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FINITE COMPLEX REFLECTION GROUPS

BY ARJEH M. COHEN

Introduction

In 1954 G. C. Shephard and J. A. Todd published a list of all finite irreducible complex
reflection groups (up to conjugacy). In their classification they separately studied the
imprimitive groups and the primitive groups. In the latter case they extensively used
the classification of finite collineation groups containing homologies as worked out by
G. Bagnera (1905), H. F. Blichfeldt (1905), and H. H. Mitchell (1914). Furthermore,
Shephard and Todd determined the degrees of the reflection groups, using the invariant
theory of the corresponding collineation groups in the primitive case. In 1967
H. S. M. Coxeter (cf, [6]) presented a number of graphs connected with complex reflection
groups in an attempt to systematize the results of Shephard and Todd.

This paper is another attempt to obtain a systematization of the same results. The
complex reflection groups are classified by means of new methods (without use of the
old literature). Furthermore, we give some new results concerning these groups.

Chapter 1 contains a number of familiar facts about reflection groups and is of a
preparatory nature.

Chapter 2 deals with the imprimitive case and contains a study of systems of
imprimitivity.

In Chapter 3 we look for all complex reflection groups among the finite subgroups
ofG^(C).

As to Chapter 4, inspired by Coxeter's "complex" graphs (see above) and by root
systems associated with real reflection groups, we define root graphs and root systems
connected with finite reflection groups. Furthermore, we show how these root graphs
may be useful by constructing for a given reflection group G a root graph with corres-
ponding reflection group H in such a way that H is a subgroup of G with properties
resembling those of G. Furthermore, a number of root graphs are brought together.
Using these root graphs, we build root systems and study the associated reflection groups.
These groups are all primitive and complex.

Thanks to T. A. Springer's work on regular elements of reflection groups (c/. [18]),
we are able to determine the degrees of these groups in a manner analogous to the one in
Bourbaki.
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380 A. M. COHEN

In Chapter 5, a theorem of Blichfeldt concerning finite primitive groups is discussed.
From this theorem we deduce several necessary conditions for a primitive subgroup
of G /„ (C) (n ^ 3) to be a reflection group. The classification is completed by manipulating
with root graphs.

This article is the greater part of a thesis written at the State University of Utrecht.

To my promoter. Professor T. A. Springer, I am especially indebted for his encou-
ragement and for many stimulating discussions. I gratefully acknowledge the inspiring
help and criticism of R. van der Hout, H. Maazen and J. Stienstra.

1. Generalities about reflection groups

Let V be a complex vector space of dimension n.

(1.1) DEFINITIONS. — A reflection in V is a linear transformation of V of finite order
with exactly n — 1 eigenvalues equal to 1. A reflection group in V is a finite group generated
by reflections in V. From (1.6) on we will assume a reflection (group) to be unitary with
respect to a unitary inner product. A reflection subgroup of a group G of linear trans-
formations of V is a subgroup of G which is a reflection group in V. A reflection group G
in V is called a real group or Coxeter group if there is a G-invariant R-subspace Vo of V
such that the canonical map C ®a VQ —> V is bijective. If this is not the case, G will
be called complex (note that, according to this definition, a real reflection group is not
complex). A reflection group G is called r-dimensional if the dimension of the subspace V0

of points fixed by G is n — r. We will say that G is irreducible in dimension r (also
irreducible r-dimensional or merely irreducible if no confusion is possible) if G is
r-dimensional and the restriction of G to a G-invariant complement of V° in V is irre-
ducible. We will use the same convention for other properties than irreducibility
(e. g. primitivity, see § 2).

(1.2) Let G be a finite group of linear transformations of V and let S = S (V) be the
algebra of the polynomial functions on V with G-action defined by (g.f) (v) =f(g~

1
 v)

for any v e V, /e S, g e G., The subalgebra of G-invariant polynomials will be denoted
by S°. The theorem below is a well-known characterization of reflection groups (c/. [18]).

THEOREM. — The following three statements are equivalent:

(i) G is a reflection group in V;

(ii) there are n algebraically independent homogeneous polynomials/i,/2, ...,/„ e S° with

| G | = deg (A). deg (/,)... deg (/„);

(iii) there are n algebraically independent homogeneous polynomials f^f3, ...^eS0

which generate S° as an algebra over C (together with 1).

Furthermore, let /i,/2, .. .,/n be a family of algebraically independent homogeneous

polynomials in S° such that d, ̂  rf,+i (i e n -1) where dj is the degree offj ( J e n ) ; then
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FINITE COMPLEX REFLECTION GROUPS 381

/i?/2? • • -9//i satisfy (ii) z/ and only if they satisfy (iii). In this situation, the sequence

d^ d^ ..., dn is independent of the particular choice of such a family /i,/2, .. .,fn'

DEFINITION. — d^d^ ..., d^ are called the degrees of G.

(1.3) Let G be a reflection group with degrees d^ d^, ..., dn. Suppose/I,/^, ...,/„ e S°

satisfy (1.2) (ii) and d, = deg (/,). Let I be the ideal in S generated by/i,/^, ...,/„.
Then I is a G-invariant graded ideal, so S/I is a graded G-module. According to [4],
G acts on S/I by the regular representation. Let v|/ be an irreducible character of G;
denote by a^ (\|/) the multiplicity of \|/ in the f-th homogeneous component (S/I), of S/I
(i ^ 0). Adopting an idea of [18], we define

j4(T)= Z^wr.
1=0

Note that/?^ (T) is a polynomial specifying for which i the representation corresponding
to v|/ occurs in (S/I),.

Now the identity

(i) |G|"1 E ^.deto-gTr^^no-T')-1
geG i=l

is obtained by writing out left- and right-hand side as a formal power series in T.

The following result is due to R. Steinberg (cf. [3], p. 127): if G is irreducible, then,
for each j e n, the action of G on they-th exterior power of V is also irreducible. Write ̂
for the corresponding character (j = 1, 2, ...,»). The coefficient of Y-7 in Solomon's
formula (see [3], p. 136):

J_ y detQ+Yg^^O+YT^-1)

| G j g^G det (1 - g T) "i (1 - T '̂)

equals ^(T). n(l - T^1)-1.
1=1

(1.4) We mention a few corollaries of these statements.

n

Notations as before. — Put N = ^ (d^ — 1), and let % be the character of the
1=1

given representation of G in V. Suppose G is irreducible. Then:

0)^)= iTdi-l;1=1
(ii) |Z(G)|=gcrf(^,^, . . . ,^);

(iii) P-^ (T) = T^ (T-1), where 5 (g) = det (g) (g e G);

(iv) there is a homogeneous polynomial J of degree N such that g ( J ) == det(g).J for

any g e G;
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382 A. M. COHEN

n n

(v) N is the number of reflections in G, in fact ^ A f T = ?] (rf; — 1+T), w/^r^ A, ^
1=0 i=i

the number of elements in G with exactly i eigenvalues equal to 1;

(vi) d^ ^ ^furthermore, the following three statements are equivalent: (a) G is complex,

(b) % has complex values, (c) d^ > 2.

Since (i), (ii), ..., (v) appear elsewhere in the literature (cf. [3], [18]), it is left as an
exercise to the reader to deduce them from (1.3).

For a character v|/ of an irreducible representation p of G we define

vW=|G|-1 E^(g2).
flreG

It is a known fact that

!
1 if p is a real representation,

v(v|/) == -1 if p is not real, but conjugate to p,
0 otherwise, i. e. if \|/ has complex values.

For further details we refer to [11].

We will now prove the essential parto f (vi). Suppose % takes only real values; then
(Z | X) = I? so d^ == 2. Considering the coefficient of T2 in formula (1) of (1.3), we
get Oc2 | 1) = # { i | di = 2 }, where ^2 is the second symmetric character (in the notation
of [15]). But (^ | 1) = 1/2 (Qc | x)+v (/)) = 1/2 (1 +v (x)), so 1 +v (x) = 2 (x2 | 1) e 2 N,
and therefore v (%) = 1. Hence G is a real reflection group. This shows that (a)

implies (&). The rest of the proof of (vi) is easy.

(1.5) G is an ^-dimensional reflection group in V. Let P be a subset of V. Put
Gp = { g e G | gp = p for all p e P }. Then Gp is a reflection sub-group of G (see [20]).
If m is the dimension of the vector space spanned by P, then Gp is at most
(/z—w)-dimensional. If G is reducible, then G is a direct product of reflection subgroups
which are irreducible in dimension smaller than n. Therefore we can restrict ourselves to
the determination of irreducible reflection groups. It is clear that it is only the conjugacy
class of G we are interested in.

(1.6) It is well known that there exists a unitary inner product ( | ) on V invariant
under G; hence we may assume that G is a subgroup of U (V), the group of all unitary
transformations with respect to a unitary inner product. From now on we will make
this assumption. One can prove that two finite subgroups of U (V) are conjugate in U (V)
if and only if they are conjugate in G / (V). Furthermore, G is real if and only if there
is an orthonormal basis of V such that the matrix of any element in G with respect to
this basis has real coefficients only.

In the sequel U will stand for the set of unitary complex numbers.

DEFINITIONS. — A (unitary) root of a reflection in V is an eigenvector (of length 1)
corresponding to the unique nontrivial eigenvalue of the reflection.
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FINITE COMPLEX REFLECTION GROUPS 383

A (unitary) root of G is a (unitary) root of a reflection in G. Let s be a reflection in V
of order d > 1; there is a nonzero vector a e V and a primitive ^-th root of unity ^ such
that, putting

(1) s^x=x-(l~0(a | a)"^ | a)a QceV),

we have s = 5^;

(2) we will also write ̂  instead of ̂  if E; = exp (2 TI frf"1), and ^ instead of ^2-

If t is any unitary transformation of V, we have the equality;

(3) ts^t-1 =^.

Define OQ : V —> N by OQ (v) = | Gw | where W = v
1
 (v e V).

Then OQ (v) > 1 if and only if v is a root of G. In this case OQ (v) is the order of the
cyclic group generated by the reflections in G with root v, i fa is a root of G, the number
OQ (a) will be called the order of a (mth respect to G).

In the rest of this chapter, G is a reflection group in the unitary space V [as always
G c U(V)] with degrees d^ d^ . . . , dn. The following observations concerning linear
characters of G are due to T. A. Springer.

(1.7) If a is a nonzero element ofV, we denote by 4 the linear (homogeneous) polynomial
defined by 4 (x) = (x \ a) (x e V).

LEMMA. - Let a, b be roots of G, let (; be a root of unity, and let c e C* be such that
s
a^'h = ^b- Then either c == 1, or c == ^-1

 and a e C 6.

Proof. - Since /^ = ^ ̂ .4 = /^ ^, we have that b is an eigenvector of^ with eigen-
value c. Therefore c = 1, ^-1. If c = ̂ -1, the dimension of the eigenspace of s^

corresponding to ^ is 1, so b is a multiple of a.

(1.8) For each reflection s of G we fix a unitary root a^ in such a way that if s and s ' are
reflections of G with U a^ = U a,., we have ̂  = .̂.

Put U = { Os | ^ is a reflection of G } and P = { U aj ^ is a reflection of G }. Note
that G acts on P and that there is a natural map T : P —> U such that, for L e P, we have
T (L) = = a < = > ^ e L n U .

If 0 is an orbit of G in P, define fo e S b y / o = ]~[ 7^; moreover, define
LeO

X o : G ^ U b y X o Q O = FI (det^)-1

Ufl^ e 0

if j-i, s^ ..., ̂  are reflections of G with g = s^ s^ . . .^. It follows from (i) of the

proposition below that 70 ls we!! defined.

PROPOSITION. — Fix an orbit Oi of G fw P:

(i) y^ is a reflection in G with nontrivial eigenvalue ^, ?/^

. ^ f /o, ^ U^Oi,
SJ01 l^/o. y U^eO,;

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



384 A. M. COHEN

(n) Xoi ^ a linear character ofG with p^ (T) = T'01 ';

(iii) any linear character ofG is the product of some /o (0 orbit in P).

Proof. - (i) let Li, L^, ...,4 be an orbit of 5- in P, so s L, = L,+i (;er-l)
a n d ^ L , = L i . Put h = IK^), and 4+1 = L,. ——

»er

Since there are c, e C* such that s T (L,) = c, T (L;+i), we have

(1) 5.A=(nc,)/ i
ier

and

(2) ^(.^(IP,)^.
ier

If n c
i ^ 1' then (2) arld (L7) imply that s

1
' (and therefore 5-, too) has unitary root

ier

Os = T (Li), whence A = /^, and (using (1)) s.h = ̂ ~
1
 h.

As to (iii), let (p be a nontrivial linear character of G, and let/e S be a nonzero homo-
geneous polynomial of minimal degree such that g./ = (p (g)f (g e G). It is clear from (1.3)
that such a polynomial exists. Suppose s e G is a reflection with (p (s) ̂  1. For any i; eV
with (i; | a,) = 0, we have f(v) = f(s~

1
 v) = (s.f) (v) == (p (s)f(v), so /(r) = 0. There-

fore/must be divisible by /^, and also by /, (L) for any L in the G-orbit 0 of U a,. Hence/
is divisible by/o. Write/i for the quotient of/by/o, and (pi for the quotient of (p by /o-
If/i is a non-constant, then/i is a nonzero homogeneous polynomial of minimal degree
such that g.f^ = (pite)/ (geG), and of degree strictly lower than the degree of/.
Induction finishes the proof.

Finally, (ii) is a consequence of the preceding.

(1.9) OQ (T (L)) being independent of the choice of L e 0 for a given G-orbit 0 of P,
we will also write OQ (0) for this number.

COROLLARY. — G/[G, G] is a direct product of cyclic groups of orders OQ (0), 0 running
through the G-orbits in P.

The proof follows from G/[G, G] ^ Horn (G, U) and the fact that if Oi, 0 ,̂ . . . , 0^
are different orbits in P, and ^i, ̂ , ..., ̂  are integers such that ^\ ̂ .. .̂  = 1,
thpn v^1 — 'v^2 _ v^w — 1 mmen ̂  — 7^... — ̂  — i.

(1.10) DEFINITIONS. — A vector v e V is called regular with respect to G, if (v \ a) ^ 0,
for any root a of G [in other words, if no reflection of G fixes v, or equivalently,
if G

w = 1» c/ (1 • 5)]. A transformation g e G is called regular if g has a regular eigen-
vector. The regular degrees of G form the set of numbers, minimal with respect to
inclusion, such that the order of any regular element of G is a divisor of an element in
this set and, vice-versa, any divisor of an element in this set is the order of a regular element
of G. Of the many interesting properties of regular elements we will only mention a
few. For their proofs and other properties we refer to [18].
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FINITE COMPLEX REFLECTION GROUPS 385

THEOREM. — Let ^ be a primitive d-th root of unity. Let g e G be regular with regular

eigenvector v e V and related eigenvalue ^. Denote by W the eigenspace { x e " V \ g x = ^ x ]

ofg in V. Then:

(i) d is the order of g; moreover, g has eigenvalues ^
l
~

dl
, ^l-d2, ..., ̂ l

~
dn

;

(ii) dim W == ^ { i [ d is divisor of d^ };

(iii) the restriction to W of the centralizer of g in G defines an isomorphism onto a

reflection group in W, whose degrees are the d^ divisible by d and whose order is ]~[ rf,;
d \ d i

(iv) the conjugacy class of g consists of all elements of G having dim W eigenvalues Eg.

2. The imprimitive case

V is the unitary space C" equipped with standard unitary inner product (| ), and S is
as in (1.2). The standard basis ofV is denoted by s^, s^, ..., £„. In accordance with (1.6),
a reflection (group) is always assumed to be unitary.

(2.1) DEFINITIONS. — A group G of unitary automorphisms ofV is called imprimitive

if V is a direct sum V = V\ © V^ ©. . . © Y( of nontrivial proper linear subspaces V,
(1 ^ i ^ t ) ofV such that { V, [ i e t } is invariant under G. In this situation the family

(Vi)i ^ i ̂  t is called a system of imprimitivity for G. If such a direct splitting of V does
not exist, G is called primitive {cf\ [7], [9]).

A polynomial p e S is called semi-invariant with respect to G if it affords a linear
character c of G, i. e. if g.p = s ( g ) p for any g e G.

(2.2) PROPOSITION. — Let G be an irreducible imprimitive reflection group in V (n ^ 2),
and let (V,)i ̂  ,^ ^ be a system of imptimitivity for G. Then:

(i) dim V, = \for each i e /, and t = n; there are distinct linear homogeneous polynomials

Ii, /2? • • • ? 4 (
not even

 equal up to a constant factor) such that l^ l^ ..., /„ is a semi-

invariant homogeneous polynomial of degree n in S;

(ii) for any reflection s e G we have either s V, = V, for all i e n, or there are i ^ j

(1 ^ h J ^ n) such that any root ofs is contained in V^+Vj, s V, = V,, s V^ = V^/or all

k ^ i, j, and s is of order 2;

(iii) let \|/ : G —> S,, be the homomorphism that assigns to g e G the permutation a e S^
defined by g V, = V<y (,) for any ien. Then v|/ is surjective and admits a section T : S^ —> G,

which is a homomorphism;

(iv) V, 1 \,for all i, j (i ^ j, 1 ̂  f, 7 ^ ^)/

(v) ?/ ^ is a unitary root of G of order 2, and w is a unitary root of G of order > 2,

then l^ luOle^^- 1 7 2}.
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386 A. M. COHEN

Proof:

(i) let i be such that dim V, > 1; because G is irreducible, there is a j 1=- i and a reflec-
tion e G such that s V, = Vy. It follows that dim (Vj n V,) > 0, contradicting
V, n Vy = { 0 }. To establish the last part of (i), fix unitary a, e V^, and take for /, the
linear homogeneous polynomial with /, (aj) = 1 and /; (cij) = 1 for j ^ i;

(ii) let s e G be a reflection with unitary root a and nontrivial eigenvalue ^ such that
(a [ V\) 1=- 0 and aeVi. Then (up to a permutation of indices) 5'V\ =¥2. Take
0 9^ Jc,eV, (z = 1, 2) such that .y^i = ^2. There is SL jen with .y2;^ eVy; thus

s2 x^ e (C a+C jq) n V, = (Vi +¥2) n V,.

This implies that 7 = 1 or 2. Since a ̂  Vi u ¥2, we have ^2 ;q = x^ and ^2 = 1; so
^ = — 1 and s is of order 2. Furthermore, the root ^ is a scalar multiple of x^—x^ in
particular a e V\ +¥2. If (a | V;) ^ 0 for some i > 2, there is ay > 2 such that s V^ = Vy;
thus a e (V,+Vy) n (V\ +¥2) = { 0 }, which is impossible. So (a | V,) = 0 for any i > 2.
In particular s V^ = V^ for k > 2, and (ii) is proved;

(iii) the irreducibility of G implies that for each j > 1 there exists a reflection Sj

with ^ V\ = V, (necessarily of order 2). The image of Sj e G under v|/ is the element
(1 j) e Sn [according to (ii)]. It is known that the set { (1 j) ( j = 2, 3, ..., n ] generates Sn.
Finally, not that the restriction of \|/ to the reflection subgroup ( s ^ s ^ , . . . , ^> ofG
is an isomorphism;

(iv) note that (x, y) ̂ -> ^ /, (x) l^ {y) [where /i, l^, ..., 4 are as in (i)] defines a uni-
i^l

tary inner product on V, fixed by G. Since such a unitary inner product must be a striclty
positive scalar multiple of ( | ), the required result is readily deduced;

(v) is clear from (ii) and (iv).

(2.3) If we do not mention an explicit basis, we shall always identify a linear
transformation of C" with its matrix with respect to the standard basis.

Let !!„ be the group of all n x ̂ -permutation matrices; let A(m,p,n), where
p | m (m^p eN), be the group of all n x ̂ -matrices (^j)i^i,j^n such that a^ = 9,8y,
where 9'" = 1 for each ien, and (del (a^j))"

1
^ = 1. Then !!„ normalizes A(m,p, n).

Define G (m,p, n) = A (m,p, n) Tl^ ^is is a semi-direct product. It is not hard to see
that G (m, p, n) is an imprimitive reflection group in C", with system of imprimitivity

(Cs,)^.

(2.4) THEOREM. — Let n ^ 2, and let G be an irreducible imprimitive reflection group

in V. Then G is conjugate to G (m, p, n) for some m, p e N with p \ m. Furthermore,

G (m,p, n) is irreducible if and only ifm > 1 and (m,p, n) -^ (2, 2, 2). \By conjugacy we

mean conjugacy within U (V).]

Proof. — Let G be as stated. There is an orthonormal basis e^ e^ ..., e^ with the
properties that the V, = C, e^ (1 ^ i ^ n) form a system of imprimitivity for G, and that
for each j > 1 there is a reflection Sj e G such that se^ = ej [cf. (2.2)]. Without changing
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FINITE COMPLEX REFLECTION GROUPS 387

the conjugacy class of G we may put e, = s; (i. e. e^ e^ ..., ̂  is the standard basis).
It follows from (2.2) that !!„ is a subgroup of G. Let q be the order of the cyclic group
generated by the reflections that leave V^ pointwise fixed (so q = OQ (e^) with notations
of (1.6)). Then A (q, 1, n) is a subgroup of G.

According to (2.2), the only reflections outside A(q,l,n).TIn
 sir

^ the s ' e G with
s ' ei = Q €j where 9 e U\{ 1 } and i 7^7, and s ' e^ = ej, for k + i, j. Up to conjugacy
by an element of !!„, we may take ; = 1 and j = 2. Let s = s^ e G be the reflection with
se

! = e
2- Then (ss') e^ = 9 e^ and {ss') e^ = 9~1

 e^ so 9 is a root of unity. Let m be
the maximum of all orders of elements st e G where t is a reflection such that t V\ = V^,
It is not difficult to see that A (m, m, n) is a subgroup of G, commuting with A (q, 1, n).

and that q | m. Putting p = q~
1
 .m, we have A (m,p, n) = A (q, 1, n).A (w, w, n)', so

G (w, p, n) = A (w, /?, 72) n^ is a subgroup of G. Since all reflections of G are contained
in this subgroup, the subgroup must be equal to G itself, in other words G = G (m, p, n).

In order to prove the second statement of the theorem, suppose that G = G (m, p, n)

leaves invariant a nontrivial proper linear subspace W ofV. Since W is also a II^-invariant

subspace of V, we know from [15; p. 29, 30], for instance, that W = C (s^ +£2 + • • • +£„)
up to an interchange of W and W1. As A(m,p,n) stabilizes C (EI+£2+. . .+£„) , all
diagonal coefficients of an element in A (w, p, n) must be equal. It is not hard to deduce
from this that (m,p, n) e { (1, 1, n), (2, 2, 2) }.

On the other hand, it is obvious that G(l, l,n) and G(2,2,2) are reducible in V.

(2.5) Remarks:

(i) G (w, m, 2) is conjugate to W (12 (m)), the Coxeter group corresponding to type 12 (m)

(notation of [3]). This group is reducible only if m ^ 2. For the other Coxeter groups
the notation will be similar;

G(l, 1, n) = n^, operating on the hyperplane (si+£2+ ... +£n)1 of C", represents
W(A^O(^^2).

G (2, 1, n) represents W (BJ = W (€„) (n ̂  2).

G (2, 2, n) represents W (D^) (n ^ 3).

W (A^) is primitive if n > 2, and W (A2) is conjugate to W (12 (3)).

The above groups form the set if all real reflection groups appearing in (2.4);

(ii) let X^, X2, ..., X,, e S be as in (1.11) (ii). The first n—\ elementary symmetric

polynomials in (X^en (i.e. X:T+X^+...+X^, ^X^,...,^ ^l XJ) and
i<j i=l j^i

(Xi X2.. .X^, where q=p~
l
.m, form a set of G (m, p, ̂ -invariant homogeneous

algebraically independent polynomials; the product of their degrees equals

m.2m.. .(w—1) m.qn = q.m"'
1
 .n ! = p~

1 .w" .n ! = | G(m,p, n) |.

By (1.2) the degrees of G(m,p,n) are m,2m, ..., (n—1) m, qn. One of the conse-
quences is that | Z (G (w, p,n))\ = q. gcd (/?, n). Finally, X^ X2. . . X^ is the semi-invariant
associated with the canonical system ofimprimitivity;
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(iii) G(m,m,n) and G(p~
1
 m, 1, n) are reflection subgroups of G(m, p,n);

(iv) G(4,4,2) is conjugate to G(2, 1,2). These two groups form the only pair of
conjugates in the set of all irreducible G(m,p, n), as can be seen with the help of the
invariant polynomials of (ii);

(v) i f / ? = l o r w , it is possible to choose n generating reflections for G (m,p, n): take
the reflections of order 2 with roots £i—£2, £2— ̂  • • • ? £„-!—£„, and

f the reflection of order 2 with root (s^ - exp (2 n im~
1) e^) if p = m,

\ a reflection of order m with root s^ if p == 1.

If p + 1, m take n generating reflections for G(m,m,n) and an additional reflection
of order p~

1
 m with root e^ to obtain n+1 generating reflections for G (m,p, n);

(vi) put G = G (m,p, n) and, as always, q = p~
1
 m. Let P be as in (1.8). Suppose

n = 2; P consists of gcd(2, m) (gcd(2, q))~
1 G-orbits o{lengthm.gcd(2, q).(gcd(2, m))~

1

and, ifp ^ m, of one more G-orbit, in fact { U e^, U e^ } of length 2. If n > 2, then G
admits one orbit in P of length 1/2 mn (n-1); if, moreover, p = m, this is the single orbit
in P; ifp ^ m, P contains one more orbit, of length n;

(vii) if q is even or m is odd, then the fo of G(m,p,2) are X^-X^ and, unless
p = m, Xi X^. If q is odd and m = 2 k, then the/o of G (m,p, 2) are X\ -X^, X^ +X^
and, unless p = m,X^ X^. Finally, if n > 2, then the/o of G (m,p, n) are ]~[ (X^-Xp

f<7f<j
and, unless p = m, X^ X^ . . . X^.

(2.6) LEMMA. — Let G be an irreducible reflection group in V. If G has a reflection

subgroup which is primitive in dimension r > 1 and not conjugate to W (A,.), then G itself
is primitive.

Proof. — Let H be a reflection subgroup of G as described in the assumptions, and
denote by W the orthogonal complement of V". We may assume that r < n.

Suppose that G is imprimitive with system of imprimitivity L^, L^, . . . ,L^. Since
dim W = r, we have that H is primitive, and therefore irreducible, in W. If L, c w
for some i e n, then HL, spans W, so the Lj with Ly c w form a system of imprimitivity
for H in W, unless W = L,; but W = L, would imply that r = 1 [because of (2.2) (i)],
which is assumed to be false. Thus

(1) L j$W for all j en.

Let s e H be a reflection with root a e V. Note that a e W. If s L, = L, for every i e n,

then a e Ly for some j e n, and Ly £ W, which is impossible because of (1); so s L^ = L^
(up to a permutation of indices), and s is of order 2 [see (2.2) (ii)]. If a' eV is a root
of another reflection s ' of H such that s ' Li = L^, then [by (2.2) (ii)] Ca+Ca' = Li + L^;
since ^, a' e W, this yields L^, L^ c w, contradicting (1).

We conclude that there are no reflections s e H such that s L, = L; for any ; e n, and
that for f, y e n (f 7^7) there is at most one reflection seH with sL^ = L,. By now,
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it is obvious from (2.2) (iii) that there exists ten such that H is conjugate to G (1, 1, t).
Because H is r-dimensional, we have that t = r+1, and that H is conjugate to W(Ay).

(2.7) LEMMA. - Suppose G = G (m,p, n) is irreducible (p | m and n ^ 2). Then G

has a unique system of imprimitivity that (m,p, n) ̂  {(2, 1, 2), (4, 4, 2), (3, 3, 3), (2, 2, 4) }.

Proo/. — The L, = C e, (i e ̂ ) constitute a system of imprimitivity for G (m, p, n).

Let P be as in (1.8). First of all, we will pay attention to the case that an orbit of P gives
rise to another system of imprimitivity. By (2.5) (vi), we then have either

(1) n = 2 = mgcd(2, q).(gcd(l, m))-1,

or

(2) n>2 and mn(n- l )=2n .

If (1) occurs, we have (m,p, n) e { (2, 1, 2), (4, 4, 2) }; (2) leads to a contradiction
with m > 1 [c/*. (2.4)]. The conclusion is that none of the groups G in question has a
system of imprimitivity afforded by roots different from the canonical system.

Let us assume that V^V^, . . . , ^ is a system of imprimitivity different from
Li, L2» ..., L^ and not corresponding to an orbit of P. Let /i, l^ . . . , / „ be defined
with respect to V\, V^, ..., V^ as in the proof of (2.2) (i), and put /= /i, /^, . . . , /„.
Suppose that / is a semi-invariant but not an invariant. It follows, by an argument
similar to the one on the proof of (1.8) (iii), that / is the product of an invariant and
some fo (0 orbit in P). Since deg (/) = n, the irreducibility of G implies that there is
an orbit 0 in P of length n such that/==/o; this is contradictory to our assumption.
Therefore / is an invariant homogeneous polynomial. Because /^ C. X^ X^. . . X^, there
must be an oceC such that/—ocXi X^.. .X^ is a nonzero homogeneous G-invariant
polynomial in X^, X^, . . . , X^ [cf. (2.5) (ii)]. Hence m divides n.

Put

/i = ai Xi+oc^ X2+ ... +a,, X^, r, = # {ien \ a, = Kj } for jen,

and ro = # { i e w | a, ^ 0 }. Let./ e { 0, 1, 2, ..., n }. Since the stabilizer in n^ of C /i
is of order ^ rj ! (n—rj) !, and since the D^-orbit of C /i has at most n elements, we
have

(3) ^^.(r,!)-1.^-^)!)-^^^.
vj7

This implies that rj = 1, n— 1, w for any^e { 0, 1, . . . , n }.

Note that ^ ^ 1. Suppose ^ = ^2— 1. Using a combinatorial argument, we get that
the stabilizer of C /i in G (m,p, n) is of order ^ mq (n—V) !, whence

n ̂  m^^q.nL^m.q^n-iy.y
1
 = m""2.^

so n ^ 2, and ^ e C Xi, contrary to the assumption that Vi, V^, . . . , ¥„ is different
from Li, L^, . . . ,L^. We conclude that ^ = ^z. The order of the C ^-stabilizer in
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G(m,p,n) is smaller than or equal to m.n !, so n ^ n^~
1
 .q.n \.(m.n !)~1 = w"~2.^.

Together with m | ^ this implies that (w,;?, n) e { (2, 1, 2), (2, 2, 4), (3, 3, 3) }.

(2.8) Remark. — To G (2, 1, 2) correspond, apart from the canonical one, two systems
of imprimitivity, namely C(si+£2), CC^-s;,) with semi-invariant X^-X2, and
C(£i+f£2), C(£i-f£2) with invariant X^+Xj [compare (1.11) (iii)]. To G(3,3,3)
corresponds C (£1 + £2 + £3), C (£14- ̂ 2 + ®2 £3), C (£1 + co2 £2 + co£3) with invariant
Xf+X|+Xj-3XiX2X3.

To G(2,2,4) correspond C (£i+£2+£3+£4), C (£i+£2-£3-£4), C(£i-£2+£3-£4),
C(£i—£2—£3+£4) with invariant

Xt+X2+X3+X4-2(X2Xj+X2Xj+X2X4+XjXj+X2X4+XjX4)+8XlX2X3X4,

and the system that can be obtained from the preceding one by substitution of —£i for £1
with invariant that can be obtained from the preceding one by substitution of -X^ for X^.

Moreover one can prove that these are all non-canonical systems of imprimitivity in
the respective cases.

(2.9) PROPOSITION. — Let 1 < m < n, let G be a primitive reflection group in V, and

let H be an imprimitive irreducible m-dimensional (i. e. imprimitive irreducible in dimension m

as defined in (1.1)) reflection subgroup o/G. Suppose, moreover, that H has a unique system

of imprimitivity L^ L^ . . . , 4, in (V")1. Then G contains a reflection SQ such that < H, SQ >
is a primitive (m + ̂ -dimensional reflection subgroup ofG.

Proof. - Put W = (V11)1. Now dim W = m; the proof goes by induction with respect
to n—m.

Suppose m = n-1. Put L^ = V". Note that Li, L^ . . . , L^ form a system of impri-
mitivity for H in V. The required result is a direct consequence of the observation that
this is the only system of imprimitivity for H in V consisting of 1-dimensional linear
subspaces. In order to prove this observation, let Vi, ¥2, ..., ¥„ be another such system.
Reasoning as in the proof of (2.6), we obtain that either H is conjugate to G (1, 1, n) or
there is 2ijen with V, c= W. As G(l, 1, n) is primitive in dimension n-1, we must
have that V, c W for all but one ien\ the uniqueness of Li, L^ . . . , L^ readily follows.

Suppose m < n—1. Assume that there is no SQ as required. Let s be a reflection
in G with unitary root a such that a i W u W1. Note that < H, s > is (m + l)-dimensional.
Now < H,^> is irreducible and imprimitive in W+^W. Furthermore, < H,.y> has a
unique system of imprimitivity in W+^W, namely Li, L^ ..., L^, L^+i = W1 n sW.

Choose unitary vectors a, e L, (i e m+1), and permute the indices to obtain sa^ = a,,

(iem—1) and sa^ = ^n+i- Clearly, s is of order 2. Application of the induction
hypothesis to < H, s > provides a reflection s ' e G with unitary root, say, b e V such that
< H, s, s ' > is primitive in W = W+s W+s' W+s' s W.

Let a^+2 be a unitary vector in W n (W+.S-W)1. There is an ie m+1 with
•s-7
 a,i W+5- W; because the L, (j e m+1) form a single < H, s >-orbit, there are g e < H, s >

and aelJ with ga, = a^+i. Replacing s ' by g s ' g~
1
, we see that the assumption
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s ' a^ ^ W+^ W does not harm the generality. Because < H, s ' > is imprimitive in dimen-
sion m+1, we may assume that there are X, [i e C with b = 2~172

 (a^—^k a^+i —P' ^+2)-
The imprimitivity of < H, s s ' s > in dimension w+1 implies that

1-N2^ |(^'^|0|e{0,l}.

Therefore | K \ = 0, 1, and 6 = 2"172 (^n-^a^+i) or 2~172 (^n~H^n+2)» contradicting
the primitivity of < H, s, s ' > in dimension m+2.

(2.10) Remark. — The knowledge of the orders of regular elements is useful for the
determination of conjugacy classes and character tables of the reflection groups. Since
much of this is contained in [I], we will not pursue this matter here beyond the presen-

tation of the regular degrees.

(2.11) PROPOSITION. — The regular degrees of G(m,p,n) with p \ m, m > 1, n > 2

are
( n — l ) m , n if p=m and n^m,

(n-l)m if p = m and n \ m,
mn/p if p^m.

(2.12) LEMMA. — Let G c G/n(R) be a finite irreducible group, and let teGln(C)

be such that t G t
 -1 = G. Then there are T| e C and u e G /„ (R) such that t == T| .M.

proof. — Let ^ e C be an eigenvalue of t ~
1
 t corresponding to the eigenvector w e C".

Let T| e C be such that rT2 = i;. Put u = r\~
1
1. Then uw = uw, so

W == { x e C" | ux = ux }

is a nonzero G-invariant subspace of C". Therefore W = C1, whence u = u.

We will look for all finite subgroups H in U^ (C) that H normalizes a reflection group G
in case n ^ 3 (the case n = 2 can easily be handled without use of the specific properties
of reflection groups). In view of the previous lemma, the results for a real reflection

group G are to be found in [3] (p. 232, ex. 16).
00

(2.13) put 1^00 = U ^nfor the set of a11 roots of unityin c-
n=l

PROPOSITION. — Suppose n^2 and let G (w, p, n) be irreducible. Let H S U^ (C) be

a finite group such that G (m, p, n) <[ H. If

If

if

(m,p, n) t {(2, 1, 2), (3, 3, 3), (2, 2, 4) } then H c ̂  .G (m, 1, n).

(m,p, n) = (3, 3, 3) then H c ̂  .W (Ms);

(m, p, n) = (2, 2, 4) then H ̂  ̂  . W (F4).
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Proof. - Let t be a unitary transformation of C" normalizing G (w, p, n\ Note that t
transforms one system of imprimitivity of G(m,p,n) into another.

Suppose t leaves invariant the canonical system of imprimitivity (Ce,)^^ of
G (w, /?, n\ One easily sees that t has a diagonal matrix after replacement of t by a suitable
element of rG(l , l ,7z) . Let r\ e U be such that TI-^SI = e^, and let j > 1. As
T| 1 ^ (£1 - £,) = 81 -11 -1 ^ e, is a root of G (w, /?, ^), it follows that T| -1 ^ e, e Q (6?2"17"1) s..
Hence all coefficients of 'n~1 ? are in Q (^27ll/w), and r|~1 / e G (w, 1, ^). J

This settles the proposition in the case where G (m,p, n) has only one system of impri-
mitivity [cf. (2.7)], including the case (m,p, n) = (4, 4, 2).

Thanks to (2.8), one immediately finds all possible cosets t. ̂  G (m, 1, n) in the remain-
ing cases [recall that G (2, 1, 2) is conjugate to G (4, 4, 2)].

3. The two-dimensional case

V = C2 with standard unitary inner product.

In this chapter we shall identify ̂  and ^.I^ for m e N.

(3.1) We present a description of all finite subgroups in G/2(C) (cf. [10], [13]).

Let H, K be finite subgroups of S l^ (C) such that K < H and H/K is a cyclic group
of order w and assume an isomorphism (p : ̂ /^ -> H/K is given.

Some definitions: Z l^ (C) = Z (G l^ (C)) is the center of G l^ (C),

v|/ :Z/,(C)xS/2(C)-^G/2(C)

is the usual product map,

^ x < p H = { ( m , s ) e n ^ x H | (p(m^)=sK}

and

(^d | Hd;H | K),=\K^x<pH).

The latter group is a finite subgroup of G l^ (C). Every finite subgroup G of G ̂  (C)
can be gotten in this way: put

^=G.S;2(C)nZ^(C), H,=GnZ^(C),

H=S^(C)nG.ZJ2(C), K=S^(C)nG,

and let (p : n^/Pd—^H/K be the composition of the natural isomorphisms:

\^J^d -^ (Z li (C) n G. S ̂  (C)) G/G = (G. Z ̂  (C) n S l^ (C)) G/G -̂  H/K.

Conjugation of G does not alter ̂  and ̂  and changes H and K into conjugates by
the same element.
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For each conjugacy class of finite subgroups of S /^ (C) we fix a representing element
(c/1 loc. cit.):

the cyclic group of order m:

^m-i o

^ U 0 e-2^'1

the binary dihedral group of order 4 m:

DOT=;((0 o)'^}'

the binary tetrahedral group of order 24:

/ 1 /e ^\ \
\ ~r[ p p7 / ' -2 / '
\^2\K e / /

the binary octahedral group of order 48:

-(C: :.)-)•
the binary icosahedral group of order 120:

/ i /n4-^ n2-^ i /V-n4 ^-i\\

VsW-^-^'Tiv-^ 1^3-^/'
Where E = exp (n i 4~1), r| = exp (2 n i 5~1).

The choice of the representing elements is such that each group is in SU2 (C) and such

that C^m < Dm < ^m an(i D^ < T < 0. Apart from C^ < C^, these are the only
normal inclusions with cyclic quotient. Thanks to this observation, it is readily checked
that if H is not cyclic, the conjugacy class of G = (^ | ̂ ; H | K)^ is independent of the
choice of (p. In that case we shall drop the index (p and write (1^4 | |̂ ; H | K) for G.

Note that G is irreducible if and only if H is non-cyclic. By now it is not hard to
prove the following well-known

THEOREM. — Any irreducible finite subgroup of G l^ (C) is conjugate to one of the

following subgroups of U^ (C):

(1-4, | H2,;D^ | C^), ^m-T,

(^ | H2<p D2m | DJ (U6m I 1^2m; T | D2;),

(^ | ^2<pD^ | DJ=^.D^, Him-O,

(̂  | ̂ ; D^ I Cj for (m, 2) = 1 (JL̂  | ^m; 0 | T), ^ml-^

wA^r^ w, ̂  e N.
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(3.2) Let H, K be subgroups of U^ (C) occurring in the list of (3.1) such that K < H;
suppose that H is non-cyclic. The following statements concerning G = (^ ( ^; H~| K)
are easily verified:

(i) G is imprimitive if and only ifH= Dm for some m e N;

(ii) Z (G) = G n Z ̂  (C) = ^ and G/Z (G) ^ H/Z (H) = H/^;

(iii) let m = pq > 1; ̂ ^

(/ (^43 [ H2<p D^/2 [ Cj y p even, q odd,

(^ | ̂ ; D^ | 0^/2) y p odd, q even,
G(m, p, 2) is conjugate to

^iq-'Dm if P, q even,

\ (^ | ̂ ; D^ | CJ (/' m oA?.

(3.3) Let G = (n^ | ̂ ; H [ K) be as in (3.2). Suppose moreover that G is an irre-
ducible reflection group with degrees d^ d^ Denote by II the projective group G/Z (G)
operating on the projective complex line, and by n^ n^, n^ the orders of three non-conjugate
non-trivial isotropy subgroups of II (cf. [13]). We state without proof:

PROPOSITION:

(i) 2.d.(d-1 d,) (d-1 d^) = | H | and d = | Z (G) | = gcd(d,, d^);

(ii) u^.G is a reflection group ifl= 1/21cm (2, wd);

(iii) H^.H is a reflection group if and only if wd\ d^ d^' in this situation, the degrees

of ̂ . H are d. km (w, d ~
1 rf,) (i = 1, 2);

(iv) the order of any reflection in G is a divisor of some w» (i = 1, 2, 3);

(v) wd \ 2 km (n^, n^ ^3).

(3.4) A case-by-case argument, involving either invariants or generating reflections,
yields the following theorem (cf. [17]).

THEOREM. — Up to conjugacy the primitive 2-dimensional reflection groups are

m = 1, 2,
l^m-T

<^6 | ^2m; T | Dz)

H4m-0

(H4m H2m; 0 | T)

^^.1 m = 2, 3, 5, 6, 10, 15, 30.

m = 1, 2, 3, 6,

(3.5) The primitive 2-dimensional reflection groups are listed in (3.6) together with
some properties. In order to obtain the column of regular degrees, make the following
observations [cf. (1.10)]:

(i) if G is an irreducible reflection group, and g e G is regular, then the same holds for

any element in g. Z (G); moreover, the order ofg is a divisor of one of the degrees of G;

(ii) if G is a 2-dimensional reflection group and s is a reflection in G, then s is regular

if and only if any reflection (^ 1) in G commuting with s has the same set of roots as s.
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(3.6) In the following table we have listed the primitive 2-dimensional reflection groups
together with some properties. In the first column is written the number Shephard and
Todd gave to the corresponding reflection group in [17] (p. 301). Later on the group

(^ | ̂  T | D2) will also be denoted by W (L^) [compare (4.4) (iv)].

TABLE

Shephard-Todd
number

4 . . . . . . . . . . . . . .
5 . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . .

1 0 . . . . . . . . . . . . . .
1 1 . . . . . . . . . . . . . .
1 2 . . . . . . . . . . . . . .
1 3 . . . . . . . . . . . . . .
14. . . . . . . . . . . . . .
1 5 . . . . . . . . . . . . . .
1 6 . . . . . . . . . . . . . .
1 7 . . . . . . . . . . . . . .
18. . . . . . . . . . . . . .
1 9 . . . . . . . . . . . . . .

2 0 . . . . . . . . . . . . . .
2 1 . . . . . . . . . . . . . .
2 2 . . . . . . . . . . . . . .

Group

(46 |42; T
46.T

(4i2 | 44; T
412 •T

(48 | 44; 0
48.0

(424 | 412; 0

424.0

(44 |42; 0
44.0

(412 | 46; 0
4i2.0

4io. I
420. I

430. I

460. I

46 .1

412. I

IU . I

D,)

D,)

T)

1 T)

T)

IT)

Degrees

4,6
6,12
4,12

12,12
8,12
8,24

12,24
24,24
6,8
8,12
6,24

12,24
20,30
20,60
30,60
60,60
12,30
12,60
12,20

Order

24
72
48

144
96

192
288
576
48
96

144
288
600

1200
1800
3600

360
720
240

Order
of center

2
6
4

12
4
8

12
24
2
4
6

12
10
20
30
60

6
12
4

Regular
degrees

4,6
12
12
12
8,12

24
24
24
6,8

12
24
12
20,30
60
60
60
12,30
60
12,20

2

6
6
6

18
6

18
12
18
12
18

30

30

30
30

Nur
ofrefl

ofc

3

8
16

8
16

16
16

16
16

40
40
40
40

-nber
ections
)rder

4

12
12
12
12

5

48
48
48
48

4. Root graphs and root systems

If n ^ m, we think of C" as the subspace of C°° spanned by the first m standard basis
vectors £1, £2, . . . , Snr Moreover, C°° is endowed with the standard unitary inner
product ( |). If G is a reflection group in a complex vector space V of dimension n, we
can assume, after choosing coordinates in V, that G c G /„ (C), and, thanks to (1.6),
even that G c U» (C). Since roots of G are vectors in C" <= C"'^1, there is a natural way

to view G as a subgroup of \Jn+i (Q- ^
 (J ls ^-dimensional, then r is the smallest

number such that a conjugate of G is contained in U,. (C).

(4.1) DEFINITIONS. - A vector graph is a pair (B, w) where B is a nonempty finite subset
of C°° such that for all a, b e B we have | (a \ b) \ = 1 <=> a = b, and w is a map from B
to N\{ 1 }. In this situation B is called the set of points, vectors, or vertices of the
vector graph and w (a), for a e B, the order of a [with respect to (B, w)~\.
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Two vector graphs (B, w) and (B', w') are called isomorphic if there is a bijection
a : B -> B' such that for all a, b e B:

w(a)=u/(CTa) and (a | &)=((ja | a&);

or equivalently, if there is a unitary transformation ^ of C°° such that t B = B' and
w (a) = w' (ta) for any a e B.

We shall identify a vector graph (B, w) with a "directed valued graph" in the following
way. The points of the graph are the elements of B. For any set { a, b } c B with
(a | b) ^ 0, 1 we fix a direction, i. e. we prescribe which point is starting point and which
one is end point. Now the directed edges of the graph are the (a, b) e B x B with
(a | b) ^ 0, 1 such that a is starting point according to the direction of { a, b }. Finally,
to any point a e B we assign the value w (a), and to any directed edge (a, b) e B x B we
assign the value (a [ b).

Note that the set of directed edges of a vector graph is not uniquely determined.

To provide an example, let a = s^ and

b = (3+ ̂ /3)-l/2(^"l74Cl+(^/4+ 72^"/3)8,).

Put B = { a, b }, w (a) = 2, and w (b) = 3.

We represent the vector graph (B, w) by

/ o-i- /^""2 'n'z/4
(D (3+/3) e > (D
a Z?

or, if we are only interested in the isomorphism class of the vector graph, by

/ O . / T N - S TT^/4

@ ( 3 + y 3 ) e ^——(D

The vector graph may also be represented by

^O-L. /T^2 -'n'^/4
(D ^^ e <—(D

with edge (&, a).
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We shall often use the following conventions when drawing a vector graph (B, w).
Let a, 6eB:

(1) if w (a) = 2, the number 2 in the vertex a is omitted;

(2) if (a | b) e R*, the arrow indicating the direction of the edge connecting a and b is
left out;

(3) if (a | b) = -1/2 and w (a) = w (b) = 2, the value -1/2 associated with the edge
connecting a and b is omitted.

Let r = (B, w) be a vector graph. Put E = { { a, b ] \ a, b e B, | (a \ b) \ + 0, 1 }.
Now (B, E) is a graph. All usual definitions concerning graphs (like cycle and connected-

ness) applied to r are with respect to (B, E). A cycle of a vector graph consisting of
3 points will often be called a triangle.

If v e C°°, we denote by v the complex conjugate of v. Let B = {b \ b e B }, and let

w: B-> N\{ 1 } be defined by w {b) = w (b) (b e B). We shall say that (B, w) is the
complex conjugate of T.

(4.2) DEFINITIONS. - Let r = (B,w) be a vector graph. We denote by dim(F)
(or dimension of T) the dimension of the vector space spanned by B, and by W (F) the
group generated by all reflections 5^^) mt

^
 a e B- Thus, if F is isomorphic to F',

then W (F) is conjugate to W (P).

r is called a root graph if:

(1) dim (F) = | B | (in other words, the elements of B are linearly independent);

(2) W (F) is a finite group (and therefore a reflection group).

Note that if a is a point of a root graph F, then a is a unitary root of W (F).

Let r = (B, w) be a root graph. We say that T is irreducible if W (F) is irreducible
in dimension dim (F), or equivalently, if F is connected. F is called real (complex,

primitive) if W (F) is real (complex, primitive).

Let r' = (B', w ' ) be another root graph. If B c B' and w' [g = w, we say that F' is
an extension of F, or that F is a sub-root-graph of T ' . If W (F) is conjugate to W (F'),
we say that r is equivalent to P. Furthermore, r is said to be congruent to r' if there
is t e G I (C°°) such that w' (to) = w (a) for any a e B and the elements of B are eigen
vectors of t.

If the roots v, v ' span a root graph r and are of order 2, then there exists m e N such
that W (F) is conjugate to G (m, w, 2); so | (v [ v ' ) \ = cos (n k/m) for some k prime
to w.

Let r = (B, w) be a root graph. Put

M = {^meN | there exist a, fceB with w(a) = w(b) = 2 and |(a | b)\ =cos(7im~1)}.

We define d(T) by

d(T)=
max(M) if M + 0,

0 otherwise.
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Let G be a reflection group. Put

N = { order (ss') | 5, 5' are reflections of G of order 2 }.

Now d(G) is defined by

. . . f max(N) if N ^ 0,
d
^

=
[ o otherwise.

(4.3) Remarks:

(i) The complex conjugate of a root graph is, again, a root graph;

(ii) the definition of a real (complex, primitive, irreducible) root graph depends only
on the isomorphism class of the root graph;

(iii) there exist root graphs F with d (F) < d (W (F)). This will be clear from (4.4) (v);

(iv) if F is a root graph, then W(F) is a reflection group generated by dim (F) reflections.
On the other hand, every reflection group G in C" that is generated by n reflections can
be obtained as follows. Fix a unitary root for each of the n generating reflections in G.
Let B be the set of these unitary roots and let w : B —> N\{ 1 } be given by w (a) = OQ (a)

(a e B) [notation of (1.6)]. Then T = (B, w) is a root graph with W (T) = G;

(v) if two root graphs are congruent, they are equivalent;

(vi) we will frequently use the following observation. If F = (B, w) is a root graph
and a, b e B, then F is equivalent to the root graph

r == (B', w'\ where B' = { s^ ̂  b } u B\{ b },

and w' : B —> N\{ 1 } is given by

,/r^-J^ if xeB\W
W \J\, I —— \ /i \ •p T

[ W(V) if X = 5^ ,,(„)&;

(vii) if (B, w) is a vector graph with B = { e^ e^ ..., ̂  }, then det ((e, [ eft is a real

number ^ 0.

Equality holds if and only if e^ e^ . . . , ̂  are linearly dependent. If this is the case,
(B, w) cannot be a root graph.

(4.4) Examples:

(i) A slight adaptation of the usual Coxeter graphs (cf. [3]) provides root graphs in
the sense of (4.2), namely: Replace any number m assigned to an edge by —cos (n m~

1
).

By a Coxeter graph we mean here a root graph obtained in this way.
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The classification of Coxeter graphs (foe. cit.) gives us the following result. The only

irreducible root graphs Y = (B, w) with w (B) = { 2 } and without cycles are the Coxeter

graphs:

IsCk)

A

B = B2

n n

"n = ̂ 2)

H,

H.

,~ -cos(ir/k) ^

0————0 ....... 0————0 (" points, n ^ i)

. - 2 2 - , ~ ^ (n points , n > 2)

. . . ^ (n points ) n > 3).......o——o

... -cos(ir/5) ^ p.

-2-2

0———0———0———0

0 -cos^/s) Q————Q———Q

)————0————0———0———0

3———0————A————0————0———0

^ — r\ <\———.n———n———n———<

E,

0 T.-•8

It is well known that if T is one of these root graphs, then d (T) = d (W (F)); furthermore,
d(l,(k))=k, d(A,)=dW=d(E^=3, rf(B^) = rf(F^) = 4, rf(H^) = 5. As a
consequence of our definitions, we have that r is a real root graph if and only if T is
equivalent to a Coxeter graph;

(ii) let r = (B, w) be a root graph. If w (B) = { 2 } and F has no cycles, then F is

At
a real root graph, as we saw in (i). But / ^ is a real root graph too [equivalent

d—b
to 0——0——0 , as can be deduced with the process of (4.3) (vi)];

(iii) the example in (4.1) is a root graph: the reflections ^ = ( ] and

^3 = 1/2 co2 0"-1) ( _ _ . . ) satisfy (^3 ̂ )3 = -il^ and generate a finite group; in

fact, the corresponding reflection group is conjugate to (^12 | 1-4? T | D2) [c/- (3.6)].
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The root graph is congruent to

^'\ Q "^^ Q »

and equivalent to

op (3--^ @ »

for some c e U ̂  5^3 a.

The latter statement follows from < ^,3, ̂  ̂ ,3 ̂  ̂ 3 ̂ , > = < ̂ , s^ >;

(iv) put ^ = 83 and b == fS"172 (81+82+83), and let L^ be the vector graph

a (3) ^3 % (3) fc

Then L^ is a 2-dimensional complex primitive root graph with reflection group W (1̂ )
conjugate to (^ | ^2; T | D^); furthermore d(L^) = ̂ (W^)) = 0 [c/. (3.6)];

(v) let m, n > 1. By Bj" or F (m, 1, w) we denote the vector graph

-9 ̂ 2

©—————0————0 ..... (n points)

and by D^ (m) or F (m, m, n) the vector graph

• / ^s^
e^^cosCTTnT1 ) f ,>0————0 - — — • <n points , n > 3)

so B^ = B^ and D^ (2) = D^ in accordance with (i).

It can be deduced with the help of (2.5) (v) that Y(m,p,n) is a root graph, with
W (F (m,p, n)) conjugate to G (m,p, n) (j> = 1, m). Furthermore

and

while

d(T(m, m, n)) = max (3, m),

,,—, . .. f 4 if m = 2,
rf(r(m,l,n))=^ ^^

^(m^n))^1"^3'"0 if P~_^^^d,
[ max (4, m) if p 'm is even.

Finally, r (m, m, n) is equivalent to its complex conjugate.
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(4.5) All usual definitions concerning root graphs (like complex) applied to a cycle C
of a root graph (B, w) are meant to hold for the sub-root-graph of (B, w) spanned by C
[i. e. for (C, w |c)].

LEMMA. — Let r = (B, w) be a root graph:
m

(i) let C = { e^ 6?2, . . . , ̂  } be a cycle ofT; put ^+1 = ^. If ]"[ (e, \ e^^) e C\R,
i=l

then C spans a complex root graph;

(ii) ;/ w (B) = { 2 } and Y is complex, then T contains a cycle [ e^, e^ ..., e^ } such
m

that ]~[ 0?, 16?,+i) e C\R (where e^+^ = e^); hence dim (F) ^ 3;
i=i

(iii) /^ r be irreducible and let G be an irreducible n-dimensional reflection group with

W (F) c G; then T can be extended to a root graph Y' such that W (P) is an irreducible

n-dimensional reflection subgroup of G;

(iv) suppose r is irreducible and complex, w (B) =2, d (F) = d (W (F)), and

n = dim (F) ^ 3; ^n ^r^ ^ a ^-dimensional irreducible complex root graph TQ with

W (Fo) <= W (F) a^ rf(Fo) = d(W (F)).

Pn?o/?

(i) One easily sees that a cycle C as in (i) is not embeddable in a real vector space.
This proves (i);

(ii) if w (B) = { 2 } and r does not contain any cycle as described in (ii), then (a | b) e R
for any a, b e B, up to congruency of F. It is immediate that we have W (F) c G / (R°°),
up to conjugacy of W (F);

(iii) let W be the subspace of C" spanned by the roots of r. If W is a proper subspace
of C" such that ^:eW u W1 for any root x of G, then G is reducible; so there is a
unitary root v ^ W u W1. Let Fi be the root graph spanned by F and u. Now
dim(r\) = dim(r)+L Continue with I\ instead of r, and so on, until the newly
obtained root graph is ^-dimensional.

(iv) if n = 3, we have nothing to prove. We use induction on n. Suppose n > 3.
Because of induction it suffices to construct a complex irreducible root graph I\ of dimen-
sion <n with W(r\)^W(r) and rf(r\) = rf(F). Let a, 6 e B be such that
| (a | b) [ = cos (TC rf(r)~1). Let C be a complex cycle of F with a minimal number of
points. Let [e^, e^, ..., e^} form the set of points of C, numbered such that

(
e
! | e

i+l) ^0 for any iem (^+1 = ^i). Note that C does not have any subcycles
(so (Ci | €j) = 0 if both | i—j | > 1 and { ;, j } ^ {1, m }) and that C is as described
in (ii). Without loss of generality we may (and shall) assume that e^ is end point of a
minimal path connecting {a,b} and C, and that a is the starting point of this minimal
path; thus { ^ Z ^ n C ^ O implies that e^ = a. Ifm ^ 4, then { s^ e^ } u B\{ e^ e^ }

spans a root graph r\ as wanted. Therefore we may assume that m == 3. If { a, b } ^ C,

we are through. We are left with the case that { a, b } n C consists of at most one point.
If { a, b } n C = 0, let c be the (unique) point with (c \ e^) -^ 0 in the minimal path given
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above, otherwise put c = b (then (a | c) = (a \ V) + 0). If both (c | ^) + 0 and
(c | ^3) ^ 0, then there is an i e 3 such that the triangle spanned by { c } u C\{ e,}

is complex; now { c ] u B\{ e,} spans a root graph r\ as wanted.

Thus we may assume (^3 | c) = 0. Replacing ^ by ^ 6?2, if necessary, we obtain
(^ | c) + 0. If the triangle [ e ^ e ^ c ] is complex, we can take for Fi the root
graph spanned by B\{ 63 }. If the triangle is real, then the root graph spanned by

{ s
e^

 e
! } ^ B\{ ^i, ^3 } yields the reduction to dimension < n.

(4.6) THEOREM. - Suppose G is an n-dimensional complex irreducible reflection group,

all reflections having order 2 and n ^ 3. Then there is a ^-dimensional complex

irreducible root graph T with d (T) = d (G) and W (F) c G.

Proof. — We proceed by induction on n. The order of a point in any vector graph
that will be considered here is 2.

Let n = 3. Put X = cos (n d(G)~
1
). If follows from the definition of d(G) that

there are unitary roots e^, e^ of G with (e^ \ e^) = X. We add a unitary root ^3 in order
to obtain an irreducible root graph Fo spanned by { e^ e^ e^ } \cf. (4.5) (iii)]. If TQ

is complex we can take F = Fo.

Consider the case that FQ is real. After replacing G by a suitable conjugate, we may
assume that Fo is a Coxeter graph; in fact, Fo is

P—2——P————Q (cf. (4 .4) ( i ) )
^i €3 €3

If for every unitary root v of G there is an a e U such that a (v e^ e R (; e 3), then every
reflection of G has a real matrix with respect to e^ e^ ^3, contradictory to G being complex;
so there is a unitary root v of G with the following property:

(1) for any a e U there is an i e 3 with a (v | e^ e C\R.

Take such a unitary root v with the additional property that (v \ e^) e R*. If r, e^ e^

are linearly dependent, then either i?, e^ s^ e^ or s^ v, e^ e^ are linearly independent.
After replacing e^ by s^ e-^ or v by s^ v in the respective cases if necessary, we still have
that (v | e^) e R*, and that (1) holds, but also that u, e^ e^ are linearly independent. Put

B! = { ^i. ̂  v}, B^ = {(?i, s^ <?3, v }, 83 = { s^ e^ ^3, v},

84 = { ̂ , e^ v} and 85 = { e^ e^ s^ v ] .

Let r, be the vector graph spanned by B^. Suppose none of these five vector graphs F, is
a complex irreducible root graph with d (F,) = d (G).

Now I\ is an irreducible root graph, so r\ is real; but (e^ \ e^), (v | e^) e R*, so
(v | e^) e R by (4.5) (i). This implies that (i; | s^ e^) e R and (v | ^3) e C\R because

of (1).

4° SERIE — TOME 9 — 1976 — N° 3



FINITE COMPLEX REFLECTION GROUPS 403

If e^ s^ e^, v were linearly independent, then 1̂  would be a complex root graph.

Thus there are ^ ^ 0, ̂  e C\R such that

(2) t ^= ̂ i+^^+^s-

Suppose (v | ̂  ^i) 9^ 0. Reasoning with F3 as with F^, we get that v is also linearly
dependent on s^e^ and ^3. From this and (2) we derive that v e C (s^ e^—2 ̂ 3);
this however contradicts (1).

We now have (v | s^ e^) == 0; so ^i (1—2 X2) = 0. Since ^i 7^ 0, this is equivalent
to X, = 2-172. Thus rf(F*) = rf(G) =4.

Note that (u | e^) e R*. Now u, e^ e^ are linearly independent, so T^. is a complex
root graph. If | (v | e^ \ = 2"172 for some ie { 2, 3 }, we are through. Therefore we
may assume, after replacement of v by —v if necessary, that (v | e^) == | (v | ̂ 3) | == 1/2.

This means ^i .^24-^2 = 1 ̂ d | ̂ 2 | = 1- Reasoning with F5 as with F^, we also get

| (^e ^ | ̂ 3) | = V^» so I 1+^-2 | = I? ^d ^-2 e {co? G)2 }• But now ^it is clear that
there is a unitary transformation t of C°° such that te^ =-£3, ^2 = 2"172 ^—^
^3 = 2"172 (£1—82), and v = 2"172 (^2 Si—Sa). The conclusion is that the reflection
group < s^ s^, s^, s^ > is conjugate to G (6, 3, 3) [this follows from the proof of (2.4)].
By (4.4) (v), we have 4 = d(G) ^ d(G(6, 3, 3)) = 6. This contradiction establishes

the 3-dimensional case.

Suppose n > 3. Let H be a real irreducible reflection subgroup of G with d (H) = d (G)

and maximal with respect to these properties. Then H is of dimension ^ 3. Up to
conjugacy, there is a Coxeter graph YQ = (Bo, Wo) with Bo = { e^ e^, . . . , e^ . . . , ̂  }
such that (e^ \ e^) = -cos (n d(G)~

1
), (^-i | ̂ ) = -1/2 (3 ^ f ^ r), e^ is end point ofFo,

and W (Fo) = H.

Since G\H -^ 0, there is a unitary root v of G such that s^ e G\H. If either u or s^ v

is linearly dependent on e^ . . . , ^-i, ^+1, .. . , ^, the induction hypothesis, applied
to the subgroup of G generated by { s^\ i ^ r } together with Sy or s^ s^ s^, provides
a root graph as wanted. (Note that such a subgroup is complex, for otherwise the roots
of this group together with ^ could be embedded in R°°, in contradiction with the

maximality of H.)

Thanks to this argument and (4.5) (iv), we are left with the case:

(3) Both v, e^ . . . , ^-i, ^+i, . . ., ^ and s^v, e^ . . . , ^.-i, ^+1, ..., ^

span irreducible real root graphs.

After replacing v by a suitable scalar multiple, we have that (v | e^ e R for i ^ r, and
(v | ^) t R. Furthermore, (v | ej) ^ 0 for some j + r, so we can change v by an element
of < ̂ J i ^ r, r-1 > to make (v \ ̂ -i) ^ 0. This implies that (^ u | ^-i) e C\R and
(s^v\ei)eR for i+r-\,r. Because of (4.5) (i) and (3), we must have that

(s^ v | €i) = 0, so (v | e^) = 0 if i 1=- r— 1, r.

Put u = ^2+^3+ - • • +^r-i = ^2 • • -^-2 ^r-r Observe that M is a unitary root of H
with (e^ | u) = —cos (TT rf(G)~1). If u is a linear combination of e^ u and e^ then the
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subgroup K of G generated by the reflections with roots v, e^ u, e, is complex irreducible
in dimension 3 and satisfies d(K) == d(G\ so we are done.

Suppose v is linearly independent of e^ u and 6?,. Since

(s^s^v | 6?i)=-2(^ [ e^)(v | ^_i)eR* and (s^v \ u) = (v \ e,)eC\R,

the root graph spanned by e^ u and s^ s^ v fulfils the demands for r.

(4.7) COROLLARY. - G as in ;(4.6). Suppose moreover that G is primitive

and n ^ 8-rf(G)^J4. Then \there \is a primitive complex (8 - d {G))-dimensional root

graph r with d(T) = d(G) and W(r) c G. In fact, T can be obtained as an extension

of any 3-dimensional irreducible complex root graph To with d(To) = d(G) and W(To)^ G.

Proof. - By the theorem there exists Fo as described. By Lemma (4.5) we can extend Fo
to a complex irreducible (7-^(G))-dimensional root graph Fi with W (r\) c G. Since
G (2, 2, 4) is real and d{G (3, 3, 3)) = 3, we have by (4.4) (v) and Lemma (2.7) that
W (I\) is either primitive or has a unique system of imprimitivity. By (2.6) and (2.9),
there is a unitary root v of G which extends Fi to a root graph as wanted.

(4.8) Remark. - If we replace the inequalities in the hypotheses of the preceding
corollary by n ̂  4 and d(G) = 5, we get, using the same arguments as before, that there

exists a primitive complex 4-dimensional root graph F with d(T) = 5 and W(F) c G;
however, a similar root graph of dimension 3 would be more useful [compare (6.6)].

(4.9) DEFINITIONS. - Let £ = (R,/) be a pair consisting of:

(1) a finite set R of nonzero elements of C°°

(2) a map/: R -> N\{ 1 } such that for all a, b e R

^ / (a) R = R and / (5,, f ̂  b) = / (fc).

In this situation 2 is called a pre-root-system. If R is a subset of a linear subspace V of C°°,
we say that £ is a pre-root-system in V.

To £ = (R,/) is associated the reflection group W (£) defined by

W(£)=<^JaeR>.

[Since W (£) fixes R1 pointwise, the restriction of W (2) to the vector space spanned by R
is faithful, so W (£) can be viewed as a group of permutations of R; hence W (£) is finite.]

A pre-root-system £ = (R,/) is called a root system if for all a e R

(3) aaeR o aaeW(£)a.

We shall say that £ is isomorphic to the root system (R',/') if there is a unitary trans-
formation t of C00 such that t (R) = R7 and /' (to) = f(a) for all a e R.
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(4.10) Remarks:

(i) If r = (B, w) is a root graph.. then the pair 2 = (R,/) where R = W (T).B and
the map/: R —> N\{ 1 } is induced by the order function OW(D defines a pre-root-system
with W (2) = W(F);

(ii) let G be a finite reflection group in a linear subspace V of C°°. For any reflection s e G,

we choose a unitary root ^ e V. Let Ro be the set of elements ^ e V obtained in this
way, and define /o : Ro -^ N\{ 1 } by fo (a) = OQ (a) (a e Ro). Now R = G.Ro
furnished with the extension /: R --> N\{ 1 } of/o given by f(ga) = /o (a) for a e Ro,
g e G (note that/is well defined) yields a pre-root-system (R,/) in V;

(iii) if 2, 2' are two isomorphic root systems, then W (S) is conjugate to W (S').

(4.11) LEMMA. — Suppose £ = (R,/) is a pre-root-system. We have:

(i) { s^ ̂  | a e R, 0 < j < f(a)} is the set of all reflections in W (2);

(ii) there is a root system 0 = (S, g) with W (0) = W (2), S <= R and g ==/|s.

Suppose moreover that 2 is a root system;

(iii) ;/ A c: R is such that W (2) = < ̂  ̂  \ a e A >, then every reflection of W (2)
is conjugate to s^ ̂  for some j\ m e N and a e A; furthermore, R consists of W (I)-orbits

of elements in A;

(iv) fe^ A be a subring of C m7A exp (2 TC i/m) e A /or ^cA m e/(R), fl^rf fe^ A be as

in (iii) 6^ with the additional property that (a \a\ (b \ a) (a \ a)~
1
 e A for all a, be A;

then (b \ a) (a \ d)~
1 e A for all a, beR and W (2) is defined over the quotient field of A;

(v) tf g is a regular element of V/ (2), then the order of g is a divisor of \ R| .

Proof:

(i) put T = { v e C00 | C v n R ¥•• 0 }. Suppose u e C°°\T is a root of W (2) of
order m > 1. Now W(2) leaves T invariant; so by (1.8) there is a linear character
% : W (2) -> C such that, for any reflection r e W (2), we have

XM=
det(r) if r has a root in T,

1 otherwise.

On the other hand, W (2) is generated by the s^, /(„) with
 aeR, so ^ = det, and

1 = 5c(^J == det(^J; this is absurd. Therefore C°°\T does not contain any roots

of W (2), whence T is the set of roots of W (2).

Let s be a reflection in W (2) with eigenvalue ̂ 1. We have just seen that s has a
root a e R. Put Q = W (2). (C* a). Using (1.8) once again, we obtain a linear character
\|/ : W (2) -> C* such that for any reflection r e W (2), we have

vKr)=
detr if r has a root in Q,

1 otherwise.
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There exist a , ^ , . . . , ^ e R with s == s^,^ s^,^. .^.^; now, the order
of ^ = det s = ^ det s^^ is a divisor of/(a), and we are done;

fli eQ

(ii) put U = { C * M | ^ is a root of W(£)}. Let ^,^, . . . , ^eR be such that
{ C* MI, C* u^ . . . , C* ui} is a set of representatives of the W (S)-orbits in U. Define

S = (J W(S)M, and g =/|g. Putting <D = (S,^), we have that W(0) = W(2) and

that 0 is a root system;

(iii) Pi = W (2).A together with/i : R^ -> N\{ 1 } defined in the obvious way gives
a pre-root-system £1 with W (£1) = W (£). If a e R, an application of (i) to £1 yields
^eW(£).A. The rest of (iii) is clear from formula (3) of (1.6);

(iv) since

(^./(a)& | c)==(b | c)-(l-exp(2Kikf(a)~
l
)(b \ a)(a \ c)(a j ^-^A

for all a, b, ceA and feeN,

the proof comes down to a straightforward induction argument;

(v) a regular g e W (£) permutes the elements of R and, unless ^ = 1, fixes no element
of R [c/. (1.10) (i)]; so all ^-orbits have the same number of elements, i. c. the order
of g.

(4.12) Examples:

(i) put

R (m, w, n) = ^.Hm. { ^27ln/OT e,-s, | i,j. I e N, f + j, 1 ̂  f,y ^ ^ },

and let/^^^ : R (w, w, w) -^ N\{ 1 } be the constant map 2; then

£ (w, m, n) = (R (w, w, n),f^^)

is a root system with

W (S (w, w, n)) = G (m, m, n) and ( R (m, m, n) [ = w2.^ Qz-l). ̂ (w, 2)~1.

Let ^ = ^ - l m e N \ { l } . Put R(m,p,n) = R(m,m,n) u ̂ {^\1 ̂  k ^ n}, and
^t/m^n •• R (w,/?, ^) ̂  N\{ 1 } be the extension off^^ determined by/(8fc) = q for
all k\ then I<(m,p,n) = (R(m,p, n),f^p^) is a root system with

W(L(m,p,n))=G(m,p,n);

(ii) putR = ̂  (si, l /3(2co+l)((D J£l+e2+£3) |7== 0, 1, 2 },andlet/: R-^N\{ 1 }
be the constant map 3; then S = (R,/) is a root system such that W(£) is conjugate
to (P6 | P2; T | D^) [compare (4.4) (iv) and (4.10) (i)].
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(4.13) DEFINITION. — Let £ == (R,/) be a pre-root-system. A neat extension of £
is a root system (S, g) with the properties S =) R, ^ IR == /, g (S) = /(R), and

{\(a | ^l. lal-1.^!-1 | a^beSng-^l)}

c{|cos(7rfe/m)| | feeZ,0<m^(W (£))}.

(4.14) LEMMA:

(i) If G is a reflection group, and 2 is a root system such that W (£) is conjugate to a

proper reflection subgroup of G with o (W (£)) = o (G) and rf(W(£)) = rf(G), ̂
G = W (£') /or .sw^ roo? system 2V wAfcA LS' isomorphic to a neat extension of £;

(ii) no root system in C3
 is a neat extension ofL (3, 3, 3).

Proof:

(i) is obvious;

(ii) suppose xeC
3 is an element outside £ (3, 3, 3) contained in a neat extension.

Changing the length of x if necessary, we may assume | x \ = ^/2. Then

| (X\ 8i-0)£,)| = 0, 1

for any pair i ^ j (1 ^ i, j ^ 3). An easy computation shows that this is impossible.

(4.15) We now present a number of vector graphs in order to construct primitive

reflection groups.

By Js (4) we denote the vector graph

where a == 1/2 (1+^7) (this is a root of X^X-^ = 0), ^ = £2, ^ = l/2a (82+83),
^3 =-1/2(81+82-083).

By L3 we denote the vector graph

(̂ i3J_^ z3-^ ^

ei ea e3

where ei = 63, ^ = (S"172 (61+82+63), ^ = £2.
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By M3 we denote the vector graph

0^————Q^U_^

GI QZ €3

with e, = 2-1/2 (82-83), ^ = 63, e^ == f 3-1/2 (81+62+83).

By J3 (5) we denote the vector graph

where

e
! = Si, ^2 == - (®2 COS (7C/5) 81 - COS (3 71/5) 82 + 1/2 ©83),

6?3 = - (1/2 81 +COS (3 71/5) 82 + COS (7C/5) 83).

By N4 we denote the vector graph

e°-T^^—————8

where ^ = 1/2(1+0(82+64), ^=1/2(1+0(63-82), ^ = 1/2 (-s^+i £2-83 +164).
£•4 = £i.

By L4 we denote the vector graph

(̂ —^s—Q>-̂ L^>_î i—o
ei €2 eg 64

where c^ = £3, ^ = f3- l /2(el+e2+e3), ^3 = 82, e^ = (3-172 (-61+62+84).

By K5 we denote the vector graph
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where

€t = co 2-1/2 (85+86), e^ =-o)2-3/2(-8l+(l+2o))82+83+84+85+86),

e, = I-112 (81-82), e,. = I-1'2 (8^-83), e, = I-1'2 (83-84).

Note that e^ e (85 —86)1 for i e 5.

By Kg we denote the graph

§———g - '̂ 8———8——^
where f?i,6?2,^3,(?4,6?5 are as in (5.9) and ̂  = -^"^(o^i+Sz+.Ss+o+ia^+^-Se).

THEOREM. — Z^ r = (B, w) be any of the above vector graphs, of dimension, say, n.

Put G = W(F), R = G (B), and S = (R,/) where f: R -> N\{ 1 } is determined by

w:B-^N\{ l} . Then:

(i) r is a root graph, G is a primitive reflection group in C", and £ a root system

in C" with G = W (£);

(ii) if r ^ N4, then S does not admit a neat extension in C";

(in) ifT= N4, then S admits exactly one neat extension in C", namely A = (S, g) where

S = G (B) u G (81+82+83+84) and g : S -> N\{ 1 } is the constant map 2;

(iv) r is equivalent to its complex conjugate.

The reflection group associated with the root system A in (iii) will be denoted by
EW (N4). Thus EW (N4) = W (A). Note that EW (N4) is primitive since it contains
W (N4) as a 4-dimensional primitive subgroup.

We sketch a case-by-case proof:

(i) since the proofs in the different cases are rather similar, we shall only deal with
the case r = K^. As

Sez Se, S^ S,, S^ S,, S^ S^ ̂ /2 ̂  G ̂  (83 + 84)

there is no problem in verifying that

(1) R=G^=^lJ8,±8fc,85+86, l((-l-2o))(-l) f c l8,+(-l) f c 28fe

+(-l)fc38,+(-l)fc48,-85-86) A (-1)^ == 1, { J , k, I, m} ̂  4l
p=l J

and that

| R | = 270.
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It follows that £ is a root system, that G is a reflection group and that F is a root graph.
It remains to prove that G is primitive. To this end, note that S is a neat extension of
the pre-root-system spanned by the subset

^J8,±efe,£5+£6^((-l~2(o)(-l) f c l£l+(-l) f c 2e2+(-l)k 3e3

+(-1)^-^-86) n (-I)'' = 1;7, f ee{2 , 3, 4},7 ^ fel of R.
p=i J

As the reflection group associated to this pre-root-system is conjugate to W (A5), the
group G contains a primitive subgroup, and is therefore primitive itself;

(ii) again, we shall restrict ourselves to a single case, in fact to the case r == J^ (4).

The assertion can be stated as follows.

(2) There is no nonzero v e C^C.R with | (t? | ^) |.| i; j - 1 . ) ^ [-1 e { 0, 1/2, 2-172 } for
every x e R.

3

To prove (2) we choose v = ^ v^ e, ^ 0 such that | v [ = 2 and [ (v | x) |2 e { 0, 4, 8 }
i=i

for any x e R. It is enough to show that the existence of v leads to a contradiction.
3

Setting x = e,, we get 11\ |2 e { 0, 1, 2 } for each i e 3. Furthermore ^ | v^ |2 = 4, so
»=i

up to a permutation of the coordinates (i. e. modulo action of G) we have either

(3) |cJ2 = |^|2 ===2 and ^3=0,

(4) M^2 and I ^21 ==|^31 =1-

Setting x = a (e; ± s,), a e^ ± e^ ± £3 in the above condition on v, we get

(5) \v,±v^e[^l^},

(6) | ̂ ± z;3 ̂ {O, 2, 4},

(7) I^^I^O,^},

(8) loe^l^l^l2^0 '4 '8}-

Suppose (3) holds; then (5) implies i?i = ± iv^ Application of (8) leads to

3 ± y 7 = | a z ± ll^O,^},

which is absurd. Suppose (4) holds; then (6) implies v^ = ± iv^ ± ^2- From (5) we
get that v^ = ± a v^ ± a v^ and from (7) that v^ = ± a 1:3, ± a ^3.

So i;3 = ± v^ and u = ̂  (ael+82+£3) or v = ^2 (oc£i+£2+£3) (modulo action of G).
The first case does not occur, for otherwise v e R, up to a scalar multiple. Thus we are
left with the case

v = v^ (ael+£2+£3) where v^ e U.

Now (8) yields ^/2 = | a2+2 I e { 0, 4, 8 }, which is impossible. So (2) holds indeed,
proving (iii);
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(iii) first of all, note that A is a root system (this results from (1.6) (3) and

•S81+£2+£3+S4 ^ = ^)-

Suppose x = (x^ x^ ^3, x^) e C4\U.R is an element of a neat extension of £ with

[ x | = 2. Then | x^\ e { 0, 1, ^/2 } for each i e 4. Since ^ | x; |2 = 4, we have (up to
1=1

the choice of x within its G-orbit) one of the following three possibilities

(1) Xi = X2 = 0 and | ^3 | = | ^41 = ^/2,

(2) N= 1 O'6^

(3) x i=0 , | x 2 | = | x 3 | = l , |x4|=|^/2.

Calculation of inner products with e, ± e^ yields

(4) |x ,±x, |e{0,^/2,2} for all i^j .

If ^ = 0 and [ ^ . | = 1 for i ^ j, then (4) leads to a contradiction; hence case (3)
cannot occur. Suppose we have (1). From (4) we deduce Rex^x^==0; so
x e C (£3 ± i £4) and a nonzero scalar multiple of x is contained in R'.

In case (2) we have RexiXje { ± 1,0 }. Therefore we may assume, by adapting x

if necessary, that

A:eC(£i+£2+£3+£4) U C(f£i+£2+£3+£4).

If x e C (i £1 +£2 +£3 +£4), then

\(X | £l+£2-l£3~^4)|=|3l+l|^4.Jo,12- l / 2 l ,

so ̂  e C (£1 + £2 + £3 + £4) and, again, a multiple of x is contained in R'. Since R u R' = S
consists of only one EW(N4)-orbit [for s^+^+^+^(2s^) = £ i—£2—£3—£4] , there is
no other neat extension of S which is a root system but A;

(iv) in case r = Kg, for instance, F is equivalent to the root graph spanned by

^1, ^2» ^3» -^3 e
^ -

e
59 -^6-

(4.16) COROLLARY. — The degrees, the regular degrees, and the numbers of reflections
of given order of the reflection groups discussed in (4.15), as well as corresponding
isomorphisms with classical groups, are as indicated in the following table.

q is a non-degenerate quadratic form of index [1/2 (w—1)], and A is a hermitian
form on F^.

As to the proof, we will only treat the case F = Ks (in the notation of (4.15)).

Put Ro = ^/2 R, and put Vo = ^s-^)1 n C6. First of all we shall determine the
degrees d^ d^ ..., ds of G in Vo.
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TABLE

Shephard-
Todd

number

24. . . . . . . . . . .
25 . . . . . . . . . . .
26 . . . . . . . . . . .
27 . . . . . . . . . . .
29 . . . . . . . . . . .
31. . . . . . . . . . .
32 . . . . . . . . . . .
33 . . . . . . . . . . .
34. . . . . . . . . . .

Group

. W(Ja(4))

. W(L3)

. W(Ma)
• W(Js(5))
• W(N4)
. EW(N4)
. W(L4)
• W(K,)
. W(Kfi)

Degrees

4, 6, 14
6, 9, 12
6, 12,18
6, 12,30
4, 8, 12, 20
8, 12, 20, 24
12, 18, 24, 30
4, 6, 10,12,18
6, 12, 18, 24, 30, 42

Regular
degrees

6,14
9,12

1 Qlo

30
20
20,24
24,30
10,18
42

Nun
0:

refl<
tio:

of 01

2

21
—

9
45
40
^(\bu

45
126

iber
F
se-
ns
•der

3

24
24

80
-

W fK^/u, s 0. (¥,. a}

Associated
isomorphisms

W (Ja (4)) s Oa (F7, q)

W (Js (5)) s 03 (Fg, q)

W (L4)/U2 S U4 (F4 | F^, /O

W (Ks) - 05 (F3, q)

Put

^ = ̂ 4 ̂ 3 ̂  ̂

1

4

"('v^
1

1

3

1

1

1

i^/3

i^/3

-^3

i^/3

^3

-^3

3

-1

1

-1

-1

-i^/3 i^/3 1^3

-1 1 1

3 1 1

1 -1 -1

-1 1 -3

-1 -3 1

Then c3 has eigenvalues -co, -co, -co, -1, -1, 1; so c has order 18. Let ^g be both
a primitive 18-th root of unity and an eigenvalue of c. Then ^g =-(»• Now ^g
and ^| are conjugates of ^13 over Q(®), and eigenvalues ofc. Furthermore, c has an
eigenvalue 1 (since c fixes 65-eg) and two eigenvalues of the form ^, ^\{ with
j,ke[l,3,5}. Now

f=(-l-4(o)£i+e2+£3+(l-2co)e4-e5-86

+^i8((-l-2o)£i+S2+3e3+3e4-e5-e6)+^3 (261+283+484)

is a regular eigenvector in VQ of c corresponding to the eigenvalue (,13. This implies
that (rf,.)ie5. = 18+Ari 18, 12+^18, 6+^18, 19-3 A:+A:4 18, 19-37+^18 where

5

Z
1=1

/;; ^ o ( I e 5). Since there are exactly 45 reflections in G,the equality ̂  d,= 50 holds;

/ 5 x
hence j+k = 8+9 ^ ^ . But j+k ^ 10, so ^ = 0 for each /e 5, and /+A: = 8.

v=i /
This implies that {j, k } --= {3, 5 }; thus the degrees are as stated.
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We have just seen that 18 is a regular degree. Since | R | = 270, we have by (4.11) (v)
that 4 does not divide a regular degree. We shall now establish that 5 is the order of a
regular element. By Sylow's theorem, W (K^) contains an element g of order 5. Since
W (K.5) ^ G / (Q (co)), the eigenvalues of g are all distinct 5-th roots of unity.

Suppose now that g is not regular. Then there is an eigenvector of g (corresponding
to the eigenvalue 1) which is a root of W (K^). Up to conjugacy of g, we may assume
this eigenvector to be £5 +£6- I1 results from (1.5) that g is an element of the group gene-
rated by the reflections with roots in Ron {^5+^6 ̂  which is a group conjugate
to W (04).

As 5 does not divide | W (D^) |, this leads to a contradiction. We conclude that there
is a regular element of order 5 and (since | Z (W (D^)) \ = 2) one of order 10, too.

We leave the determination of the number of reflections of order 2 and 3 to the reader
and finish by settling the associated isomorphisms.

Let <j : Z [1/2, co] —> F3 be the homomorphisms "reduction mod 3" determined by
o (o) = a (-1/2) = 1, and let (p : (Z [1/2, co])6 -^ F^ be induced by a. Put Wo = q> (Vo),
and 85 = £5 +86. Define bo : Wo x Wo —> ̂ 3 by

/ 4 4 \ 4

M E^^+^s's. E^SI+^SS = E^^-^5^5 (^3^3).
\ i=l i=l / »=1

Then

&o(<P^(p^)=cr((x | y)) for x ,^eVon(z , co h .

This leads to a non-degenerate quadratic form qo °f index 2. One easily establishes
that (p (R) = { x e Wo | qo (x) = - 1 }. Denoting by \|/ the homomorphism from
G/6 (Z [1/2, co]) to G/e(F3) defined in the obvious way with the help of cp, we get
v|/ (G) < 05 (F3, qo) and \|/ (G4') <1 ^5 (F3, qo). The latter group if the known simple
one of order 25,920 (c/. [8]). Since \|/ (G^ + 1, we have \|/ (G-^) = ^5 (F3, qo) and
v[/ (G) = 05 (F3, qo). Comparison of the orders of both G and 05 (F3, qo) shows that
the restriction of \|/ to G is the desired isomorphism.

5. The primitive case

In this chapter we shall show that for any complex primitive w-dimensional reflection
group G (n ^ 3) there is a root system S as discussed in (4.15) such that W (£) is conjugate
to G, thus completing the classification of all complex reflection groups. Prior to this
classification we shall give a useful theorem of Blichfeldt (see [9]; the idea of the proof

goes back to Frobenius, [12]).

The main goal of this chapter is the proof of (5.12). Put V = C".
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(5.1) THEOREM (Blichfeldt). — Let G be a finite group of unitary automorphisms ofV.

Let g e G and let {(^, ̂ ? • • • ? ^m } be the set of distinct eigenvalues of g. Denote Vj the

eigenspace of g corresponding to ^j. Suppose \ arg ̂  ̂ 1 | ̂  7i/3 /or a// y e w;

(i) if keG has eigenvalues r|i, x\^ . . . ,T | ^ ^MC/! ^A^ ^^ is an a e U m7A
| arg ar|, | < 1/2 n for all i e n, then k Vi = Vp

(ii) z/ G 75' primitive, then g e Z (G);

(iii) ?/* ̂  A^y only 2 different eigenvalues and k is as in (i), then gk = kg.

(5.2) COROLLARY. — Let dim V = n ^ 3, and let G be a finite primitive group of unitary

transformations of V:

(i) ?/ H is a primitive 2-dimensional reflection subgroup of G then H is conjugate to

W(L^) (i.e. to (^|H2;T|D2));

(ii) G does not contain any reflection of order ^ 4; ifG contains a reflection of order 3,
then G contains a reflection subgroup conjugate to W (L^);

(iii) suppose H is an irreducible r-dimensional reflection subgroup of G, and 1 < r < n;

then | Z(H) | < 6; if r = /z-1, then | Z(H) | < 4; ?/ r = TZ-I and [ Z(H) | = 3, then

< G, G) !„ > contains a reflection subgroup conjugate to W (L^);

(iv) if m, p, r 6 N or^ ^^cA ^/^ ^ [ m, m > 1, r ^ 2, ^rf G (w,/?, r) is a reflection

subroup of G, then m ^ 5 wzrf m ^ 3 p; in particular^ d (G) ^ 5;

(v) ?/ H is a primitive r-dimensional reflection subgroup of G with r < n, then

|Z(H) |<4;

(vi) any irreducible 2-dimensional root graph Y with W (F) £ G is equivalent to 1̂  (m)

(3 ^ w ^ 5), Bj, or L^.

Proof. — By (ii) of the previous theorem, there is no element g e G having the set { 1, ^ }
of distinct eigenvalues if I, is a primitive root of unity of order ^ 6. This implies the
first part of (iii), the absence of reflections of order ^ 6, and the absence of 2-dimensional
primitive reflection subgroups not conjugate to (^ | ̂ ; T [ D^), (^12 | ̂  T | D^),

(Hs | ^4; 0, T), Ou | U2; 0 | T), ^.0, ^.I [̂  (3.6)].

Since (ug [ 1^4; 0 | T), (1̂ 4 11^2 ^ 0 [ T), and ^4.0 contain the element

^- i /o 7t f (\ i\ —2 ̂ ril -i)^
[cf. (3.1)], and since p4.I contains the element —1/^/5 ( ' a_ ) where

T| = exp(27cf/5) [cf. (3.1)], each of these four groups has an element with eigenvalues
—CD, -co2. Another application of Theorem (6.2) shows that a group H as described

in (i) must be conjugate to (pg | \^i\ T | D^) or (^12 P-4; T | D^). Suppose now that G
contains reflections of order ^ 3. Denote the orbit of a root of such a reflection by B.
If we have (x \ y) = 0 for each linearly independent pair x, y e B, then the orbit B gives
rise to a system of imprimitivity of G. Thus there are x, y e B with (x \ y) ^ 0 and
C x ^ C y. Considering the subgroup of G generated by all reflections with root x

or y, we obtain from (2.2) that there exists a primitive 2-dimensional reflection subgroup
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in G. This subgroup must be conjugate to (^ | ̂  T [ D2) or (^2 | ?4? T | ^2)9
 as we

have previously seen. As a consequence, there are no roots of G of order ^ 4 (for

neither (^ [ ̂  T | D2) nor
 (^12 \ ^4 5 T | D2) ^

oes contain reflections of order ^ 4).
This proves the first part of (ii).

If G contains an (^—l)-dimensional reflection subgroup with center of order m, then
< G, ^27ll7m !„ > is a primitive group containing reflections of order m; hence m < 4.

Let H be as in (v). We may assume that r > 1. Denote by K the normal subgroup
of G generated by all reflections of G. The primitivity of G implies that K is irreducible
in dimensions n. Note that | Z (H) | < 4 if H is conjugate to W (A,.). If H is not
conjugate to W (A,.), apply (2.6) to an irreducible (r+l)-dimensional reflection subgroup
of K containing H, and use the above argument to obtain | Z (H) | < 4, and (v).

As | Z ((^i 2 | ̂  T | '
D
2)) | = 4, there is no reflection subgroup of G or < G, co !„ >

conjugate to this one. If H is as in (iii) and r = n— 1, then there is a reflection of order 3
in < G, CD !„ >; it follows by the argument before that this group contains a subgroup
conjugate to (^ | 1^4; T | D^) = WQ^). This finishes the proofs of (i), (ii) and (iii).

As to the proof of (iv), remark that G(m,p, r) has reflections of order p~
1 .m. So

m ^ 3 p. Use the element

f 2ni/m

^-2ni/m )eG(m,m,r)

In-2/

[considered as subgroup of U^(C)] to derive from (6.2) (ii) that m ^ 5.

Finally, (vi) is obtained by putting (i), (iv) and (4.4) (iv), (v) together (note that G (4, 2, 2)

is not generated by 2 reflections).

We shall use the convention to write r, instead of ̂  ̂ ) throughout the rest of this

chapter.

(5.3) Let G be a complex 3-dimensional finite group generated by reflections of order 2.

Put m = rf(G). By (4.6) there is a root graph T:

eY -ac e-1

with a, b, c e R>o, a e U\R, c = cos (n/m), m = d(T), and W (F) ^ G.

PROPOSITION:

(i) ifm^S, then F is equivalent to D^ (m) (m ^ 3) or J^ (m) (m ^ 4);

(ii) ifG is primitive, then G is conjugate to W (J3 (m)) (m = 4, 5);

(iii) no irreducible n-dimensional reflection group contains a reflection subgroup conjugate

toW(J^(5))ifn^4.
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The proof will be given in a number of steps.
Write

P=|(^2 | e,)\, q=\(r^e, \ ^)|, r=\(r^e, \ e^)\.

We shall frequently use that

(1) P. ̂  r,a, b, ce{|cos(7ife/0| feeZ, 0< ;^m}\{l}.

Note that/?, q, r can be expressed in the data a, b, c, a; for example,

P
2
^}^ | e^+2be^)\

2
==a

2
+4b

2
c

2
-{-4Re(labc

(2) and

q
2
 = b

2
+4a

2
c

2
+4ReQiabc.

We shall refer to any formula of this kind by (2).

Subtraction gives

(3) P
2
-q

2
=(a

2
-b

2
)(l-4c

2
),

Again, (3) stands for all similar expressions.

A translation of det((^,: [ e,)) > 0 [cf. (4.3) (vii)] in the present case is

(4) l-a
2
-b

2
-c

2
-2Reaiabc > 0.

Elimination of Re a abc with the help of (2) yields

(5) a
2
-}-?

2
 < l+O-^^Cl-lc2).

As Re a > -1, it is evident from (2) that

(6) pqr ^ 0.

If m = 3, then r is the root graph

XC3

eO——iS-̂ e.

with a e { o), o)2 }; so r is equivalent to D3 (3) this follows from

a = b = c = p = q = r = - and Re a = — - ,
2 2

see (1), (2), and (6)1.
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Now W (Da (3)) = G (3, 3, 3) is imprimitive. If G is primitive, then (4.14) leads to
a contradiction with the existence of G. Therefore the primitivity of G implies that
m ^ 4.

Suppose m = 4; so c = cos(7i/4) = 2~
l/2

. Denote by Fo the root graph spanned
by e^ and ^- We assert:

(iv) there is a root v e W (To) ^3 of W (F) 5'McA ^/^ F is equivalent to the root graph

spanned by e^, e^y v and such that | (v \ e^) \ = \ (v \ e^) [ = 1/2.

Proof of (iv). — Assume that a == b = 2 does not hold (otherwise we are done).

If a = 1/2, 6 = 2"172, we obtain from (3) that q = r SLndp
2
-q

2
 = 1/4.

Together with (1) and (6), it follows that p = 2"172 and q = r = 1/2. Thus we can
take v = /*2 ^3.

If a = 2"172, & = 1/2 symmetry in the root graph leads to a choice of u analogous to
the one in the previous case.

If a = b = 2"172, then the root graph spanned by e^ e^ r^ e^ is equivalent to F
[cf, (4.3) (vi)] and congruent to the root graph dealt with in the preceding case [as can
be seen by computation of p from (3), (5) and (6)]. This finishes the proof of (iv).

Calculating the inner products for the root graph spanned by v, e^ e^ [with the help
of (2)] in the case a = 2, b = 2~1/2 of the previous proof, we obtain the following corollary:

(v) ifl~112 e [ p , q, a, b }, then F is equivalent to 3^ (4).

We conclude from (iv) that r is equivalent to

Ifp = 1/2 (or 2-172), then Rey. := -2~172 (or -2-372), and F is equivalent to D3 (4)
(or J3 (4)). Hence G contains a reflection group conjugate to either G (4,4, 3) or
W(J3(4)).

Suppose that G is primitive. If G contains a reflection group conjugate to G (4, 4, 3),
then < G, i 13 > is a primitive 3-dimensional finite group containing a conjugate of

(\ \.
i. e. a reflection of order 4. This contradicts (5.2) (ii). As a result, G has a reflection
subgroup conjugate to W (J3 (4)). From (4.14) (i) and (4.15) (ii), we obtain that G itself
is conjugate to W ^3 (4)). By now we have established (i) and (ii) in the case m ^ 4.
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Suppose m = 5; so c = cos (n/5) = (1 +^/5)/4. Note that

{|cos(7ife/'5)| keZ} = {0, cos(7r/5), cos(27i/5), 1} = Jo, l(± 1+^/5), 11.

We assert

(vi) a, b, p, q t { cos (71/5), cos (2 n/5) }.

Proof of (vi). - By an argument similar to the one at the end of the proof of (iv), it
suffices to prove that a, b t { cos (n/5), cos (2 7C/5) }.

Suppose that either the group generated by r^ and ^3 or the group generated by r^

and ^3 is conjugate to W (I^ (5)) = G (5, 5, 2). We may assume that a = cos (7C/5)
(after interchanging e^ and e^ replacing ^3 by ^3 ̂  ^3 and changing some signs if necessary).
We have the following possibilities for 6.

(a) b = cos (2 Ti/5). Using (3), we get q
2
-?

2 = (5+^/5)/8; but this is impossible
because of (1).

(b) b = cos (Ti/5). Bow (5) gives p
2
 < 1 -1/4 ̂ /5 < 1/2; so p = 1/2, cos (2 7i/5). The

latter case (p = cos (2 Tt/5)) implies that the root graph spanned by e^ r^ e^, e^ is (up to
congruence) as described in the previous case, which is absurd. So p = q == r = 1/2
[cf. (3)]. Application of (3) to the triangle associated with e^ e^ r^ ^3 leads to

I (^2 | ^2 €3) |2 -|(^ | ̂ I^-COS^TC^) and (r^ \ r^e^)=0.

We find that F is equivalent to a Coxeter graph, namely the one congruent to the root
graph spanned by ̂  ̂  e

^ /*i ^2- But this contradicts our assumption of F being complex.

(c) 6 = cos (7t/4). Because e^ e^ r^ e^ span a Coxeter graph (up to congruence)
with | (6?i | e^) | = cos (Ti/5), it follows that r = ( (^ | ^3 6?i) | = 1/2. From (3) we get
p = r = 1/2 and q

2
 = p

2
+(b

2
-a

l
)(\-^c

2
) =0; but this is in contradiction with (6).

(d) b = cos (Ti/3). Thanks to (3), we have p2
-q

2
 = -cos2

 (n/5), which is impossible
because of (1) and (6). This contradiction establishes (vi).

The conclusion is that a, b, p, q e { 1/2,1~
1
'
2
 }. We shall now finish the proof of the

proposition in case m = 5.

Suppose b = cos (7i/4). The root graph associated with e^ r^ e^ e^ is congruent to

a Coxeter graph; so r = | (r^ e^ ( ^) | = 1/2. Note that (3) yields q
2 = (1+^/5)/8 if

a = cos (7C/4); this contradicts (1). Therefore we have a = 1/2, and, using (3) once more,
q = 1/2. Now r is equivalent to the root graph spanned by e^, e^ r^ e^. This root
graph on its turn is congruent to

for some P e U. Thus the proof of (i) is complete in the case b = cos (7C/4).
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If we have a = cos (rc/4), we can reason similarly, thanks to symmetry. Therefore we
may assume that a = b = 1/2 (up to the equivalence of F).

In view of (1), (2), (6), and (vi), we have but two possibilities:

p = - ==> Rey. = —cos(7c/5) and T is equivalent to D3(5),

p = 2~172
 => Reoi = — - and F is equivalent to ^ (5).

If G is primitive, we can argue as in the case where G contains a conjugate of G (4, 4, 3)
in order to obtain that G does not obtain a conjugate of G (5, 5, 3). So far, we have
established (i) and (ii) in case m ^ 5.

Since m ^ 5 whenever G is primitive \see (5.2) (iv)], we are done with (i) and (ii).

As to (iii) of the proposition, note that | Z (W (Ja (5))) | = 6 [c/. (4.16) (ii) and (1.4) (ii)].
Now (iii) is a direct consequence of (2.6), and (5.2) (iii).

(5.4) LEMMA. - Let r be the real root graph

where a, &, c e R>o, a e { -1, 1 }, c = cos (n w~1), and m = d(F) = rf(W (F)):

(i) if m ^ 4, then at least two of the 3 values (r^ e^ \ ^3), (r^ e^ | e^), (7*3 e^ \ e^) are 0.

Suppose m = 5. Denote by TQ the sub-root-graph ofT spanned by e^ e^;

(ii) at least one of the 2 values (r^ e^ \ ^3), {r^ e^ \ e^) equals 0;

(iii) there is v e W (Fo) ^3 m7A (i; [ 6?i) = 0.

Proof. — We will adopt the notation of (5.3) concerning/?, q, r. Note that (1), (2),
(3), (4), (5) of (5.3) hold in this case too.

(i) from (1) and (4) of (5.3), we obtain Re a < 1. Hence a = Re a = -1. By (5.3) (2),
we have/? = | a—1 be \. Similar equalities hold for q and r. From this it is immediate
that a = 6 = c = = l / 2 implies p == q = r = 0. From (5.3) (1) and computation of p,

it is clear that we are left with the case a = l / 2 , b = c = 2 ~
l / 2 (up to a permutation

of a, b, c). But then p = 1/2 and q = r = 0; so we are through with (i);

(ii) suppose pq ^ 0. Since r is real and irreducible, T is equivalent to the Coxeter
graph H3, and | (x \ y) \ 7^ 2"172 for any pair x, y of unitary roots of W (F). We will
check (ii) for all possible values of a and b up to symmetry.

(a) a = cos (2 7i/5), b = 1/2. Then q = | 1/2 ± 2 cos (2 7i/5) cos (7i/5) | = 0, 1 [by (2)
of (6.4)]; but this is absurd.
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(b) a = b = 1/2. Now

p = | 1/2 d= cos (Ti/5) | = (3+^5)/4, (-1+^/5)/4.

So /? = (-1+^/5)/4 = cos (2 Ti/5). Replacement of ^3 by r^ e^ leads to the previous
case.

(c) a = cos (Ti/5), 6 = 1 / 2 leads to the absurdity p = | cos (7i/5) ± cos (7i/5) |.

(d) a = cos (7T/5), b = cos (2 7i/5) yields

q = |cos(27c/5) ± 2 cos2 (Ti/5) | = 1, 1(1+ ^/5),

which is, again, a contradiction.

(e) a = b= cos (2 7i/5). Since;? = | cos (2 7C/5) ± 1/21, we must have that/? = cos (7i/5).
After replacing ^3 by r^ e^ we are back in the preceding case.

(/) a = b = cos (7i/5). Since p = 1 +1/2 ̂ /5, 1/2, we have p = 1/2. Therefore
replacing ^3 by r^ e^ reduces the check to case (c);

(iii) from (ii) we obtain that pq = 0. If q = 0, we can take v = r^ e^ If p = 0,
then by r^ r^ r^ r^ e^ e U e^ we have

(r^r^r^e^ \ e^) = (r^ e^ \ r ^ r ^ r ^ r ^ e ^ ) = 0,

and v = r^ r^ r^ e^ is a proper choice.

(5.5) PROPOSITION. — Let G be a primitive n-dimensional complex reflection group

(" = 3) generated by reflections of order 2, and let m = d (G) ^ 5. Then n = 3, a^rf G
is conjugate to W (J3 (5)).

Proof. — Because of (5.2) (iv), we only need consider the case m = 5. In view
of (4.14) (i), (4.15) (ii) and (5.3) (ii), (iii), it suffices to show that there is a complex primitive
3-dimensional reflection subgroup Go of G with d (Go) = 5.

According to (4.6), there is an irreducible 3-dimensional complex root graph F with
d(F) = 5 and W (D c G. If F is primitive, we can take Go = W (F).

The case that r is imprimitive remains to be considered. Up to conjugacy of G, we
may assume [c/. (2.4) and (4.4) (v)] that F is the root graph

where a e U with Re a = cos (7t/5).

By (2.9) there is a unitary root e\ of G such that e^, e^, e\ span a primitive root graph V

with w (r') s G and m (F) = 5. If F is complex, then Go = W (P) is as required.
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Suppose that F is real. By (5.4) (iii) there is a unitary root e^ of W (P) such that

^i? ^2» ^4 8?^ a root graph congruent to a Coxeter graph and equivalent to F'. We may
assume that (e^ \ e^) = 0 and (^2 | ^4) = —1/2. Putting (^3 [ e^) == — y c (c e R>o, Y e U),
we have that e^ e^ ^3, e^. span the vector graph A:

(Note that we have drawn a connection between ^3 and ^4, 'although the possibility y c = 0
is not yet excluded.)

Now W (A) is a reflection subgroup of G. If e^ e^ ^3, e^. are linearly dependent,
then Go = W (A) is as required. We are left with the case where
(1) A is a root graph.

Because det((^, | ej)) > 0 [see (4.3) (vii)], we have the inequality

(2) 5/16-c2+fc2- l^cos2(7c/5)- lc^Y+ lc.cos(7l/5).^ay > 0.
\ 1) 2 2

Consequently

(3) y^{0 , - l /2 , l /2a 2 } ,

as will be used later on.

Another way of expressing that | (r^ e^ \ r^ e^) | = cos (n k / l ) | for some k ^ / ^ 5 is

a cos (Ti/5)- 1 -yc efo, 1, 2-172, cos(7i/5), cos(27i/5), ll.
2 I 2 J

As a result we have that

(4) yc^{ l / 2co , l / 2o ) 2 } .

From (1) and (3) it is clear that ^3 e^, e^ e^ span a root graph T" (with m (F") = 5)
which is a cycle. If T" is complex a.nd primitive, we have found our Go (namely W (F")).

On the other hand, if r" is complex and imprimitive, we have by (5.3) (i) that Y" is
equivalent to D3 (5). Since | (x \ y) \ + cos (n/4) for any pair x, y of unitary roots of
W (D3 (5)) = G (5, 5, 3), it follows from (5.3) (vi) that | (^3 ^4 | e^) \ = \ (r^ e^ \e^)\= 1/2.
This implies that c = \ 1/2+y c \ = 1/2; so Rey = -1/2. According to (4), this is
impossible.

Thus we may (and shall) assume that P' is real; by (4.5) (i) this comes down to

(5) a (y+2c)eR.
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A similar reasoning with the triangle

^4 €3

^ ^s^-Yc

61° a COS^TT/S) °e2

instead of r" shows that we may also assume:

(6) a ( l+2yc)eR.

From (5) and (6), we obtain (since c > 0) that

(7) a(y+l)eR.

If c ^ 1/2, then aeR, which is impossible. Hence c = 1/2. Putting Y = = - l + a / -
(reR), we get from (3) that y ^-l,oc2 and r ^ 0, 1 Re a. This contradiction with
l ^ Y l ^ l - l + o c r l 2 completes the proof.

(5.6) Let G be a complex primitive 3-dimensional reflection group generated by
reflections of order 3. It follows from (6.3) (vi) and (4.12) (ii) that | (v \ w) \ e { 0, 3 -1/2 }
if v, w are two distinct unitary roots of G of order 3. In view of (5.2) (ii) and (4.4) (iv),
there is a root graph FQ :

e,®———€i——®e,

with W (Fo) £ G. Let ^3 be a unitary root of G not contained inCe^+Ce^ such that
(

e
! | ^3) ^ 0 (since G is irreducible there is a unitary root w^Ce^+Ce^ such that

(w | 6?i) ^ 0 or (w | e^) ^ 0; if (w | ^) = 0, take ^3 == /-i e^ this shows that such a unitary
root <?3 exists). Let T be the root graph spanned by e^ e^ e^ (in other words, let F == (B, w)
be the root graph with B == { e^ e^ e^ } and w (B) = { 3 }).

PROPOSITION:

(i) r is equivalent to L,^;

(ii) G is conjugate to W ̂ 3).

Proof:

(i) If r is a root graph without cycles, then F is clearly congruent to L3. Suppose F
is a triangle; then r is the root graph

^ €^

^ vy ' i ^w ^
61 a3"2 e2

where a e U (up to congruence).
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If (r^ e
! | ^2) = 0 for some j e 2, then r is equivalent to the root graph spanned

by r^ e^ e^, e^; but the latter root graph has no cycles. Therefore we can restrict ourselves
to the case (r^ e^ | e^) ^ 0 (j = 1, 2). But now

|(^i | ^2) | =3-1/2, or la-S-^O-co7)! = 1 0=1,2) ,

which is impossible. This brings the proof of (i) to an end;

(ii) follows from (i) and (4.15) (ii).

(5.7) Suppose G is a complex primitive 3-dimensional reflection group containing
reflections of order 2 as well as of order 3. Again, there is a root graph YQ :

. ®——3J!——®
^i e^

with W (Fo) c G. In view of (2.2) (v) and (5.2) (vi) we have that | (v \ w) \ e { 0, 2- ̂ 2 }
if v is a unitary root of order 2 and w is a unitary root of order 3. —Take a unitary root ^3
of order 2 such that (e^ \ e^) ^ 0 (if all roots of order 2 were perpendicular to e^ they
would span a proper G-invariant linear subspace of V; hence such a unitary root e^ does
exist). Denote by T the root graph spanned by e^, e^, e^ (the orders of the roots being

as indicated above).

PPROPOSITION:

(i) r is equivalent to M^;

(ii) G is equivalent to W (N^);

(iii) if n > 3 and H is an irreducible n-dimensional reflection group, then H does not

contain a reflection group conjugate to W (M3); if H is primitive, H does not have reflections

of order 2 and 3 at the same time.

Proof:

(i) if (e^ | ^3) =0, then F is necessarily congruent to M3. Suppose (e^ | ^3) ^ 0.

Now r is the root graph

r^3

for some a e U (up to congruence). As in (5.6), we need only consider the case that
(r{ e, | e,) ^ 0, or | {r{ e, \ e^) | == 2-1

!
2
 (j e 2).

This leads to the same absurdity as in (5.6); hence (i).

(ii) is a direct consequence of (4.15) (ii);

(iii) follows from |Z(W(M3))| = 6 [see (4.16)], (5.2) (iii), (2.6), and the above.
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(5.8) Let G be a complex primitive finite subgroup of IJ4 (C) generated by reflections
of order 2. Put m = d (G). By (4.6) and (5.3) (i) there is a root graph Fo:

e i - a costTrm"1 ) ^ 2

with a € U\R, m = d (To), and W (I-o) £ G.

By (4.5) (iii) and (4.7) there is a unitary root ^4 of G such that e^ e^ e^, e^ span an
irreducible root graph r which is primitive if m = 4.

Furthermore, (5.5) implies that m ^ 4.

PROPOSITION :

(i) m = 4, and T is equivalent to N4;

(ii) G is conjugate to W (N4) or EW (N4);

(iii) no irreducible n-dimensional reflection group (n ^ 5) contains a group conjugate

to W (N4) (or EW (N4));

(iv) ifH is a primitive n-dimensional reflection group (n ^ 5), then d(H) = 3.

The rest of this section is made up of the proof of the proposition. Because of (5.3) (i),
(ii), (2) we need only consider three distinct cases:

(a) m = 3, To = Da (3), and Re a = -1/2.

(b) m = 4, FQ = Da (4), Re a =—2~ l / 2 , and G does not contain a primitive
3-dimensional complex reflection group H with d(H) = 4.

(c) m == 4, Fo = Js (4), and Re a = -2-3/2;

(v) if # {i e 3 | 0?. | 6?4) ^ 0 } = 1, then T is congruent to D^ (m) or W (N4).

Proof of (v). - If r is of the form

then 3/4-a
2
-b

2
-c

2
+a

2
 c

2
-ab Re a > 0 [by (4.3) (vii)]. If (a) or (b) holds, it follows

that c = 1/2, and we are through. Suppose (c) holds, so ^a=—2""3 /2 . Up to
symmetry we have either

b=1, ^=2- l / 2 and ceJ1^-172} or f^-172 and a = c = 1 .
2 l2 J 2
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Note that c -^ 2"172 in the latter case, since

0_-±-o__£-o

is a real sub-root-graph ofT. The above inequality shows that none of these cases occurs,

whence (v).

Suppose r is the root graph

-a2 2

where b, c e {1/2, 2-1/2 }, a, y € U, and Re a e {-2-1/2, -2-3/2 }.

We assert:

(vi) b = 1/2 and Re a = -l"^2. If c = 2~l/2, rten y = a, and F is equivalent to

-0-ri rTri €4 -a2 2 ea

7/' c = 1/2, f/!<?« ei?Aer y = l+a^/2 anrf r is equivalent to

Q (-l-a/Drirses

0
e4 -a2

or Y = — 1 and T is equivalent to

64
0

-a2
(l+a/2')e2

r is equivalent to N4 in all cases.
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Proof of (vi). — Since e^, e^ e^ span a root graph congruent to a Coxeter graph, we
have & = 1/2. From (4.3) (vii), we get

(1) -
3
--

 l
c

2
-2~

3f2
Re^-

 lc^y-c2-3/2^ay > 0.

As m = 4, we are in case (b) or (c). First of all we will show that case (c) does not
occur. Suppose, in order to do this, that TQ = J^ (4) and Re a ==-2~3/2. The root
graph associated with ^4, ̂  ^3, e^ is congruent to a Coxeter graph, while

|(^3M=2-1/2.

This implies [ (^4 ( r^ e^) \ == | 1/2+y c \ e { 0, 1/2 }. Since c e { 1/2, 2"172 }, there are
three possibilities:

(c 1) c = 1/2 and Re y = -1. But then equality holds in (1).

(c 2) c = 1/2 and Rey=—1/2. As (^ ^3 | ^i) == oc 2"172 and ^i, r^ ^3, ^4 span a root
graph, we must have by (5.3) (i), (2) and (5.4) (i) that Re ay e { ± 1, -2-1/2, -2-372 }.

But a straightforward computation shows that Re ay = 2"572 (1 ± ^/21).

(c3) c = 2-1/2 and T^'y ==-2-1/2. Now

^ ay = (1 ± y?)/4, and | (^ ̂  | ̂  ̂ 3) |2 = (3 ± ^/7)/4.

On the other hand, | (^ e^ \ r^ ^3) |2 e { 0, 1/4, 1/2 }.

All three possibilities lead to an absurdity. We conclude that TQ ^ J^ (4), and that
we are in case (6).

Now To = D3 (4). Let c = 2~
l/2

. Application of (5.3) (2), (v) to the triangle cor-
responding to e^ ^3, ^4 gives y = a or a. In the latter case, inequality (1) yields the
absurdity — 3 / 1 6 > 0 ; s o y = a . The assertions of (vi) in this situation are now easily
checked. Suppose c = 1/2. Since | (^3 ̂  [ ^4) [ = 1/2 | 1 +y | e { 0, 1/2,1~

1
!

2 }, there
are three possible values for Rey:

(b 1) Re y = — 1. This case is further discussed in the assertions.

(b 2) Re y = -1/2. This implies the absurdity | (fi ̂  | ̂  ^4) |2 = (2 ± y/3)/4.

(& 3) Re y = 0. If y = 1 +a ^/2, then | (r^ e^ \ r^ e^) \
2
 = 5/4. Hence y = 1 +a ^/2.

This case, too, is further described in the assertions.

By now, the proof of (vi) is complete;

(vii) ;/r is the root graph

^ QI

where oc, P, y e U and c e R>o? then T has a real triangle.
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Proof of (vii). — Assume that all triangles of Y are complex. We will show that this
leads to a contradiction.

Suppose c = 1/2. Applying (5.3) (2), (6) to the complex root graph spanned by e^ ^3, e^

we get | (r, e^ \ e^ \ = 1/2 | 1 +y | e { 1/2, 2-1/2 }. Hence

(2) ReyeU -jl.

A similar argument with the triangle corresponding to e^, ^3, e^ yields

(3) ^Py4o, -jl.

Suppose P = 1, then

det(0?, | ^))=3(l-cos2(7^/m))-(l+cos(7T/m)^a)(l+ l^YV
4 \ 2 /

Hence, if (a) holds, then Rey == -1/2, and det((^, | ej)) = 0; if (6) or (c) holds, then
Re y ^ -1/2 and ̂  a = -2"172, so det ((^ | ̂ .)) ^ 0, in contradiction with (4.3) (vii).
Therefore P ^ 1.

We now derive a contradiction for each of the three distinct Fo.

(a) m=3 and Rey = Recx. = Re^ = Re^y = - -.

Put a = © (note that this does not harm the generality). Now a? = CD or o)2. So P = co
and yco2 = co or o2. Since y = (o or co2, too, we have y = co2 and a = P = y = co.
This leads to the absurdity det ((^ | ej)) = 0.

(&) m = 4 and ^o^-^"172.

From (5.3) (2), (6), (v) we know that | (r^ ^4 | ^2) | = 1/2. This implies a? = a, and
P = a2 = ± L Moreover, py e { ®, o)2, ± f } by (3). So y e { ± i co, ± f co2, ± 1 }, in
contradiction with (2).

(c) m = 4 and Reai=-2~
3/2

.

Put a=-2-3/2(l+^7)• If |0'i^|^)]= 1/2, then_^ap=-2-1/2 by (5.3) (2).

and P = (l+^/7)/4+f(l-y7)/4 or (l-V7)/4-f(l+V7)/4, which is not in agreement
with (2) and (3). The remaining possibility is | (/-i e^ \ e^) \ = 2-1/2. So ̂  a? = - 2- 3/2,

Now P = a2 = ( — 3 — f ^/7)/4, and again we end up in contradiction with (2) and (3).

The conclusion is that c ^ 1/2. This means that c = 2"172. Arguing as in the case

c = 1/2, we get

(4) Re^ Rey, Re^j, Re^e{ -2"172, -2-372}.

If P == 1, we have det ((e, \ e,)) = -5/8-(1 +2-1/2
 Re a) (1 +2-1/2

 Re y) ^ 0. Hence

P + 1.
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As m = 4, case (a) does not occur. It remains to check the other two cases.

(V) Rev, = Rey =Re^= Re^ = -2-l/2

(for otherwise it follows from (4) that there is a sub-root-graph of F equivalent to W (13 (4))).
put a = - 2"1/2 (1 + 0. Now the root graph

ze^

is of the type described in the case c = 1/2 provided all triangles are complex (note that

| 1+7^/2 | = 1). Therefore one of the triangles must be real. No triangle but
^2» e

^ — r! e
3 qualifies for this property [cf. (4.5) (i)]. It follows that

i P (1 +Y ^/2) = ± 1, whence P = ± 1.

But T^ap =—2~'
l/2 then implies P = 1, which was excluded beforehand.

(c) Rea=2~
3/

\

Put v = r^ r^ 7*4 ^3. The roots v, e^ e^ e^ (being linearly independent) span the root
graph

/^\ y ^ r^\ ^

for certain 8, s e C, contradicting (v) or (vi).

This brings the proof of (vii) to an end;

(viii) suppose that (a) holds. Then there is a unitary root v e W (Fo) U e^ such that

either YQ and v span the root graph

v n——2——n p,

or (v | e^ + 0 for exactly one i ^ 3. In any case, F ;>y equivalent to D^ (3).
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Proof of (viii). - Because of (5.4) (i) and (5.8), we can restrict ourselves to the case
where # {i e 3 | (e,\ €4) ^ 0 } = 2. If (^ | ^4) = 0 (or (^3 | ^4) = 0), replace e^ by
r
!

 r
!

 e
4. (or ^3 '"2 ^4) m order to obtain (e^ \ e^) + 0, (e^ \ e^) = 0, and (^3 | ^4) 7^ O.

Replacing ^4 by a suitable scalar multiple, we obtain that F is

-^0)

where y e U. Application of (5.3) (1), (2), (6) to the triangle spanned by e^ ^3, e^ yields
that y e { -1, CD, co2 }. We verify (viii) for these three distinct values y.

(c 4) Y = — 1- Now r is equivalent to

(c 5) y = (o2. We have that | (7*4 e^ \ r^ e^) | = j 1/2+o)2 | = 1/2 ̂ /3, which is absurd.

(c 6) y == o). Now r is equivalent to

^ ̂  ̂

This finishes the proof of (viii).

We will now prove that (a) does not occur. Suppose it does, then it is direct from (viii)
that G contains a reflection group conjugate to W (D4 (3)) = G (3,3,4). Hence
< G, co 14 > is a primitive finite group containing reflections of order 2 and 3,
contradicting (5.7) (iii).

The conclusion is that m = 4. In order to prove the second part of (i), note that r
cannot be equivalent to D^ (4), as F is primitive. We may (and shall) assume that
0?i | ^4) e R>o. If 0?2 | €4) = 0, then (i) follows from (v) and (vi). Let (^ | ̂ 4) + 0.
If (^3 [ e^) = 0, replace €4. by r^ r^ e^ and apply (v) and (vi) once more. Thus we are
left with the case that (^3 | €4) ^ 0 too. By (5.3) (iv) and (5.4) (i), we may assume that
(

e
! [ ^4) = -1/2, | (e^ \ €4) [ = 1/2, and that all triangles are complex (for otherwise we

ANNALES SCIENT1F1QUES DE L'^COLE NORMALE SUPERIEURE 56



430 A. M. COHEN

can reduce the situation to a previous one). But (vii) asserts that there is no such root
graph.

By now, (ii) is a direct consequence of (i) and (4.15) (iii). Furthermore, (iii) follows
from (5.2) (v), [Z(W(N4))[ = 4 \cf. (4.16)], and (2.6). Note that (iv) holds if H
is real. Let H be complex. By (5.5), we must have d (H) ^ 4. If d (H) = 4, then (4.7)
together with (ii) implies that H contains a group conjugate to W(N4). But this
contradicts (iii). Hence d(H) == 3, proving (iv).

(5.9) Let G be a primitive 4-dimensional reflection group containing reflections of
order > 2. In view of (5.2) (ii) and (5.7) (iii), there is no reflection of order -^ 3 in G.

PROPOSITION :

(i) there is a root graph T equivalent to L^ such that W (F) £ G;

(ii) G is conjugate to W (L^);

(iii) no n-dimensional primitive reflection group (n ^ 5) contains reflections of order > 2.

Proof. — By (5.2) (ii) and (5.6), there is a root graph Fo:

o~'2 ^i""2

3—-———®—-———@
e! e

! ^

with W (Fo) c G. Let e^ be a unitary root of G such that e^e^e^ €4. is a basis of C4

and such that (e^ \ €4) e R>o. Then (e^ \ e^) = 3~
l/2

. Let F be the root graph spanned
by this basis.

If (e^ \ €4) ^ 0, then (e^ \ r{ €4) = 0 for some je 2 [see (5.6)]. Therefore we may
assume (e^ \ €4) = 0 and (still) (^ | €4) = 3~1/2. If (^3 | €4) = 0, then det ((e, [ .̂)) = 0;
so | (^3 | €4) \ = 3~

l/2 by (4.3) (vii). Replacing €4. by a suitable root in r^ V €4. u r\ U ^4,
we see that F is equivalent to L4. Thus (i) is proved. Now (ii) is a consequence of (i)
and (4.15) (ii), while (iii) follows from (5.2) (ii), (iii), | Z (W (1.4)) \ = 6, and (ii).

(5.10) Suppose G is a 5-dimensional complex primitive reflection group. Then d (G) = 3
by (5.8) (iv), and all reflection orders equal 2 by (5.9) (iii). It is clear that G contains
a complex irreducible 4-dimensional reflection group. From (5.8) (i), we obtain that
this group is imprimitive. Hence G (3, 3, 4) <= G, up to conjugacy. By (4.4) (v) there
is a root graph TQ:

0ei -so)' ^cz ^ €4

with W (Fo) c G. Let €5 be a unitary root of G such that e^, e^, e^, €4., e^ span a
primitive root graph [cf. (2.7) and (2.9)]. We shall denote this root graph by F.
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PROPOSITION:

(i) r is equivalent to K^;

(ii) G is conjugate to W (K^).

Proof. — By (5.8) (viii) and some symmetry arguments, we may assume that €5 is such
that one of the following cases prevails.

(a)

(b)

0's I ^5) = - , and Q?i | e^) = (^ | €5) = 0.

(^2 | ^5) == - . and Q?i | es) = (e^ \ €5) = 0.

(c) 0?i | ̂ 5)=. . (^2 | ̂ )=0, and (^3 | ^ ) = = - _

We will deal with these cases in the given order.

(a) If (€4. | ^5) = 0, then F is congruent to K.5.

Suppose (€4. | ^5) = —1/2 y for some y e U. Then (r^ r^ r^ €5 [ e^) = —1/2 (1 —Yco).
Hence y e { — 1, co, -co2 }. But

1(^2^5)1 = l / 2 | l 4 - y | e { 0 , l / 2 }

implies y ^—®2 .

If y = — 1, then F is equivalent to

r, X^Q-^——C^ ^ (ĵ -0 64

If y = a, then F is equivalent to

r,r,r,e,0-^4
1 -5(JL) ^

0 e,

In both cases, r is equivalent to K.5.
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(b) Now (4.3) (vii) implies that (^ | ^5) ^ 0 and that the triangle spanned by e^e^ e^
is real, in other words (e^ [ ^5) = 1/2. Hence F is equivalent to

and therefore also to Dg (3), which is impossible since the latter root graph is imprimitive.

(c) comes down to one of the previous cases, as will become clear if one replaces e^
by ^ e^

So far for the proof of (i). From this and (4.15) (ii) one readily deduces (ii).

(5.11) Let G be a 6-dimensional complex primitive reflection group. Then, again,
d(G) = 3 and all reflections in G have order 2. Using (4.7) and (5.10), we obtain a
root graph Fo:

with W (Fo) c G. Let e^ be a unitary root such that e^ e^ ..., e^ span an irreducible
root graph. This root graph will be called F. Note that F is primitive [c/. (2.6)].

PROPOSITION:

(i) r is equivalent to Kg;

(ii) G is conjugate to W (Kg);

(iii) no n-dimensional complex reflection group (n ^ 7) is primitive.

Proof. — Symmetry and (5.8) (viii) allow us to assume (without loss of generality)
that we have one of the following situations:

(fl) 03 | ^5) = - , and 0?i | ̂ ) = (^2 | ̂ ,) = 0.

W (^2 | ^>) = - - and (^i | ̂ ) = (<?3 | e^) = 0.

(c) (e, | ̂ ) == J, (^ | ^) = 0 and (e, | ̂ ) = - 1.
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We will check these cases separately.

(a) If (^4 ( e^) = (^5 [ e^) = 0, then det ((^ j ej)) < 0. Assume that there is y e U
with (^4 j e^) = —1/2 y (thanks to symmetry in the root graph, this does not harm the
generality). Comparison of (5.10) (a) with the root graph spanned by e^ e^, ^3, e^, e^

gives that either:

(a 1) Y = co,

or

(a 2) y=- l .

If (a 1) holds, we have that F is equivalent to the root graph spanned by

r^r^a-^^—^ Oe4

and ^5. As we have seen before in an analogous situation, this implies that r^ r^ r^ e^

e^ and ^5 span a real triangle, i. e. (^5 | r ^ r ^ r^e^) =—l/2o)2 .

Consequently, F is equivalent to

r^r^e^O——^-C^ 0 C4

hence to Kg.

Suppose (a 2) holds, i.e. y = — l • Then F is equivalent to the root graph spanned
byr\:

1. .2

rir,r,e, O——^ 0 C4

and ^5, while (^4 | €5) = 0. But r\ is a root graph congruent to Fo. Thus we have
reduced this case to the situation:

(a 3) (^5 | ̂ ) = 0 (and (€4 | 6?e) = - -Yi with YI eU
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If y^ = o), we are back in case ( a 1). If y^ = -1, then det ((^, | .̂)) < 0, which
impossible.

IS

(b) Leaving out €5 for a while, we see that the triangle spanned by e^ e^ e^ is a real
one; so Q?4 | e^) = 1/2. Replacing e^ by 7-4 ̂  shows that we can alter the situation in

order to get (e^ \ e^) = (^ | ̂ ) = (^3 | ̂ ) = 0 and (^4 ^) =~ 1/2. If (^5 | ^e) = 0,
it suffices for the proof to refer to (4.15) (iv).

Let (es | ,̂) = -1/2 Y with y G U. Since

rs r^ P4 e^

is a root graph, we obtain y = —CD or CD2.

If Y = —o), then r is equivalent to

esO Oe4

If y = co2, then r is equivalent to

Oe4

In both cases F is equivalent to Kg.
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(c) Replacement of e^ by r^ e^ brings us back in one of the previous cases.

Now (ii) follows from (i) and (4.15) (ii), whereas (iii) is a consequence of
|Z(W(Ke)) | = 6 [see (4.16)], (5.2) (iii), (4.7), (5.8) (iii), and (5.9) (iii).

(5.12) The conclusion from (5.3), (5.4), ...,(5.11) is the following

THEOREM. — If n ^ 3, then any complex primitive reflection group in C" is conjugate

to one of the reflection groups discussed in (4.15).

We refer to (4.16) for a list of these groups. The rest of this chapter gives some
properties concerning these groups.

(5.13) PROPOSITION. — Every primitive complex n-dimensional reflection group G gene-

rated by reflections of order 2 (n ^ 3) contains an irreducible n'dimensional real reflection

group H with rf(H) = d(G).

Proof. — It suffices to prove the corresponding statement for the root systems of
^PG Js (4), Js (5), N4, K.5, and K^. It is immediate that the root systems of type J^ (4),
J3 (5), N4, Ke contain systems of type 33, H3, 84, Dg respectively.

Finally, K;5 is dealt with in the proof of (4.15) (i).

(5.14) Put^= 0 ?„.
B-l

PROPOSITION. — Let G be a complex primitive n-dimensional reflection group (n ^ 3),
and let H £ U^ (C) be a finite group such that G < H. Then H c ̂ . G except for the

following two cases:

G=W(L3) and H^^.W(M^,

I /° '
G = W(L4) and H c= ̂ . ( w^), F ° ^ Q

\ \ \
0 -1

The proof consists of a case-by-case argument along the following lines. Fix a unitary
transformation t of C" that normalizes G. Since t permutes the reflections of G [c/. (3)
of (1.6)] and since we are only interested in t.\i^.G, we may assume tv = v for some
root v provided G does not have more than one orbit of the same length in { C x \ x is root
of G } (this, though occurring in F4, never happens in the complex primitive case).
Furthermore, t leaves invariant the set { C x \ x is root of G in v

1
- }. This implies that t

normalizes Gy, a lower dimensional reflection group, and we have reduced our problem.

(5.15) Remark. — Blichfeldt's list of finite primitive collineation groups in 4 variables
given in [2] is not complete, as the non-trivial extension H/(poo n H) of W (I^)/^
[notation as in (5.14)] is omitted. The mistake is due to an incorrect conclusion on the
last page of his article.
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