15), and C1

0 (16) are distinct because
I1 ∈ C1

0 (13) \ C1
0 (15), J1 ∈ C1

0 (14) \ C1
0 (15), and K 1 ∈ C1

0 (15) \ C1
0 (16).
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Corollary 6.5.
Let V be any variety in the interval

[
A0 ∨ N1

2,C1
0
]

such that B1
0 /∈ V. Then precisely one of the following conditions

holds:

• V ⊆ C1
0 (13) and V * C1

0 (14);

• V * C1
0 (13) and V ⊆ C1

0 (14);

• V ⊆ C1
0 (15) and V * C1

0 (16);

• V ⊆ C1
0 (16).

Proof. This follows from Lemmas 6.3 and 6.4.

Let x be any non-simple letter in a quadratic word w, say

w = w1xw2xw3 (17)

for some w1,w2,w3 ∈ X∗ such that x /∈ con (w1w2w3). Then the letter x is said to be left-disciplined in the word w if
either w1 = ∅ or the letter t (w1) is the first occurrence of some non-simple letter in w. A non-simple, quadratic word
is said to be left-disciplined if all its non-simple letters are left-disciplined in it. Equivalently, a non-simple, quadratic
word w is left-disciplined if and only if the first occurrences of non-simple letters in w form a prefix of w.

Similarly, the letter x in (17) is said to be right-disciplined in the word w if either w3 = ∅ or the letter h (w3) is the
second occurrence of some non-simple letter in w. A non-simple, quadratic word is said to be right-disciplined if all its
non-simple letters are right-disciplined in it. Equivalently, a non-simple, quadratic word w is right-disciplined if and
only if the second occurrences of non-simple letters in w form a suffix of w.

A word that is both left-disciplined and right-disciplined is said to be disciplined. Equivalently, a disciplined word w is
non-simple, quadratic, and of the form

w = hw′t, (18)

where the prefix h consists of all first occurrences of non-simple letters in w, the suffix t consists of all second occurrences
of non-simple letters in w, and the factor w′ consists of all simple letters of w. Note that a disciplined word is necessarily
connected and peaceful. The disciplined word w in (18) is said to be well-disciplined if the letters in the factor w′ are
in alphabetical order.

Lemma 6.6.
Let w be any quadratic, connected word.

(i) The deduction (13)  w ≈ wδ holds for some right-disciplined, quadratic, connected word wδ .

(ii) The deduction (14)  w ≈ wδ holds for some left-disciplined, quadratic, connected word wδ .

(iii) The deduction (15)  w ≈ wδ holds for some disciplined, quadratic, connected word wδ .

(iv) The deduction (16)  w ≈ wδ holds for some well-disciplined, quadratic, connected word wδ .

Further, the relation w $ wδ holds in each of (i)–(iv).

Proof. (i) Let w be any quadratic word and let x be any non-simple letter in w that is not right-disciplined. Then
w = w1xw2xw3 for some w1,w2,w3 ∈ X∗ such that the letter y = h (w3) is either

(a) simple in w, or

(b) the first occurrence of some non-simple letter in w.

18

Brought to you by | Nova Southeastern University
Authenticated

Download Date | 2/27/17 11:46 PM



E.W.H. Lee

Hence w = w1xw2xyw′3 for some word w′3. In both cases (a) and (b), the letter y does not belong to the prefix w1xw2x.
The connectedness of w implies the existence of a letter h that is common to both w1xw2x and yw′3. Since the word w
is quadratic, the letter h is distinct from x and y. Hence

w
(F)
≈ w1xw2(hx2yh)w′3

(13)
≈ w1xw2hxyxhw′3

(F)
≈ w1xw2yxw′3,

that is, the identities {(F), (13)} can be used to interchange the second occurrence of x with the first letter y of w3.
Note that in this interchanging process,

• the distance between the two occurrences of x is increased by one;

• if y is non-simple, then the distance between the two occurrences of y is increased by one;

• the distance between the two occurrences of any other non-simple letter remains unchanged;

• the resulting word is connected and is $-related to w.

It is easy to see that the aforementioned process can be repeated on any letter that is not right-disciplined until it is
right-disciplined. There are at most |w|! words $-related to the word w. Among all these |w|! words, one must possess
the greatest possible separation degree, say d. Hence the process of interchanging can only be repeated on w at most
d times. The resulting word wδ is then right-disciplined, connected, and quadratic such that w $ wδ .

(ii) This is symmetrical to part (i).

(iii) By parts (i) and (ii), the deduction {(13), (14)}  w ≈ wδ holds for some quadratic, connected word wδ that is both
left-disciplined and right-disciplined. The result now follows since C1

0 (15) = C1
0 {(13), (14)} by Lemma 6.4.

(iv) Since the deduction (16)  (15) holds by Lemma 6.4, it follows from part (iii) that the word w can be chosen to be
disciplined, quadratic, and connected to begin with, say w = hw′t is the word in (18). Since w is a connected word, it
contains some non-simple letter h; this letter is clearly common to both the factors h and t. Let x and y be any two
consecutive letters in w′, say w′ = w1xyw2 for some w1,w2 ∈ X∗. Since

w
(F)
≈ hw1(hxyh)w2t

(16)
≈ hw1hyxhw2t

(F)
≈ hw1yxw2t,

the identities {(F), (16)} can be used to interchange the letters x and y. It is easy to see how this can be repeated on
the letters of the factor w′ until a well-disciplined word is obtained.

Lemma 6.7.
Let σ : p(`)uq(r) ≈ p(`)vq(r) be the identity (4) that satisfies conditions (1†)–(6†) in Lemma 4.2. Suppose that the identity
σ is satisfied by the variety A0 ∨N1

2 but not by the variety B1
0. Then C1

0 {σ} = C1
0 {θ, σ ′} for some identity θ from

{(13), (14), (15), (16)} and some identity σ ′ of the variety A0 ∨ B1
0.

Proof. By condition (3†) of Lemma 4.2, the variety N1
2 satisfies the identity u ≈ v. It follows from Lemma 2.1(iii) that

(a) the identity σ does not delete to the identity x2 ≈ x.

Let V = C1
0 {σ}. Then the variety V satisfies one of the four conditions in Corollary 6.5.

Case 1: V ⊆ C1
0 (13) and V * C1

0 (14). Then V = C1
0 {(13), σ} and σ 1 (14). By Lemma 6.6(i), the deduction

(13)  {u ≈ uδ , v ≈ vδ} holds for some right-disciplined, quadratic, connected words uδ and vδ such that u $ uδ and
v $ vδ . Hence V = C1

0 {(13), σ ′} where σ ′ is the identity p(`)uδq(r) ≈ p(`)vδq(r). By Lemma 4.1(iii), the identity σ ′ is
satisfied by the variety A0. Since u $ uδ and v $ vδ , it follows from (a) that

(b) the identity σ ′ does not delete to the identity x2 ≈ x.
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Recall that in a right-disciplined word w, the second occurrences of non-simple letters of w form a suffix. Specifically, a
right-disciplined word w cannot be of the form axbxcyd where y is a simple letter in w. Therefore, since uδ and vδ are
right-disciplined words,

(c) the identity σ ′ does not delete to any identity in
{
xyx ≈ x2y, x2y ≈ yx2}.

Suppose that the identity σ ′ deletes to some identity in
{
xy ≈ yx, xyx ≈ yx2}. Then by Lemma 6.2, either the

deduction σ ′  (16) or the deduction σ ′  (14) holds. It then follows from Lemma 6.4 that the inclusion V ⊆ C1
0 (14)

holds, contradicting the assumption of the present case. Therefore the identity σ ′ does not delete to any identity in{
xy ≈ yx, xyx ≈ yx2}. In the presence of (b), (c), and Lemma 2.2(ii), the identity σ ′ is satisfied by the variety B1

0.

Case 2: V * C1
0 (13) and V ⊆ C1

0 (14). It follows from an argument symmetrical to Case 1 that V = C1
0 {(14), σ ′} for some

identity σ ′ of the variety B1
0.

Case 3: V ⊆ C1
0 (15) and V * C1

0 (16). Then V = C1
0 {(15), σ} and σ 1 (16). By Lemma 6.6(iii), the deduction

(15)  {u ≈ uδ , v ≈ vδ} holds for some disciplined, quadratic, connected words uδ and vδ such that u $ uδ and v $ vδ .
Hence V = C1

0 {(15), σ ′} where σ ′ is the identity p(`)uδq(r) ≈ p(`)vδq(r). By Lemma 4.1(iii), the identity σ ′ is satisfied by
the variety A0. Since u $ uδ and v $ vδ , it follows from (a) that

(d) the identity σ ′ does not delete to the identity x2 ≈ x.

A disciplined word w cannot be of the form axbxcyd or aybxcxd where y is a simple letter in w. Therefore, since uδ
and vδ are disciplined words,

(e) the identity σ ′ does not delete to any identity in
{
xyx ≈ x2y, xyx ≈ yx2, x2y ≈ yx2}.

Suppose that the identity σ ′ deletes to the identity xy ≈ yx. Then the deduction σ ′  (16) holds by Lemma 6.2. It
follows that the inclusion V ⊆ C1

0 (16) holds, contradicting the assumption of the present case. Therefore the identity σ ′
does not delete to the identity xy ≈ yx. In the presence of (d), (e), and Lemma 2.2(ii), the identity σ ′ is satisfied by the
variety B1

0.

Case 4: V ⊆ C1
0 (16). Then V = C1

0 {(16), σ}. By Lemma 6.6(iv), the deduction (16)  {u ≈ uδ , v ≈ vδ} holds for some
well-disciplined, quadratic, connected words uδ and vδ such that u $ uδ and v $ vδ . Therefore V = C1

0 {(16), σ ′} where
σ ′ is the identity p(`)uδq(r) ≈ p(`)vδq(r). By Lemma 4.1(iii), the identity σ ′ is satisfied by the variety A0. Since u $ uδ and
v $ vδ , it follows from (a) that the identity σ ′ does not delete to the identity x2 ≈ x. Since uδ and vδ are well-disciplined
words, the identity does not delete to any identity from (2). Hence by Lemma 2.2(ii), the identity σ ′ is satisfied by the
variety B1

0.

Proposition 6.8.
Let V be any variety in the interval

[
A0 ∨N1

2,C1
0
]

such that B1
0 /∈ V. Then the variety V is finitely based.

Proof. By assumption, V = C1
0 Σ for some set Σ of identities of the variety A0 ∨ N1

2. By Lemma 4.2, the identities
in the set Σ can be chosen to be of the form (4) that satisfy conditions (1†)–(6†). Let Σ = Σ0 ∪ Σ1 where Σ1 is the
set of all identities from Σ that are satisfied by the variety B1

0 and Σ0 = Σ \ Σ1. Then it follows from Lemma 6.7 that
C1

0 Σ0 = C1
0 (Θ ∪ Σ′0) for some set Θ of identities from {(13), (14), (15), (16)} and some set Σ′0 of identities of the variety

A0 ∨ B1
0. Since the identities in Σ′0 and Σ1 are satisfied by the variety A0 ∨ B1

0, the variety C1
0 (Σ′0 ∪ Σ1) belongs to the

interval
[
A0 ∨ B1

0,C1
0
]

and is finitely based by Proposition 5.1. Consequently, the variety V = C1
0 Θ ∩ C1

0 (Σ′0 ∪ Σ1) is
finitely based.

6.2. Varieties in
[
A0,C1

0
]

not containing N1
2.

The main result of this subsection, Proposition 6.11, establishes the finite basis property of every variety in the interval[
A0,C1

0
]

that does not contain the variety N1
2.
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Lemma 6.9.
Let V be any variety in the interval

[
A0,C1

0
]
. If N1

2 /∈ V, then the variety V satisfies the identity

hx2h ≈ hxh. (19)

Proof. By Remark 2.4 and Lemmas 2.1(iii) and 4.1, the variety V satisfies some quadratic identity u ≈ v such that
con (u) = con (v) and u 6$ v. Then the identity u ≈ v deletes to the identity x2 ≈ x. By Lemma 6.2, the variety V satisfies
the identity (19).

Lemma 6.10.
Let σ : p(`)uq(r) ≈ p(`)vq(r) be the identity (4) that satisfies conditions (1†)–(6†) in Lemma 4.2. Suppose that the identity
σ is not satisfied by the variety N1

2. Then C1
0 {σ} = C1

0 {(19), σ ′} for some identity σ ′ of the variety A0 ∨N1
2.

Proof. It follows from Lemma 6.9 that C1
0 {σ} = C1

0 {(19), σ}. Note that if x is any simple letter in the connected word
u, say u = u1xu2 where the factors u1 and u2 share some common letter h, then

u
(F)
≈ u1(hxh)u2

(19)
≈ u1hx2hu2

(F)
≈ u1x2u2.

Similarly, the identities {(F), (19)} can be used to replace any simple letter x in v by x2. Let u′ and v′ be the words
obtained from the words u and v by replacing every simple letter x by x2, and let σ ′ be the identity p(`)u′q(r) ≈ p(`)v′q(r).
Then C1

0 {σ} = C1
0 {(19), σ} = C1

0
{
(19), σ ′

}
. By conditions (2†) and (4†) of Lemma 4.2, the identity u ≈ v is satisfied by

the variety A0 and the words u and v are connected. Clearly u′ and v′ are connected, quadratic words that contain no
simple letters. By Lemmas 2.1(iii) and 4.1, the identity u′ ≈ v′ is satisfied by the variety A0 ∨N1

2. Therefore the identity
σ ′ is also satisfied by the variety A0 ∨N1

2.

Proposition 6.11.
Let V be any variety in the interval

[
A0,C1

0
]

such that N1
2 /∈ V. Then the variety V is finitely based.

Proof. It follows from Lemma 6.9 that V = C1
0 ((19) ∪ Σ) for some set Σ of identities of the variety A0. By Lemma 4.2,

the identities in the set Σ can be chosen to be of the form (4) with conditions (1†)–(6†). Let Σ = Σ0 ∪Σ1 where Σ1 is the
set of all identities from Σ that are satisfied by the variety N1

2 and Σ0 = Σ \ Σ1. Then it follows from Lemma 6.10 that
C1

0 ((19) ∪ Σ0) = C1
0 ((19) ∪ Σ′0) for some set Σ′0 of identities of the variety A0 ∨N1

2. Since the identities in Σ′0 and Σ1 are
satisfied by the variety A0 ∨N1

2, the variety V′ = C1
0 (Σ′0 ∪ Σ1) belongs to the interval

[
A0 ∨N1

2,C1
0
]
. If B1

0 /∈ V′, then
the variety V′ is finitely based by Proposition 6.8. If B1

0 ∈ V′, then the variety V′ is finitely based by Proposition 5.1.
In any case, the variety V = C1

0 (19) ∩ V′ is finitely based.
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