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We derive upper bounds on the rate of transmission of classical information over quan-
tum channels by block codes with a given blocklength and error probability, for both
entanglement-assisted and unassisted codes, in terms of a unifying framework of quantum
hypothesis testing with restricted measurements. Our bounds do not depend on any special
property of the channel (such as memorylessness) and generalise both a classical converse of
Polyanskiy, Poor, and Verdú as well as a quantum converse of Renner and Wang, and have
a number of desirable properties. In particular our bound on entanglement-assisted codes
is a semidefinite program and for memoryless channels its large n limit is the well known
formula for entanglement-assisted capacity due to Bennett, Shor, Smolin and Thapliyal.

This work is concerned with the transmission of classical information over quantum channels
by means of block codes. This is a central subject of study in quantum information theory, and
the asymptotic rates of transmission for various types of code and channel in the large blocklength
limit are the subject of celebrated theorems and intriguing open problems.

A more fundamental problem, of both theoretical and practical interest, is to obtain upper (or
converse) and lower (or achievability) bounds on the optimal transmission rate for a given error
probability ε and finite blocklength n. This is the subject of a number of recent results in quantum
information [1–3] and remains an active topic of research in classical information [4, 5]. As Figure
1 illustrates, finite blocklength effects are substantial.

Here we present converse results for both entanglement-assisted and unassisted codes, in terms
of a quantum hypothesis testing problem with restricted measurements. This provides a unifying
framework which generalises an important classical result of Polyanskiy, Poor and Verdú [4] and
includes an existing quantum converse of Wang and Renner [2].
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FIG. 1: Our upper bound (1) on the rateR = (logME
ε (E⊗n))/n of entanglement-assisted codes of blocklength

n and error probability ε = 0.01, for the qubit depolarising channel EB|A[ρA] = (1 − p)ρA + p(11A)/2 with
p = 0.15. The red line marks the capacity of the channel (roughly 1.31 bits/channel use) as given by the
formula of Bennett, Shor, Smolin and Thapliyal [6].
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Given a channel use (or uses) represented by a completely positive trace preserving (CPTP)
map EB|A from states of a finite dimensional input system A to a finite dimensional output system
B, we denote by MC

ε (EB|A, ρA) the largest size of code in class C which, when the M messages are
eqiprobable, has average input state ρA and error probability ε (see Figure 2). The largest size of
any code in C with error probability ε is MC

ε (EB|A) = maxρA M
C
ε (EB|A, ρA). If C = E then the

codes can be entanglement-assisted; if it is omitted, we only allow unassisted codes.
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FIG. 2: In an entanglement-assisted code of block length of size M , the sender and receiver have systems
AE and BE in an entangled state ΨAEBE , and for each message w ∈ [M ] there is an encoding operation
represented by the CPTP map E(w)A|AE from AE to A. Following the use(s) of the channel, the decoder
performs a POVM DBBE on BBE to obtain the decoded message. An unassisted code can be viewed
as a degenerate case where the decoding measurement operates only on the channel output B. Since BE

is completely ignored, there is no loss of generality if we take BE and AE to be trivial, one-dimensional
systems. Then E(w) is completely specified by its constant output ρ(w)A on A. The average channel input
induced by the encoding for equiprobable messages is ρA = 1

M

∑M
w=1 ρ(w)A.

In [4] Polyanskiy, Poor and Verdú showed that many existing classical converse results can be
easily derived from a finite blocklength converse (heretofore, the ‘PPV converse’) which is obtained
by a simple and conceptually appealing argument relating coding to hypothesis testing on the joint
distribution of the channel input and channel output.

In [1] Wang and Renner independently gave a finite blocklength converse for coding over
classical-quantum (c-q) channels using a very similar idea. In fact, for (discrete) classical channels
their bound reduces to a particular restriction of the [4] converse. Their bound can be applied
to general quantum channels by optimising over the encoding of messages to input states. In [2]
Datta and Hsieh derive a finite blocklength converse for entanglement-assisted coding over quantum
channels in terms of smoothed min- and max-entropies. They complement their converse with an
one-shot achievability bound of a similar form, but it is not obvious how to compute either bound.
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FIG. 3: The quantum hypothesis testing problem which appears in our bounds.

Our key result is a generalisation of the PPV bound to quantum channels. As shown in Fig. 3
the hypotheses specify quantum states of a bipartite system ÃB, where B is the output system
of the channel and Ã is isomorphic to its input system. Defining a canonical purification of the

average input state ρA by ψÃA := ρ
1
2
AΦÃAρ

1
2
A, where ΦÃA :=

∑dA
i,j=1 |i〉Ã|i〉A〈j|Ã〈j|A, hypothesis H0
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is that ÃB is in the state [ρ; E ]ÃB := EB|A[ψÃA] obtained by acting on this purification with the
channel EB|A, whereas hypothesis H1 is that the state of system B has been replaced by σB.

We obtain converses for both entanglement-assisted and unassisted codes as a function of
the minimum type II error β := Pr(guess H0|H1, T ), for tests T which have type I error
α := Pr(guess H1|H0, T ) no greater than ε, and which can be implemented by operations in a
class Ω which depends on the class of codes:

DΩ
ε ([ρ; E ]ÃB‖ρ

∗
Ã
σB) = − log βΩ

ε ([ρ; E ]ÃB, ρ
∗
Ã
σB) = min

TÃB∈TΩ
{TrTÃBρ

∗
Ã
σB : TrTÃB[ρ; E ]ÃB ≥ 1− ε.}

The class ALL only demands that TÃB be a valid POVM element (0 ≤ TÃB ≤ 11). By generalising
the construction in [4] which takes codes for classical channels to classical hypothesis tests to a
construction which takes entanglement-assisted codes to quantum tests (i.e. POVM elements), we
show that logME

ε (EB|A, ρA) ≤ minσB Dε([ρ; E ]ÃB‖ρ
∗
Ã
σB), and hence

logME
ε (EB|A) ≤ max

ρA
min
σB

Dε([ρ; E ]ÃB‖ρ
∗
Ã
σB) (1)

(where the omission of the test class superscript means that it is ALL). When the channel is
classical this bound reduces to the PPV converse.

The class L of local tests corresponds operationally to those which can be implemented by
classical hypothesis testing on the joint outcome of local operations on the two subsystems (possibly
correlated by shared randomness). Since our construction is shown to take unassisted codes to local
tests, we obtain the bounds Mε(EB|A, ρA) ≤ minσB β

L
ε ([ρ; E ]ÃB, ρ

∗
Ã
σB) and

logMε(EB|A) ≤ max
ρA

min
σB

DL
ε ([ρ; E ]ÃB, ρ

∗
Ã
σB). (2)

The Wang-Renner bound is shown to be equivalent to making the (sometimes suboptimal [5])
choice σB = EB|A[ρA] and taking Ω to be the class of tests LC1 which can be implemented by local
measurements and one-way classical communication from Alice and Bob.

The bound (1) for entanglement-assisted codes has a number of desirable properties: (i) It is
asymptotically tight for memoryless channels. In common with the bound of Datta and Hsieh,
analysing the large block length behaviour of the bound for memoryless channels recovers the
converse part of the single-letter formula for entanglement-assisted capacity proven by Bennett,
Shor, Smolin and Thapliyal [6].

(ii) Generalising results of Polyanskiy [5] we show that βε([ρ; E ]ÃB‖ρ
∗
Ã
σB) is convex in ρA and

concave in σB. This enables one to use symmetries of the channel to restrict the optimisation
over ρA and σB to states with corresponding symmetries. (iii) Unlike the bound of Datta and
Hsieh, the bound (1) has an explicit formulation as semidefinite program (SDP) which is a natural
generalisation of the linear program (LP) given in [7] for the PPV converse. Combined with
property (ii), this allows it to be efficiently computed for highly symmetric channels, as we have
done for Figure 1.

Since the Wang-Renner bound is asymptotically tight for the unassisted capacity (and for the
product state capacity, thus recovering the HSW theorem) [3], the stronger bound (2) also has
these properties, but is otherwise less attractive, as it lacks an SDP formulation and does not
possess the convexity property mentioned above.

However, the formulation in terms of restricted hypothesis testing makes it clear that by moving
to less restrictive conditions on the test, we might obtain weaker, but more tractable bounds.

When Ω is LC1, or the larger class PPT of tests T whose partial transpose is a valid POVM
element, the convexity property does hold, as does the symmetrisation argument, and for PPT
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the bound is given by an SDP. It seems unlikely that the PPT bound is asymptotically tight, but
it might prove useful for certain channels.

To demonstrate the use of our bound on entanglement-assisted codes, we show how to evaluate
it exactly for depolarising channels. We also discuss the relationship of the work to existing results
on strong converse bounds for quantum channels, and to security proofs in the noisy-storage model.
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