
Finite conjugate spherical aberration compensation
in high numerical-aperture optical disc readout
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Spherical aberration arising from deviations of the thickness of an optical disc substrate from a nominal
value can be compensated to a great extent by illuminating the scanning objective lens with a slightly
convergent or divergent beam. The optimum conjugate change and the amount and type of residual
aberration are calculated analytically for an objective lens that satisfies Abbe’s sine condition. The
aberration sensitivity is decreased by a factor of 25 for numerical aperture values of approximately 0.85,
and the residual aberrations consist mainly of the first higher-order Zernike spherical aberration term
A60. The Wasserman–Wolf–Vaskas method is used to design biaspheric objective lenses that satisfy a ray
condition that interpolates between the Abbe and the Herschel conditions. Requirements for coma by field
use allow for only small deviations from the Abbe condition, making the analytical theory a good
approximation for any objective lens used in practice. © 2005 Optical Society of America
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1. Introduction

In optical disc readout the beam is focused onto the
data layer of the disc through a substrate layer of
thickness d. The scanning objective lens is designed
in such a way that the spherical aberration result-
ing from focusing through this layer is compensated
for, so that the scanning spot at the data layer is
nominally free from aberrations. A mismatch of the
substrate thickness from the nominal value results
in spherical aberration. The sensitivity for thick-
ness mismatch-induced spherical aberration in-
creases strongly with the numerical aperture (NA)
of the objective lens. The wavelength is the natural
measure for aberrations, so that a decrease of wave-
length � also results in greater aberration sensitivity.
The increase of NA and decrease of � used to increase
the capacity of an optical disc (the size of the
focal spot scales as ��NA) thus deteriorates the tol-
erances of the system for substrate thickness mis-
match.

For a Compact Disc (CD) (� � 0.785 �m, NA of 0.50)
sensitivity is 0.4 m���m, for a Digital Versatile Disc

(DVD) �� � 0.660 �m, NA of 0.65) the sensitivity is
1.4 m���m, and for the Blu-ray Disc (BD) �� �
0.405 �m, NA of 0.85� the sensitivity is 10.1 m��
�m.1 (The aberration unit here is the milliwave;
1 m� � ��1000.) With a spacing of the two layers of
a BD double-layer disc of 25 �m the amount of spher-
ical aberration is �126 m�, if we assume that the
objective lens is optimized for the focal position half-
way between the two layers. This is more than the
diffraction limit of ��8�3 � 72 m� and is hence un-
acceptably large. Clearly, means to compensate for
spherical aberration must be introduced into the op-
tical system. The compensating system must be
switched into a first state when data are read from or
written to the upper layer of a double-layer BD, and
into a second state when data are read from or writ-
ten to the lower layer of a double-layer BD.

The most straightforward way of compensating for
spherical aberration is to use finite conjugate illumi-
nation of an objective lens. Spherical aberration de-
pends on the conjugate of the lens.2,3 It follows that
this effect can be used to balance spherical aberration
arising from other causes. In the practice of optical
disc readout the lens is normally used at infinite
conjugate, i.e., the lens is illuminated with a colli-
mated beam. By changing to a slightly convergent or
divergent beam the spherical aberration that is due
to the thickness mismatch related to double-layer
discs can be compensated for. Although strictly
needed for the two discrete depths of a double-layer
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disc, finite conjugate illumination can be used to com-
pensate for any thickness value in a continuous range
around the central value. In the field of microscopy
this method of spherical aberration compensation is
known as a change in the tube length (the distance
between object and image).4 I report on how effective
the method is and which parameters determine the
conjugate change required to bridge a given amount
of thickness mismatch. The conclusions are reached
with exact analytical means and compared with nu-
merical ray-tracing methods. The question of the ef-
fectiveness of this method of spherical aberration
compensation has been analyzed before within the
context of confocal microscopy for the case of a small
refractive-index mismatch of the medium in which
the beam is focused with a nominal value.5,6 This is in
contrast with the case considered here in which the
spherical aberration arises from a mismatch in thick-
ness of the layer through which the beam is focused.

The content of this paper is as follows. Section 2
deals with the analytical theory of finite conjugate
spherical aberration compensation for an aplanatic
objective lens. The effects of deviations of aplanaticity
are analyzed by numerical ray-tracing methods in
Section 3.

2. Analytical Theory for an Aplanatic Objective Lens

Consider an objective lens that focuses a beam of light
onto the data layer of an optical disc. There are two
ways to shift the focal point in the disc in the axial
direction, as illustrated in Fig. 1. The first way is to
change the conjugate of the optical system, i.e., by
axially shifting the source point, the image point will
be shifted in the axial direction over a distance �zcon.
The second way is to bring the optical system as a
whole a distance �zfwd closer to the disc, thus reduc-
ing the free working distance (fwd) of the objective
lens. When the objective lens is used at infinite con-
jugate this is equivalent to bringing the objective lens
closer to the disc, while keeping the other optical
components at a fixed position. The diffraction focus,

i.e., the reference point for the aberration function
giving rise to a minimum rms value of the aberration
function, is in general a distance �zref further in the
disc. The total focal shift �d then follows as

�d � �zcon � �zfwd � �zref . (1)

Clearly, given the total focal shift there are two de-
grees of freedom. These are fixed by the condition of
minimum rms aberration. The form of the aberration
function is determined by Abbe’s sine condition.2,3

According to this condition, if the optical system is
free from (spherical) aberration when the object and
image points are on the optical axis it is also free from
(comatic) aberration when the object and image
points are laterally displaced from the optical axis (to
first order in the field angle). Alignment tolerances of
an optical drive light path require that the design of
the objective lens cannot deviate too much from the
sine condition. Consequently, in many cases the ob-
jective lens may be approximated by an aplanat. The
accuracy of this approximation is discussed in Section
3. The sine condition imposes a relation between the
rays in object and image space, and this relation de-
termines the aberration function resulting from the
change in conjugate. In the folllowing an expression
for the aberration function is derived and values are
determined for �zcon and �zfwd that give rise to a min-
imum rms value of the aberration function.

Consider an axisymmetric optical system and a ray
passing through an object point and an image point,
both on the optical axis, such that the ray makes an
angle �0 with the optical axis in object space and an
angle �1 with the optical axis in image space. Abbe’s
sine condition relates the ray angles �0 and �1 in ob-
ject and image space by

n0 sin �0 � Mn1 sin �1, (2)

where n0 and n1 are the refractive indices in object
and image space, and M is the (lateral) magnification
from object to image space. A scaled pupil coordinate
can be defined as

� �
n0 sin �0

NA0
�

n1 sin �1

NA1
, (3)

where NA0 and NA1 are the NAs in object and image
space. It follows that � has values between 0 and 1.
For a small axial displacement of object and image
points �z0 and �z1, respectively, the aberration then
follows as

Wcon � n1�z1�cos �1 	 1� 	 n0�z0�cos �0 	 1�. (4)

Note that a different sign convention is used in Refs.
2 and 3. The axial displacements are related by

�z1 � M2
n1

n0
�z0, (5)

Fig. 1. Changing the axial focal position can be achieved by
changing the conjugate of the objective lens (top) or by changing
the free working distance (bottom).
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so that

Wcon � n1�z1��1 	
�2NA1

2

n1
2 �1�2

	 1 �
n0

2

n1
2M2�1 	 �1 	

�2NA0
2

n0
2 �1�2	


� �z1��n1
2 	 �2NA1

2�1�2 	 n1

�
�2NA1

2

n1 � �n1
2 	 �2NA1

2M2n1
2�n0

2�1�2	. (6)

In the particular case in which we are interested we
have �z1 � �zcon, and M � 0 (infinite conjugate).
Using the abbreviations n1 � n and NA1 � NA it
then follows that

Wcon � �zcon��n2 	 �2NA2�1�2 	 n �
p2NA2

2n 	, (7)

which is in agreement with the expression derived by
Sheppard and Gu.7 The decrease in free working dis-
tance introduces an aberration that is equivalent to
the insertion of a layer of refractive index n with a
thickness equal to the decrease in free working dis-
tance.1

Wfwd � �zfwd ��n2 	 �2NA2�1�2 	 n

	 ��1 	 �2NA2�1�2 	 1�
. (8)

The diffraction focus is found a distance �zref deeper
into the disc, which gives an aberration1 of

Wref � �zref ��n2 	 �2NA2�1�2 	 n
 . (9)

Eliminating �zref in favor of �d the total aberration
function follows as

W � Wcon � Wfwd � Wref

� �d�(n2 	 �2NA2)1�2 	 n
 � �zcon

�2NA2

2n

	 �zfwd�(1 	 �2NA2)1�2 	 1
. (10)

When the conjugate change �zcon�0 the aberration
expression of Ref. 1 is recovered. For a given change
in focal position �d the changes in conjugate and free
working distance are free parameters that can be
varied to determine the optimum focal spot. The op-
timum corresponds to a minimum rms wavefront ab-
erration. This minimization procedure can be done as
follows. First, write

W
�d � f 	 �

i�1, 2

igi, (11)

with

f � �n2 	 �2NA2�1�2, (12)

g1 � 	
�2NA2

2n , (13)

g2 �
1
n �1 	 �2NA2�1�2, (14)

where the piston terms have been left out as they
cancel from the expression for the rms wavefront ab-
erration, and with


1 � 
con �
�zcon

�d , (15)


2 � 
fwd �
n�zfwd

�d . (16)

The rms wavefront aberration can now be written as

Wrms
2

(�d)2 �
�W2� 	 �W�2

��d�2

� frms
2 	 2 �

i�1, 2
vi
i � �

i, j�1,2
Rij
i
j, (17)

where

frms
2 � �f 2� 	 �f�2, (18)

vi � �fgi� 	 �f��gi�, (19)

Rij � �gigj� 	 �gi��gj�, (20)

the angle brackets indicate the pupil average defined
by

�A� �
1
��

P

d2�A���, (21)

and the integration is over the unit circle. Explicit
analytical expressions for the relevant pupil averages
are given in Appendix A. Minimization with respect
to 
i leads to


i � �
j�1, 2

Rij
	1 vj, (22)

Wrms
2

��d�2 � frms
2 	 �

i, j�1, 2
Rij

	1 vivj, (23)

where R	1 is the inverse of the 2 � 2 matrix R. This
completes the analytical theory. The dependence of
the residual aberration sensitivity Wrms��d and the
parameters 
con and 
fwd on NA are discussed in the
following.
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Figure 2 shows the residual aberration sensitivity
as a function of NA. For BD conditions �NA of 0.85
NA, � � 405 nm, and n � 1.6� the sensitivity is
0.41 m���m compared with the 10.07 m���m for the
case without conjugate change,1 which amounts to a
reduction by a factor of 25. For a BD dual-layer disc
with a nominal spacer layer thickness of 25 �m this
results in only a �5.1 m� rms aberration, assuming
that the objective lens is optimized for the focal po-
sition halfway between the two layers. Clearly, con-
jugate change is an effective way to compensate for
spherical aberration.

The exact residual aberration sensitivity can be
expanded in powers of NA. This corresponds to an
expansion of the aberration function in terms of Sei-
del polynomials. The lowest-order terms are

Wrms

�d �
�n2 	 1�NA6

320�7n5 �
�n2 	 1��2n2 � 5�NA8

1280�7n7 .

(24)

The dominant term originates from the higher-order
Seidel spherical aberration term proportional to �6.
Figure 2 shows the lowest-order term of the series as
a function of NA. Clearly, the 
�6 term seriously
underestimates the exact result. In fact, for a NA of
0.85 it is 61% too low. A better approximation is in
terms of the Zernike polynomials. It appears that the
dominant contribution is the lowest-order Zernike
spherical aberration term 20�6 	 30�4 � 12�2 	 1
with coefficient A60. Figure 2 shows the A60 coefficient
as a function of NA. Apparently, approximating the
exact aberration function by use of this single Zernike
term is quite accurate, even for high-NA values. For
example, for a NA of 0.85 the error is only 4%.

Figure 3 shows the relative change in conjugate
and free working distance as a function of NA. It was
determined that 
con � 
fwd is close to unity through-
out the entire range of NA values. For example,
for BD conditions it was found that 
con
� 0.80 and 
fwd � 0.22, giving 
con � 
fwd � 1.02.

The relative change in conjugate and free working
distance can also be expanded in powers of NA. The
lowest-order terms are


con �
n2 	 1

n2 �
3�n2 	 1�NA2

4n4

�
3�n4 	 51n2 � 50�NA4

280n6 , (25)


fwd �
1

n2 	
3�n2 	 1�NA2

4n4

�
3�3n4 � 22n2 	 25�NA4

140n6 , (26)


con � 
fwd � 1 �
3�n2 	 1�NA4

40n6 . (27)

It follows that the approximation 
con � 
fwd � 1 is
exact for small NA values.

3. Effects of Deviating from the Sine Condition

The change in conjugate is made in practice by an
axial translation of a lens in front of the objective
lens, for example, the collimator lens that converges
the beam emitted by the laser diode into a parallel
beam. The entrance NA0 of this lens is much smaller
than the exit NA of the objective lens. Additional
spherical aberration contributions that arise from the
change of conjugate for this lens can therefore be
neglected. It then follows that the required transla-
tion of this lens is given by

�z0 �
�zcon

nM2 � 
con

�d
n

NA2

NA0
2 . (28)

In practice it is advantageous to keep this axial

Fig. 2. Residual aberration sensitivity as a function of NA (solid
curve) and approximation by the single Zernike term A60 (long-
dashed curve) and by the Seidel term proportional to NA6 (short-
dashed curve).

Fig. 3. Parameter 
con that describes the relative change of con-
jugate (solid curve), the parameter 
fwd that describes the relative
change in free working distance (long-dashed curve), and the sum
of the two parameters 
con � 
fwd (short-dashed curve) as a function
of NA.
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stroke �z0 as small as possible. This can be achieved
by deviating slightly from Abbe’s sine condition. This
would possibly allow a decrease in the parameter 
con.
This is investigated here by numerical means, in par-
ticular with automated lens design methods and ray
tracing.

An alternative to Abbe’s sine condition is the Her-
schel condition.2,3 An imaging system that satisfies
the latter condition does not suffer from spherical
aberration when the conjugate of the imaging system
is changed (to first order in the shift of the object and
image points). In the present terms this means that

con � 1 and 
fwd � 0, i.e., the conjugate change is
sufficient for a focal shift with minimum induced ab-
errations, the minimum being zero in this case. A lens
design condition that interpolates between Abbe and
Herschel is8,9

n0 sin��0

q �� Mn1 sin��1

q �, (29)

where q is a real parameter. For q � 1 the Abbe
condition is retrieved, whereas for q � 2 the Herschel
condition is retrieved. Values of 1 � q � 2 therefore
interpolate between the two conditions. For values of
q � 1 we are on the other side of Abbe, so to speak.
The trend in 
con as a function of q derived from
the two analytically available points �
con � 1 for q
� 2 and 
con � 0.80 for q � 1� suggests that the
wanted small values of 
con can be found in the regime
q � 1.

The q condition can be used to fully specify two
aspheric surfaces in an imaging system by use of an
algorithm that is based on the methods of Wasser-
man and Wolf,10 Vaskas,11 and Braat and Greve12 for
the special case of the sine condition. This approach
to lens design has been used in Ref. 13 for the design
of lenses with a so-called flat intensity profile. The
objective lens was taken to be a biasphere operating
under BD conditions, i.e., the wavelength was taken
to be � � 0.405 �m, the NA was 0.85, and the focus is
at a depth of 87.5 �m in a layer of poly-
carbonate �n � 1.62231�. The glass refractive index
is nlens � 1.71055, lens thickness b � 2.75 mm, the
free working distance is 0.75 mm, and the stop of
diameter 4.0 mm was taken to be at the vertex of the
first refractive surface of the lens. For a given q value
the surface sag of the two aspheres was determined
by use of an automated design tool that solves the
Wasserman–Wolf differential equations. The lens de-
sign thus obtained was futher analyzed with the Ze-
max ray-tracing software package14 by considering a
cover layer that is 1 �m thinner or thicker than the
nominal 87.5 �m. This is sufficiently small to be in
agreement with the linearized treatment in axial dis-
placements of the analytical theory in Section 2. The
distance between the objective lens and the disc and
the location of the object point is then adjusted for a
minimum rms aberration. This allows for a numeri-
cal evaluation of parameters 
con and 
fwd. Figure 4
shows the resulting values as a function of the q

parameter. The agreement with the exact results for
q � 1 and q � 2 is quite good, with an estimated error
of less than 0.3%.

A deviation from Abbe’s sine condition results in a
nonzero sensitivity of coma for field use. Figure 5
shows the coma sensitivity as a function of the q
parameter. As expected, the sensitivity crosses zero
for q � 1, i.e., when the lens satisfies the Abbe con-
dition. For a sufficiently small NA, this sensitivity is
proportional to 1 	 q	2. The numerical data fit quite
well with this function, even though the NA is as high
as 0.85. We found a coma sensitivity of 491 m��deg
� �1 	 q	2�. The upper bound for this coma sensitiv-
ity is typically approximately 50 m��deg. It then fol-
lows that the lens design must satisfy 1.06 � q
� 0.95, i.e., only small deviations from the Abbe con-
dition are allowed. As a consequence, the parameter
for relative conjugate change cannot deviate much
from the Abbe value 
con � 0.80. By use of the nu-
merically calculated values it was found that for the
range of q values 1.06 � q � 0.95 the conjugate
parameter is in the range 0.82 � 
con � 0.78, i.e., the

Fig. 4. Numerically determined parameters 
con (squares) and

fwd (triangles) for a lens with 0.85 NA as a function of the q
parameter that interpolates between the Abbe and the Herschel
conditions.

Fig. 5. Sensitivity of coma for field use of the lens as a function of
the q parameter that interpolates between the Abbe and the Her-
schel conditions (squares) and a fit proportional to 1 	 q	2 (solid
curve).
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decrease in required conjugate change compared with
the Abbe case is of the order of a few percent.

In conclusion, the analytical theory of finite conju-
gate spherical aberration compensation presented in
Section 2 is a good aproximation for any objective lens
used in practice. It allows for a simple, straightfor-
ward evaluation of the conjugate change required to
minimize the rms value of the aberration function
and, of this minimum, residual aberration sensitiv-
ity. A possible decrease of the required conjugate
change by non-Abbe objective lens designs is rela-
tively small. Finally, note that ways to break the sine
condition other than the q condition can be explored,
but it cannot be expected that such an approach will
result in an outcome substantially different from this
one.

Appendix A

All the pupil averages were evaluated by use of Math-
ematica15 and yield

�f� �
2

3NA2 �n3 	 �n2 	 NA2�3�2
,

(A1)

�f 2� � n2 	
1
2 NA2,

(A2)

�g1� � 	
NA2

4n ,

(A3)

�g2� �
2

3nNA2 �1 	 �1 	 NA2�3�2
,

(A4)

�fg1� � 	
2n5 � �3NA4 	 n2 NA2 	 2n4��n2 	 NA2 �1�2

15nNA2 ,

(A5)

�fg2� �
1

4nNA2�n3 � n 	 �n2 � 1 	 2NA2�

� �n2 	 NA2�1�2�1 	 NA2�1�2 � �n2 	 1�2

� log��n2 	 NA2�1�2 � �1 	 NA2�1�2

n � 1 	
, (A6)

�g1
2� �

NA4

12n2, (A7)

�g2
2� �

2 	 NA2

2n2 , (A8)

�g1g2� � 	
2 � �3NA4 	 NA2 	 2��1 	 NA2�1�2

15n2NA2 .

(A9)

Some of these integrals can also be found in Ref. 1.

I am indebted to Teus Tukker for providing me
with his software tools for automated design of objec-
tive lenses that satisfies the q condition.
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