


foundation of the present theory. Section III describes the
formulation of the continuum constitutive response in terms
of the interatomic potential. The precise definitions of the
infinitesimal elastic moduli of carbon nanotubes, and their
explicit expression in terms of the functional form of the
interatomic potential, are provided in Sec. IV. It is shown
that these analytically derived moduli coincide with those
extracted from atomistic calculations. In Sec. V, the simula-
tion method developed by combining the continuum me-
chanics surface model and the finite element method is
shown to accurately mimic the energetics, the large deforma-
tion morphologies, and the structural instabilities of the par-
ent atomistic model in the fully nonlinear regime. In a com-
panion paper,30 the mechanics of thick multiwalled carbon
nanotubes containing millions of atoms are explored.

II. FINITE CRYSTAL ELASTICITY FOR CURVED

MONOLAYERS

The relation between the elastic moduli of bulk crystalline
materials and the interatomic interactions is well established
in modern molecular theories of elasticity. There are two
equivalent approaches for extracting the elastic moduli from
the atomistic description,31,32 namely the method of the ho-

mogeneous deformations,33–35 also called the Cauchy-Born
hypothesis,36 and the method of the long waves within
lattice-dynamical theories.31 For examples of the application
of these classical methods to the in-plane response of
graphene, see Refs. 37 and 38, respectively. The method
based on the Cauchy-Born rule is purely static but, unlike the
asymptotic long wave limit of lattice dynamics, describes the
mechanics of crystals at finite strains. This method gives rise
to continuum constitutive models systematically derived
from the atomistic model in hand. Furthermore, the derived
constitutive models inherit the symmetries of the underlying
lattice. Finite crystal elasticity has been used, for instance, to
obtain elastic moduli and study the stability of strained
crystals.33–35,39,40 Recently, these ideas have been cast in a
computational framework to solve general boundary value
problems with complex geometries or loading, in what is
called the quasicontinuum method.41 This method can handle
defects and fracture, by adaptively refining the continuum
description down to the atomic level where required. A sim-
pler version, the so-called local quasicontinuum method,
combines the finite element method and finite crystal elastic
constitutive relations; successful applications include the
simulation of nanoindentation in silicon based on an analyti-
cal potential and the tight binding method,42,43 and an analy-
sis of the polarization switching of ferroelectric single crys-
tals based on an ab initio Hamiltonian.44

Given the crystalline nature of carbon nanotubes, and the
large elastic ~reversible! deformations they exhibit, finite
crystal elasticity appears to be appropriate for their mechani-
cal analysis. As recently suggested,13 the standard theories
aimed at space-filling crystals do not capture the effects of
the curvature of crystalline monolayers deforming in three
dimensions such as nanotubes. The general idea behind stan-
dard finite crystal elasticity in the case of space-filling crys-
tals is sketched below, its limitations for carbon nanotubes

illustrated, and the extended theory briefly outlined.
Space-filling continuum bodies can be mathematically

represented by subsets of the ambient Euclidean space. Con-
sider the finite deformation of this body. Let F be the defor-
mation that maps the undeformed body V0,R

3, into R
3. If

X denotes a point in the undeformed body, its image after
deformation is x5F(X). The deformed body is V
5F(V0), and is also a subset of R3. The deformation gra-
dient is the derivative of F , F5DF5]F/]XPR

333. At
each point X, the deformation gradient is a linear transforma-
tion from R

3 into R
3, which locally characterizes the defor-

mation, and maps ‘‘infinitesimal’’ material vectors from the
undeformed into the deformed body, dx5FdX.45

The central hypothesis behind molecular theories of elas-
ticity at finite strains is that, at the scale of the atomic spac-
ing, the deformation of the crystal is homogeneous. Conse-
quently, as the crystalline solid deforms, lattice vectors
undergo a linear transformation.32,33,46 This approach is often
abstracted through the Cauchy-Born rule:36,40

a5FA, ~1!

where A denotes an undeformed lattice vector and a the
same vector in the deformed crystal. This rule links the ato-
mistic and the continuum deformations. Complex lattices,
that is lattices with more than one atom in the unit cell,
require a special treatment as detailed in the following sec-
tion. The Cauchy-Born rule is restricted to regions where the
crystal is free of defects, slips, and other inhomogeneities or
special crystallographic phenomena. Its validity and range of
applicability has recently been rigorously studied by methods
of nonlinear analysis.47

Now consider a crystalline monolayer such as a graphene
sheet deforming arbitrarily in three dimensions. It is natural
in this case to treat the continuum solid as a surface, a curved
two-dimensional body without thickness. Indeed, the two-
dimensional nature of the lattice does not suggest any mean-
ingful thickness; owing to the Born-Oppenheimer approxi-
mation, the binding energy depends exclusively on the
positions of this two-dimensional arrangement of atoms. It is
postulated that the atoms lie on the surface, and therefore the

lattice vectors are chords of the surface.13

The appropriate framework to describe two-dimensional
continua deforming in three dimensional Euclidean space is
continuum mechanics on manifolds.48 The undeformed body
V0, which represents the planar ground configuration of
graphene, is now a subset of R2. It is mapped by the defor-
mation into the deformed body V , a surface in R

3. In this
context, the deformation gradient F is called the tangent of
the configuration TF , and it maps infinitesimal material vec-
tors of the undeformed body V0 into vectors which are tan-
gent to the surface V ~see Fig. 1!.

The standard Cauchy-Born hypothesis a5FA produces
tangent vectors instead of chords, i.e., FAPTxV , where
TxV denotes the tangent linear space to the surface V at x,
and therefore does not capture the effect of curvature. A gen-
eralized kinematic hypothesis based on the differential ge-
ometry concept of the exponential map has been proposed in
Ref. 13. The fundamental idea is to compose the standard
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Cauchy-Born rule with the exponential map,49 which natu-
rally maps the tangent space onto the curved surface. This is
accomplished by the so-called exponential Cauchy-Born rule

a5exp +FA, ~2!

where exp denotes the exponential map of V at the point
from which a emanates. The exponential map ‘‘brings’’ the
tangent vector w5FA to the curved surface, thereby produc-
ing a chord ~see Fig. 1 for an illustration!. More physical
insight on this extended hypothesis can be gained by analyz-
ing the simplest case of an atomic chain deforming in two
dimensions.50

The evaluation of the exponential map requires the
knowledge of the geodesic curves of the surface, which in
general entails the integration of a system of two differential
equations in which the Christoffel symbols are the coeffi-
cients. Thus the map described by Eq. ~2! is nonlocal and
difficult to evaluate exactly. For this reason, the exponential
map is approximated. This results in a local, simple model,
in which the deformed geometry of the lattice vectors is ex-
pressed in terms of the local deformation of the surface, that
is the first and the second fundamental forms.49 Note the
analogy with standard differential geometry of surfaces, by
which the undeformed body V0 takes the role of the para-
metric space, and the deformation map F is the parametri-
zation of the surface V . The first and second fundamental
forms can be ‘‘pulled back’’48 by F to the undeformed body,
thereby defining the standard left Cauchy-Green deformation
tensor C, and a Lagrangian ~extrinsic! curvature tensor K.
Similarly, in the context of differential geometry of surfaces,
the first and the second fundamental forms are sometimes
expressed in the referential coordinates.51 By formulating the
theory in terms of Lagrangian ~material! strain measures, the
principle of material-frame indifference is automatically sat-
isfied.

The final result of the extended theory is that a new set of
continuum strain measures which represent the deformed ge-
ometry of the atomic bonds can be defined in terms of the
local deformation of the surface V , i.e., in terms of C and K

~see Appendix A!. For instance, the deformed bond length a

of a lattice vector A after deformation is explicitly written as
a5 f (C,K;A). Similarly, a continuous variable representing
the angle between two lattice vectors A and B in the de-
formed configuration can be written as u5g(C,K;A,B).
These derived strain measures are adequate to formulate con-
tinuum constitutive functions in terms of bond-order poten-
tials, which only depend on bond lengths and angles. Similar
expressions can be derived for other geometric quantities
such as dihedral angles.

III. CONSTITUTIVE LAW FOR GRAPHENE

One can distinguish three inequivalent bond vectors in the
unit cell of the honeycomb lattice of graphene A0i , i

51,2,3. These bond vectors form three inequivalent angles,
labeled such that u i is the angle between bond j and bond k,
and $i , j ,k% is an even permutation of $1,2,3%. At the ground
state of graphene, the length of each of these bond vectors is
denoted by A0, and u i52p/3, i51,2,3. When dealing with
graphene, special attention must be paid to the fact that it is
a Bravais multilattice; it can be viewed as two woven simple
lattices ~see Fig. 2!. The standard crystal elasticity treatment
of multilattices is to assume that the homogeneous deforma-
tion affects each of the simple lattices. Additional kinematic
variables describing the relative shifts of the simple lattices
must be introduced to properly describe the configurations of
uniformly strained multilattices. These relative shifts are
called inner displacements.33–35,42,46 The optical modes are
the analog of the inner displacements in lattice dynamical
theories.32

Let h denote the inner displacements field, which follow-
ing Ref. 42, is defined in the undeformed body, previous to
the ‘‘macroscopic’’ deformation F . Thus, the lattice vectors
are

Ai5A0i1h, i51,2,3. ~3!

FIG. 1. Illustration of the surface kinematics and the exponential
Cauchy-Born rule. The exponential map transforms the vector w

5FA tangent to the surface into a chord of the surface a.

FIG. 2. Graphene honeycomb multilattice and illustration of the
inner displacements: the two simple Bravais lattices, depicted in
black and white, are relatively shifted by h, also affecting the bond
vectors which are transformed from A0i into Ai . The unit cell of
area S0, the Bravais basis vectors B1 and B2, and the shift vector P

are also shown.
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For some materials, the inner displacements may describe
homogeneous phase transformations.42,44

Since the configuration of the undeformed lattice depends
on h @see Eq. ~3!#, the deformed geometry of the bond vec-
tors does as well; for instance, the lengths of the deformed
bond vectors can be written as

a i5 f̄ ~C,K,h;A0i!, i51,2,3, ~4!

and the three angles these inequivalent bonds form after de-
formation as

u i5 ḡ~C,K,h;A0 j ,A0k!, i51,2,3, ~5!

where $i , j ,k% is an even permutation of $1,2,3%. The explicit
expressions for f̄ and ḡ follow from Appendix A and Eq. ~3!.

This finite elasticity theory for curved crystalline mono-
layers can in principle be combined with any atomistic
model. We assume in the following potentials that fall within
the bond-order formalism,27 and consider the bond-order
potentials for hydrocarbons developed by Brenner28 which
have been widely applied to study the mechanics of carbon
nanotubes6,19,52 including the nucleation of defects.53,54 In
these potentials, the energy is expressed in terms of bond
lengths and angles as a sum over the bonds:

E5(
i

(
j.i

@VR~r i j!2B̄VA~r i j!# , ~6!

where the bond-order B̄ models the many-body coupling be-
tween bond ij and its local environment. It depends on the
lengths of the bonds and angles adjacent to the ijth bond. By
considering a unit cell, which contains one of each inequiva-
lent bond, and has an undeformed surface area of S0

5(3A3/2)A0
2 ~see Fig. 2!, and using Eqs. ~4! and ~5!, the

stored strain energy density ~energy per unit undeformed
area! of the continuum surface can be written as

W~C,K,h!5

1

S0
Ecell~a1 ,a2 ,a3 ,u1 ,u2 ,u3!

5

1

S0
(
i51

3

@VR~a i!2B̄~a j ,ak ,u j ,uk!VA~a i!# .

~7!

This hyperelastic potential depends on the left Cauchy-Green
deformation tensor C and Lagrangian curvature tensor K of
the surface, and on the inner displacement field h. The de-
pendence of the energy on the undeformed lattice vectors has
been omitted.

The inner displacements can be eliminated at the consti-
tutive level.13,42 At each point, given the local deformation,
the strain energy density can be minimized with respect to h:

ĥ~C,K!5arg@min
h

W~C,K,h!# . ~8!

After this inner relaxation, the effective strain energy density
can be written as a function of C and K only:

Ŵ~C,K!5W@C,K,ĥ~C,K!# . ~9!

While a closed-form expression for the hyperelastic potential
W in terms of the atomistic potential is available @see Eq.
~7!#, the evaluation of Ŵ(C,K) requires the solution of a
bivariate minimization problem. If the graphene sheet is pla-
nar, i.e., K50, this theory results exactly in standard finite
crystal elasticity. The total internal energy functional for the
continuum surface is obtained from the surface integral of
the hyperelastic strain energy density over the undeformed
body:

P int@F#5E
V0

Ŵ@C~F !,K~F !#dV0 . ~10!

Stress measures work conjugate to the strain measures for
the surface can be derived from the hyperelastic potential

S52
]Ŵ

]C
52

]W

]C
U

h5ĥ

, m5

]Ŵ

]K
5

]W

]K
U

h5ĥ

. ~11!

It is possible to replace the derivatives of the effective po-
tential Ŵ by derivatives of the analytically available poten-
tial W as long as the inner displacements are in internal equi-
librium, as argued in Refs. 42 and 13. The first of these stress
measures is an in-plane stress, and corresponds to the second
Piola-Kirchhoff stress.48 It has units of force divided by
length ~surface tension!, while the second is a momentlike
stress that has units of force. These unusual units for stress
tensors follow from the fact that the continuum surface has
no thickness.

IV. ELASTIC MODULI

Effective ~i.e., at the relaxed inner displacements! La-
grangian elasticity tensors can be obtained by taking second
derivatives of the elastic potential with respect to the strain
measures:

Ca54
]2Ŵ

]C2
, Cb5

]2Ŵ

]K
2

, Cc52
]2Ŵ

]C]K
. ~12!

The first of these elasticity tensors is a measure of the in-
plane stiffness of the surface and is measured in units of
force divided by length. It corresponds to the second elastic-
ity tensor.48 The second represents the bending stiffness and
the third is an in-plane/bending coupling stiffness. Again, the
unusual surface tension units for the in-plane elastic modulus
are a consequence of the two-dimensional nature of a
graphene sheet.

In the calculation of these elastic moduli, even when the
inner displacements are in internal equilibrium we cannot
replace Ŵ by W, as in Eq. ~11!; extra terms arise with
crossed derivatives of W with respect to the strain measures
and the inner displacements.42 The evaluation of these
moduli at an arbitrary deformation requires ĥ(C,K), which
in general must be obtained numerically.
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A. In-plane moduli

We now develop closed-form expressions for infinitesimal
elastic moduli in the analytically tractable situation of planar
graphene in its ground state, for which the inner displace-
ments vanish. Although considering the small strain elastic-
ity of planar graphene as representative of that of nanotubes
may seem a crude approximation, these moduli are available
in a closed form, and are found to provide good estimates.
Indeed, ab initio calculations show that the elastic moduli
of nanotubes differ only slightly from those of planar
graphene.16,17,26

The in-plane moduli of graphene can be treated following
standard methods of crystal elasticity; other results have
been recently reported.37 Here, the precise expressions in
terms of the functional form of the potential are provided, as
well as a discussion of how to interpret them. The proposed
theory also furnishes expressions for the flexural stiffness.
For concreteness, potentials based on the bond-order formal-
ism are considered, although explicit expressions can be ob-
tained for other interatomic potentials.

By methods analogous to those in Ref. 42, the in-plane
second elasticity tensor in Eq. ~12! can be computed at the
relaxed inner displacements as

Ca54F ]2W

]C2
2

]2W

]C]h
•S ]2W

]h2 D
21

•

]2W

]h]CG . ~13!

This tensor, evaluated at the ground state of graphene, cor-
responds with the usual small deformation tensor of elastic
moduli.

For moderate deformations, the bond-order function B̄ of
bond ij in Brenner’s potential depends only on the angles
adjacent to this bond.20,28 In the following, all expressions
are evaluated at the equilibrium configuration of graphene,
characterized by equal bond angles 2p/3, and equilibrium
bond length A0. Let us denote by VR8 and VR9 the first and
second derivatives of VR with respect to their only argument,
and similarly for VA . Let B̄8 denote the first derivative of the
bond order B̄ with respect to any of its arguments ~when
evaluated for graphene at equilibrium, the choice of argu-
ment does not matter!, while B̄9 denotes the second deriva-
tive of B̄ with respect to one of its arguments. By B̄8,8we
denote the second derivative of B̄ with respect to the first and
the second arguments. Let us define

Crr5VR92B̄VA9 , Cuu5

3VA

A0
2 ~2B̄92B̄8,8!,

Cru5

2A3

A0
VA8 B̄8. ~14!

Lengthy but otherwise straightforward calculations lead to
the following expression for the Euclidean components of
the in-plane infinitesimal elasticity tensor of graphene:

Ci jkl5m~d ikd j l1d ild jk!1l d i jdkl , ~15!

where

m5

1

4A3
FCrr2Cru2Cuu2

~Crr1Cuu!2

Crr1Cru2Cuu
G ~16!

and

l5

1

4A3
FCrr1Cru1Cuu1

~Crr1Cuu!2

Crr1Cru2Cuu
G ~17!

are the Lamé coefficients. The underlined terms correspond
to the effect of the inner displacements, i.e. the second term
on the right hand side of Eq. ~13!.

The tensor of infinitesimal moduli in Eq. ~15! has the
general form of a fourth order isotropic tensor. Unlike for
bulk materials, this tensor is defined in a two-dimensional
space @the indices in Eq. ~15! run from 1 to 2#. Thus, the
infinitesimal elasticity tensor is isotropic, a well known fact
about honeycomb lattices. This does not imply that graphene
is isotropic for finite deformations, i.e. its invariance group
does not coincide with the group of proper finite rotations
SO(2).48 Finite deformations introduce anisotropy in the lat-
tice; in particular the finite deformation required to roll a
graphene sheet into a nanotube induces anisotropy observ-
able in the slight variations of the elastic moduli with radius
and chirality.55

The conventional expressions relating the Lamé coeffi-
cients with Young’s modulus Y and Poisson’s ratio n for bulk
isotropic linearly elastic materials are

Y5

m~3l12m !

l1m
and n5

l

2~l1m !
. ~18!

Young’s modulus and Poisson’s ratio are defined from the
thought experiment of applying uniaxial tension s11 to a
prismatic homogeneous isotropic linear elastic body, and
measuring the strains in each direction. Then Yªs11 /«11
and nª2«22 /«1152«33 /«11 . One may be tempted to use
the expressions in Eq. ~18! for graphene. However, it is im-
portant to bear in mind that they are defined for bulk mate-
rials, and the present theory regards graphene sheets as genu-
inely two-dimensional objects, for which the standard
‘‘plane-strain’’ or ‘‘plane-stress’’ conditions do not make
sense. If one subjects a rectangular planar slab of graphene to
uniaxial tension s11 , measures the strains «11 and «22 («33 is
not defined!, and adopts the natural definitions Y sªs11 /«11
and nsª2«22 /«11 , the resulting expressions in terms of the
Lamé coefficients in Eq. ~15! are

Y s5

4m~l1m !

l12m
and ns5

l

l12m
, ~19!

where the subscripts emphasize the fact that they refer to a
surface continuum. As usual, ns is nondimensional. In this
case, Y s has units of surface tension, agreeing with the point
of view of other authors.26 The in-plane shear modulus Gs

is also expressed in units of surface tension, and coincides
with m .
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B. Bending modulus

We consider an initially planar graphene sheet. We then
calculate the second derivative of the strain energy density
with respect to the curvature in a given direction. We are
interested in the scalar modulus

Cb5
]2Ŵ

]k2
, ~20!

where k is the only nonvanishing principal curvature of the
monolayer. Appendix B describes the derivation of this
modulus in terms of the functional form of the interatomic
potential. Several intermediate results deserve special atten-
tion.

On the one hand, the fact that the second term of Eq. ~B4!
vanishes reveals that, unlike the in-plane moduli, the infini-
tesimal bending modulus is insensitive to the inner displace-
ments. On the other hand, it follows from the derivation of
Appendix B that for any two-dimensional honeycomb lattice
whose interatomic potential depends only on bond lengths
and angles ~and not on dihedral angles for instance!, the
infinitesimal bending modulus around the planar state can be
written as

Cb5(
i51

3
]W

]a i

]2a i

]k2
1(

j51

3
]W

]u j

]2u j

]k2
. ~21!

Remarkably, this modulus does not depend on second deriva-
tives of the atomistic potential function. This means that if
we naively adopt a quadratic two-body/three-body expansion
of the energy of graphene around its ground state

E5 (
bonds

1

2
ks~a i2A0!2

1 (
angles

1

2
ku~u i22p/3!2, ~22!

it follows that ]W/]a i50 and ]W/]u i50 at the equilibrium
configuration. Therefore such a lattice has zero bending stiff-
ness, which is not realistic for graphene.

As expected, the infinitesimal bending stiffness of planar
graphene does not depend on the direction in which the sheet
is bent, i.e., planar graphene is isotropic with respect to
bending. For bond-order potentials, the bending modulus
adopts the particularly simple form

Cb5
1

2
VA~A0!B̄8~2p/3,2p/3!. ~23!

C. Comparison to atomistic calculations

The explicit expressions for Young’s modulus, Poisson’s
ratio, the shear modulus, and the bending modulus derived in
the previous sections are here checked against atomistic cal-
culations. The second parameter set of the potential proposed
by Brenner28 has been adopted in the comparisons, but the
methodology is in principle applicable to any analytical in-
teratomic potential. According to Eqs. ~14!, ~16!, ~17!, ~19!,
and ~23!:

Y s5235.8 J/m2, ns50.4123, Gs583.47 J/m2,

Cb52.177 eV Å2/atom. ~24!

The result for Young’s modulus perfectly matches that ob-
tained in Ref. 37 for the same potential. To compare with
values of the Young’s modulus provided in units of pressure
which assume a thickness t50.34 nm, simply operate as fol-
lows: 694 MPa5236 J/m2/0.34 nm. To illustrate how these
moduli represent the behavior of nanotubes of finite radius,
for a (10,10) nanotube we obtain Y s5234 J/m2 and ns

50.414.
To extract Young’s modulus and Poisson’s ratio of planar

graphene from atomistic calculations, a planar slab of
graphene is subject to a small uniaxial deformation ~0.02%!.
The energy of the structure is then minimized while allowing
for lateral deformation. Appropriate periodic boundary con-
ditions are used. The axial force and the lateral deformation
are measured from the calculations to compute the elastic
moduli. These calculations perfectly match ~to four signifi-
cant digits! the analytical values for Y s and ns in Eq. ~24!.

The significance of the inner displacements on Y s and ns

can be explored by omitting the second term in the right
hand side of Eq. ~13!, that is omitting the underlined terms of
Eqs. ~16! and ~17!. In this case, Y s

no inner
5337.8 J/m2 and

ns
no inner

50.1580. Atomistic calculations in which the struc-
ture is stretched without relaxation of the inner displace-
ments also give these values of elastic moduli. These values
differ substantially from those in Eq. ~24!, so the effect of the
inner displacements is very significant. It can be observed
that the effect of the inner displacements is very important.
Although these elastic moduli agree more closely with accu-
rate ab initio data ~see Table I!, they do not represent the
actual behavior of atomistic systems described by Brenner’s
potential.

To validate the expression for the bending modulus, Eq.
~23!, we compute the strain energies ~relative to the ground
state of planar graphene! of fully relaxed nanotubes of vary-
ing radii. We plot the strain energy of these nanotubes versus
the inverse of their equilibrium radius, and compare with the
simple quadratic expression in the curvature 1/2 Cb(1/R)2,
where Cb is not fitted, but obtained from Eq. ~23!, and R

denotes the radius of the nanotube. One would expect this
approximation to be valid for very small curvatures, that is
very large nanotubes. However, a quadratic approximation to
the bending energy has been shown to accurately describe ab

initio results for a wide range of radii.16,17 Figure 3 shows
that the agreement between the atomistic calculations and the
quadratic approximation of the energy is excellent. For small
nanotubes ~right side of the plot! some deviations are notice-
able. Nevertheless, for nanotubes of diameter larger than 1

TABLE I. Elastic properties of graphene from ab initio calcula-
tions, and from Brenner’s potentials @* from Kudin et al. ~2001!#.

Y s(J/m2) ns Cb (eV Å2/atom)

Brenner ~1990! 236 0.412 2.2
Brenner ~2002! 243 0.397 1.8
Ab initio* 345 0.149 3.9
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nm, the bending modulus provided by the continuum analy-
sis very accurately characterizes the elasticity of atomistic
models of nanotubes.

Table I reports the values of the elastic moduli of planar
graphene Y s , ns , and Cb derived from Eqs. ~14!, ~16!, ~17!,
~19!, and ~23! for the second parameter set of Brenner’s po-
tential. The predicted equilibrium bond length for graphene
with this potential is 0.145 nm. The recently developed sec-
ond generation bond-order potential29 is also analyzed, and
the associated elastic properties reported in Table I. The
equilibrium length predicted by this potential is closer to the
widely accepted value of 0.142 nm. The overestimation of
the equilibrium bond length with the original potential by
Brenner slightly biases the elastic properties. These moduli
are compared with available ab initio calculations,17 which
agree very well with other published data.16 It can be ob-
served that the bond-order potentials deviate significantly
from the ab initio data. The second generation bond-order
potential slightly improves Young’s modulus and Poisson’s
ratio, but provides a worse bending stiffness.

Equation ~23! provides valuable insight into the relation
between the elastic bending modulus and the functional form
of the potential. Consider the following exercise. Let us re-
scale the bond-order potential, leaving B̄(2p/3,2p/3) un-
changed but changing B̄8(2p/3,2p/3) to fit the ab initio

value for Cb . Note that this does not alter the ground energy
of graphene, nor the equilibrium bond length. By doing this,
we obtain a value for Young’s modulus of 336 J/m 2, very
close to the ab initio value. Poisson’s ratio also dramatically
improves to a value of 0.16. This exercise illustrates how the
expressions provided in the previous sections facilitate fitting
an analytical potential.

V. FINITE ELEMENT SIMULATIONS

The finite deformation continuum theory for a surface
without thickness described in Sec. III is now combined with
the finite element ~FE! method. Since the continuum energy
depends on second derivatives of the deformation map

through the curvature tensor, a sufficiently smooth finite el-
ement approximation is required; here, subdivision finite el-
ements are used.56 An alternative coarse grained simulation
method for carbon nanotubes based on constrained atomistic
calculations in combination with meshfree methods, in the
spirit of the nonlocal quasicontinuum method, has been pro-
posed recently.57

The continuum/FE approach is validated by comparing
the finite element calculations with zero temperature atomis-
tic calculations. The second parameter set of the Brenner
potential28 is used for the bonded interactions. Since the
Brenner potential does not include nonbonded interactions,
these are incorporated by a separate potential.58 A Lennard-
Jones potential is adopted for the nonbonded interactions,
which corresponds to the graphene-graphene parameter set in
Ref. 59. This potential for the nonbonded interactions has
been used for instance to analyze the mechanics of C 60 mol-
ecules inside carbon nanotubes.60 Since we want to model
intratube van der Waals interactions, in the simulations a
given atom can interact via the nonbonded potential with all
other atoms in the system, except the set of atoms close to it
in the lattice ~within the cutoff radius of the nonbonded po-
tential in the undeformed configuration!. The main disadvan-
tage of such a partitioning approach, namely that it hinders
the reactive capability of the bond-order potential, is irrel-
evant for our purposes. A continuum version of the non-
bonded interactions can also be formulated,13 and is imple-
mented in the FE simulations. This continuum nonbonded
energy, together with the internal energy in Eq. ~10!, define
the total energy of the continuum system. In both atomistic
and continuum simulations, the total energy is minimized
with the BFGS quasi-Newton method, which only requires
gradients of the energy. The inner relaxation of Eq. ~8! is
performed numerically by Newton’s method at each quadra-
ture point of the finite element model. These bivariate mini-
mization problems typically converge to machine precision
in two iterations.

Figure 4 shows the comparisons for a twisted (10,10)
nanotube 25 nm long. In this example, the atomistic system
has 12 000 degrees of freedom, while the finite element
model around 10 000. This example is not intended to dem-
onstrate the computational savings that the continuum/finite
element approach can deliver; its purpose is to illustrate the
accuracy of the continuum theory in an example involving
severe deformations and structural instabilities.

The twisting angle, defined as the total relative rotation of
one end with respect to the other, is incrementally increased,
and the total energy is minimized at each step. Three repre-
sentative snapshots of the deformation process are shown in
Fig. 4~a!, where the deformed configurations of the atomistic
and the continuum simulations are presented together. These
snapshots demonstrate that the morphological agreement be-
tween the continuum and atomistic simulations is excellent,
and the deformed continuum surface nearly coincides with
the positions of the nuclei provided by the atomistic calcula-
tion despite the severe deformations.

The evolution of the binding energy is presented for the
two models in Fig. 4~b!. This example exhibits two structural
instabilities. In the first one, a nonuniform deformation mode

FIG. 3. Strain energy relative to planar graphene for fully re-
laxed nanotubes of varying radius plotted vs a quadratic approxi-
mation of the bending energy with the bending modulus predicted
by the continuum theory.
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develops for a twisting angle of about 100°. The onset of this
instability is evident in the first snapshot of the deformation,
and can be identified in the strain energy evolution as the
kink that ends the nearly quadratic regime. As loading pro-
ceeds, the wall of the tube comes into van der Waals contact
with itself. Then, the van der Waals interactions slightly
stiffen the twisting response of the tube. In their absence, the
energy growth after the first instability is roughly linear. The
second kink in the strain energy evolution, near 460°, indi-
cates the development of a secondary structure. After this
point, the flattened twisted ribbon folds onto itself. Figure
4~b! shows that the energetics of the atomistic system are
well predicted by the continuum simulations. In the quadratic
regime both methods provide indistinguishable energies. Be-
fore the secondary structure develops, at 460°, the discrep-
ancy relative to the total energy change is below 0.4%, and
in the final configuration, it is around 3%. This discrepancy
is reduced by refining the finite element mesh.61

Figure 4~b! also shows a quadratic approximation of the
energy of the twisted nanotube based on linear theory, with
the shear modulus analytically derived in Eq. ~16!. For a
homogeneously twisted nanotube, the shear strain of the wall
can be written as g5QR/L where Q is the twisting angle, R

the nanotube radius, and L its length. It can be observed that
the quadratic approximation 1/2 G sg

2 agrees remarkably

well with the energy of the atomistic system before buckling
occurs at g55.3%.

Figure 5 shows the evolution of the nonbonded energy,
and compares the atomistic and the finite element calcula-
tions. The change of nonbonded energy is less than 2% of the
total energy change. Nevertheless, the nonbonded interac-
tions determine the morphology of the deformation, and in-
terpenetration of the wall of the two nanotubes will occur in
their absence. Before the first buckle, the nonbonded energy
is zero. After the first instability, the system gains van der
Waals energy due to the adhesion of the wall that comes into
contact with itself. As deformation proceeds, the van der
Waals interactions become increasingly repulsive, particu-
larly after the second instability. In this regime, the discrep-
ancies of the finite element prediction for the nonbonded
interactions become noticeable. However, this discrepancy in
the nonbonded interactions at 600° is less than 0.1% of the
total energy change.

VI. SUMMARY AND DISCUSSION

The exponential Cauchy-Born rule has been applied to
carbon nanotubes in combination with realistic bond-order
potentials. A priori, the application of continuum mechanics
to such small systems appears questionable to say the least.
However, the presented nonstandard continuum surface
theory has been shown to accurately describe both the linear
and the nonlinear mechanical response of atomistic systems.
Expressions have been developed for the elastic moduli of
planar graphene in terms of the atomistic potential. The ex-
pression of the bending modulus developed here cannot be
obtained from conventional theories. Comparisons with
moduli extracted from atomistic calculations show that the
analytical expressions very accurately describe the elastic
properties of atomistic systems. Comparisons with ab initio

elastic moduli suggest that the transferability of commonly
used bond-order potentials for hydrocarbons is limited with
regards to the elasticity of graphene, and illustrate how these

FIG. 4. Twisted 25.1-nm-long ~10,10! nanotube: ~a! Superim-
posed deformed configurations at three twisting angles for atomistic
calculation ~black spheres! and continuum finite element calculation
~gray surface!. ~b! Comparison of the strain energy as a function of
the twisting angle for atomistic calculation ~—!, and continuum/FE
calculation (d), and quadratic approximation with the shear modu-
lus obtained from the continuum analysis ~- - -!.

FIG. 5. Twisted 25.1-nm-long ~10,10! nanotube: Comparison of
the nonbonded energy as a function of the twisting angle for atom-
istic calculation ~—!, and continuum/FE calculation (d).
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explicit expressions can aid the parametrization of analytical
potentials.

The application of the theory at finite strains has been
presented, and it has been shown that, when combined with
the finite element method, it very accurately mimics the non-
linear mechanics of atomistic calculations. An exhaustive set
of validation tests is presented in Ref. 61. This reference also
illustrates that for nanotubes of large diameters, major com-
putational savings can be achieved by the continuum calcu-
lations. In Ref. 30, thanks to the computational efficiency of
the proposed approach, rippling deformations occurring in
thick multiwalled nanotubes containing millions of atoms are
investigated.

The presented continuum model cannot describe fracture
or plasticity; its construction relies on a defect-free lattice.
Note however that in the numerical example presented
above, these processes can in principle take place in the ato-
mistic model, but do not. This illustrates the severe deforma-
tions that CNTs can sustain elastically. Nevertheless, there
are situations in which failure cannot be ruled out of the
analysis, but still the computational savings afforded by the
continuum/FE approach are needed ~e.g., the full simulation
of experiments of nanotube fracture1!. In these cases, the
continuum model can be coupled with atomistic models.62

The continuum model can assess the onset the lattice insta-
bility, and thus provide a criterion to switch locally from the
continuum to the atomistic model.
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APPENDIX A: FORMULA FOR THE EXTENDED

KINEMATIC RULE

The precise definition of the extended kinematic rule is
provided operationally in this appendix. See Ref. 13 for a
derivation. Let k1 and k2 denote the principal curvatures of
the deformed surface V . These can be obtained from the
generalized eigenvalue problem

K•V5k C•V, ~A1!

where C and K are the Lagrangian expressions of the first
and the second fundamental forms of the surface. The asso-
ciated principal directions pulled-back to the undeformed
body, V1 and V2, are normalized with respect to C, so that
Vi•C•Vj5d i j . The conventional principal directions are
tangent to the surface, and can be obtained as vi5FVi . We
define a local orthonormal basis attached to each point of the
surface defined by the unit normal to the surface and the
principal directions v1 and v2 ~normalized!. The components
of w5FA in this basis are (0,w1 ,w2), with w i5Vi•C•A.
By defining Q(x)5sin x/x, the final expression of the lattice
vector A after deformation in the above defined local basis
according to the local approximation of the exponential
Cauchy-Born rule is

a5H k1~w1!2

2
Q 2S k1w1

2 D1

k2~w2!2

2
Q 2S k2w2

2 D
w1Q~k1w1!

w2Q~k2w2!

J .

~A2!

The length of a deformed bond is then a5iai and the angle
between two deformed bonds a and b can be computed as
u5arccos@a•b/(ab)# . Thus, the bond lengths and angles
have been expressed in terms of the continuum strain mea-
sures C and K.

APPENDIX B: DERIVATION OF THE BENDING

MODULUS

1. Kinematic preliminaries

To calculate the scalar bending modulus defined in Eq.
~20!, we consider an initially planar graphene sheet bent
about one axis. Thus, Eq. ~A2! can be simplified to

a5H k~w2!2

2
Q 2S kw2

2 D
w1

w2Q~kw2!

J , ~B1!

where k is the nonvanishing principal curvature. Variables
evaluated at the ground planar configuration of graphene are
denoted by ugr . Note that augr5(0,w1 ,w2) is parallel to the
plane of graphene. In this section, derivatives of lattice geo-
metric quantities with respect to k are computed. These de-
rivatives are evaluated at the planar ground configuration,
since the goal is to obtain the infinitesimal bending modulus.

The first derivative of a deformed bond length with re-
spect to k follows ]a/]k5(1/a)a•]a/]k . Note that
]a/]kugr5(2(w2)2/2,0,0) is perpendicular to the plane of
graphene. Consequently, ]a/]kugr50.

Analogous arguments lead to ](cos u)/]kugr50. Since
]u/]k5(1/sin u)](cos u)/]k, and for graphene no pair of
bonds form an angle of p in the ground state, it follows that
]u/]kugr50. One can check that this is not the case for
dihedral angles, but we do not consider them here.

A second derivative of a with respect to k and the inner
displacements is also needed. It can be computed for each
component of the inner displacements A51,2 as

~B2!

The underbraces indicate whether the vectors are parallel or
perpendicular to the graphene plane when evaluated at the
ground state. Therefore, recalling that ]a/]kugr50, we con-
clude that ]2a/]k]hugr50. Analogous calculations show
that ]2u/]k]hugr50.
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Finally, from Eq. ~B1! and the honeycomb geometry of
graphene, it follows that

(
i53

3
]2a i

]k2 U
gr

5

23

32
A0

3 , (
i53

3
]2u i

]k2U
gr

5

29

8A3
A0

2 . ~B3!

2. Bending modulus

Analogous to Eq. ~13!, the modulus in Eq. ~20! can be
computed in terms of W when the inner displacements are
relaxed as

Cb5
]2W

]k2
2

]2W

]k]h
•S ]2W

]h2 D
21

•

]2W

]h]k
. ~B4!

For compactness, the bonds lengths and angles are denoted
by the array p5@a1 ,a2 ,a3 ,u1 ,u2 ,u3# , and p i denotes the
ith entry of this array. By the chain rule, the first term on the
right hand side of Eq. ~B4! can be written as

]2W

]k2
5(

i51

6 F (
j51

6
]2W

]p i]p j

]p i

]k

]p j

]k
1

]W

]p i

]2p i

]k2 G . ~B5!

From the derivations of Appendix B 1, one concludes that
the first term on the right hand side of the equation above
vanishes at the planar ground configuration.

We can check that the second term on the right hand side
of Eq. ~B4! also vanishes by expanding

]2W

]h]k
5(

i51

6 F (
j51

6
]2W

]p i]p j

]p i

]h

]p j

]k
1

]W

]p i

]2p i

]h]kG , ~B6!

and recalling the results of Appendix B 1. Thus, the infini-
tesimal bending modulus around the planar state can be writ-
ten as

Cb5(
i51

6
]W

]p i

]2p i

]k2
. ~B7!

At the ground state of graphene and for a bond-order poten-
tial, we have

]W

]a i

5

1

S0
~VR82B̄VA8 !50,

]W

]u i

52

2B̄8VA

S0
. ~B8!

Recalling the identities in Eq. ~B3!, it follows that the infini-
tesimal bending stiffness of planar graphene is

Cb5
1

2
VAB̄8. ~B9!
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