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Finite Deformation and Fluid 
Flow in Unsaturated Soils with 
Random Heterogeneity
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The first law of thermodynamics suggests an energy-conjugate relationship 
among degree of saturation, suction stress, and density of an unsaturated 
porous material. Experimental evidence affirms that this constitutive rela-
tionship exists and that the water retention curves are dependent on the 
specific volume or density of the material. This constitutive feature must 
be incorporated into the mathematical formulation of boundary-value 
problems involving finite deformation. We present a fully coupled hydrome-
chanical formulation in the finite deformation range that incorporates the 
variation of degree of saturation with the Kirchhoff suction stress and the 
Jacobian determinant of the solid-phase motion. A numerical simulation 
of solid deformation–fluid flow in unsaturated soil with randomly distributed 
density and degree of saturation demonstrates an intricate but well-estab-
lished coupling of the hydromechanical processes. As deformation localizes 
into a persistent shear band, we show that bifurcation of the hydromechani-
cal response manifests itself not only in the form of a softening behavior but 
also through bifurcation of the state paths on the water-retention surface.

The water retention curve, also called the soil-moisture characteristic curve, 

is a relationship between a soil’s water content and water potential or between a soil’s 

degree of saturation and the suction stress (Lu and Likos, 2004). It is used to predict the 

soil water storage in the mass balance equation, as well as to close the statement of the 

initial boundary-value problem for coupled solid deformation–�uid �ow (Borja, 2004; 

Borja et al., 2012a, 2012b, 2013b; Buscarnera and Nova, 2011; Buscarnera and di Prisco, 

2011, 2012; Diamantopoulos and Durner, 2012; Ehlers et al., 2011; Garcia et al., 2011; 

Goumiri et al., 2012; Guillon et al., 2012; Le et al., 2012; Lloret-Cabot et al., 2013; 

Mousavi Nezhad et al., 2011; Oostrom et al., 2012; Sun and Sun, 2012; Uzuoka and 

Borja, 2012; Zha et al., 2013). During the past few decades, the water retention curve for 

soils has been widely studied and is considered to be a fairly accurate representation of 

the water storage property under isothermal conditions, small deformation, monotonic 

loading, and even cyclic loading (Barquin-Valle et al., 2011; Hassanizadeh et al., 2002; 

Horta et al., 2013; Manzanal et al., 2011; Mohammadi and Vanclooster, 2011; Tamagnini, 

2004; Zhang, 2011).

In has long been recognized that the water retention curve for unsaturated soils is a func-

tion of the density of the soil (Arairo et al., 2013; Miller et al., 2002; Sugii et al., 2002; 

Tarantino and Tombolato, 2005) as well as temperature (Arson and Gatmiri, 2012; 

Dumont et al., 2011; Mašín and Khalili, 2012; Imbert et al., 2005; Romero et al., 2001; 

Salager et al., 2006, 2011; Tang, 2005). For isothermal conditions, this means that the 

water retention curve must be de�ned for a given density and that, for soils undergo-

ing �nite volume changes, the water retention law must contain a third variable, namely, 

either density, porosity, speci�c volume, or any suitable measure of porosity changes in the 

soil. �is is ful�lled by a more generalized water retention surface where one variable, say, 

the degree of saturation, may be interpreted as a function of two remaining independent 

variables, namely, the suction stress and speci�c volume. Such a constitutive relationship 
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is supported by continuum principles of thermodynamics (Borja 

2004, 2006; Nikooee et al., 2013; Nuth and Laloui, 2008) and has 

already been established experimentally for di�erent types of soil 

(Gallipoli et al., 2003b; Salager et al., 2010).

�e solution of an initial boundary-value problem must accom-

modate governing conservation and constitutive laws, along with 

relevant boundary and initial conditions. Closed-form analyti-

cal solutions are available for unsaturated �ow in one dimension 

(Ashayeri et al., 2011; Shan et al., 2012; Wu et al., 2012). However, 

they are severely handicapped by numerous simplifying assump-

tions, making them unsuitable for general-purpose problems. 

Furthermore, because of their limited kinematics, they cannot 

capture localized deformation phenomena. In this work, we 

adopted a mixed �nite element formulation combined with mix-

ture theory in a fully coupled hydromechanical framework. �e 

formulation can accommodate some intricate aspects of hydrome-

chanical processes, such as material and geometric nonlinearities 

as well as material heterogeneities at the mesoscopic scale, more 

naturally than can other equally robust methods, such as the mesh-

less method (Khoshghalb and Khalili, 2012). Mesoscopic scale is a 

common term used to quantify the spatial variations of density, 

degree of saturation, and other continuum variables within a mac-

roscopic element without the need to consider the complexities 

of the grain-scale processes (Andrade and Borja, 2006; Borja and 

Andrade, 2006; Borja et al., 2013a, 2013b; Mousavi Nezhad et al., 

2011, 2013; Rechenmacher et al., 2011).

A �nite deformation formulation is especially suited for a prob-

lem with an evolving solid matrix con�guration in general and an 

evolving porosity in particular. Whereas the in�nitesimal formu-

lation can also be used to a certain extent, it is not as natural and 

consistent; it assumes that the solid displacements are small and so 

the solid matrix con�guration is essentially unchanged. However, 

updating the porosity changes the solid matrix con�guration, 

which is conceptually inconsistent with the idea behind the in�n-

itesimal formulation. On the other hand, a �nite deformation 

formulation naturally accommodates an evolving con�guration 

characteristic of a deformable solid matrix. Finite volume changes 

are accommodated naturally by the so-called Jacobian determi-

nant J, which represents the evolution of a di�erential volume in 

a solid matrix.

�e speci�c problem simulated in this study was the hydrome-

chanical response of a rectangular sample of unsaturated sand 

with imposed heterogeneities in density and degree of saturation. 

We considered both material and geometric nonlinearities—spe-

ci�cally, �nite deformation including �nite volume changes that 

could signi�cantly impact the position of the �eld variables on the 

water retention surface. We used the �rst law of thermodynamics 

to identify energy-conjugate pairings of the constitutive variables, 

as well as to de�ne a so-called e�ective, or constitutive, stress in 

both the in�nitesimal and �nite deformation regimes (Borja, 2004, 

2006; Hassanizadeh and Gray, 1993; Houlsby, 1997). �e sample 

is deformed until the hydromechanical response bifurcates into a 

deformation band. We show that bifurcation manifests itself not 

only through a localized deformation pattern but also through 

the hydromechanical movement of the �eld variables on the water 

retention surface.

 6Thermodynamic Basis
Our point of departure is the �rst law of thermodynamics for a 

mixture of solid, water, and air, which serves as the origin of the 

e�ective stress equation and the motivation for pairing di�erent 

constitutive variables. Let fs, fw, and fa  denote the respective 

volume fractions of solid, water, and air in the mixture, respectively, 

which satisfy the closure condition

=f +f +fs w a1   [1]

Further, let r s, rw, and ra denote the intrinsic mass densities of 

solid, water, and air, respectively, de�ned as the mass of the constit-

uent per unit volume of the constituent. �e corresponding partial 

mass densities are rs = fsrs, r
w = fwrw, and ra = fara de�ned as 

the mass of the constituent per unit volume of the mixture. �e 

total mass density r of the mixture is then given by

r=r +r +rs w a   [2]

We also recall the partial Cauchy stress tensors ss, sw, and sa for 

solid, water, and air, respectively, which satisfy the closure condition

= + +s w as s s s   [3]

where s is the total Cauchy stress tensor.

�e �rst law of thermodynamics applied to a mixture of solid, 

water, and air states that the rate of increase in the total energy 

(internal plus kinetic) of any arbitrary volume of the mixture is 

equal to the rate of work done on the mixture plus the rate of 

increase in heat energy. If there is no mass exchange between the 

species, the rate of change in internal energy per unit total volume 

of the mixture is given by

a
a

a=
r = + + -Ñ×ås

w,a

: :e rd d q s s   [4]

where re  is the rate of change in internal energy per unit total 

mass of the mixture, r is the heat supply per unit volume of the 

mixture, q is the heat �ux vector, d is the rate of deformation tensor 

for the solid matrix, and dw and da are the rate of deformation ten-

sors for water and air, respectively. Assuming that sw and sa are 

isotropic tensors, we can write

=-f =-fw w a a
w a1, 1p ps s   [5]
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where pw and pa are the intrinsic pore water and pore air pressures, 

respectively, de�ned as the force in the �uid per unit area of that �uid.

Equation [4] can be written in the following alternative form fol-

lowing the developments presented by Borja (2006):

( )

( )
w,a

s
r

w,a

1
:
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e p
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a a a a
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s
 [6]

where wu  and au  are the relative velocities of water and air, 

respectively, with respect to the solid, Kw and Ka are the elastic bulk 

moduli for water and air, respectively, Sr is the degree of saturation, 

and s = pa − pw is the suction stress.

�e �rst term on the right-hand side of Eq. [6] identi�es the pair-

ing between the e�ective Cauchy stress tensor s¢ and the rate 

of deformation tensor d for the solid matrix. �is motivates the 

development of a constitutive law for the solid matrix in terms of 

the e�ective Cauchy stress s¢, which takes the form (Borja, 2006)

( )¢= +b = + -r w r a1, 1p p S p S ps s   [7]

where b is the Biot coe�cient. �e e�ective stress equation stated 

above approaches the Schre�er (1984) stress in the limit b = 1. 

Other schools of thought have led to the development of a slightly 

di�erent expression for the e�ective stress (see Khalili et al., 2004).

�e second term on the right-hand side of Eq. [6] identi�es the 

pairing between the intrinsic pressure pa and the relative velocity 

au  and motivates the use of Darcy’s law for the �ow of water and 

air relative to the solid. �e third term identi�es the conjugate 

pairing among the suction stress s, porosity n = 1 – fs, and degree 

of saturation Sr, which motivates the water retention surface of 

the form

( )= -fsr r ,1S S s    [8]

�e fourth term represents the mechanical powers of the intrinsic 

pore water and pore air pressures in volumetrically deforming the 

water and air, respectively. If we assume that water is incompress-

ible and the pore air remains passive (i.e., pa = 0), then these terms 

will drop out of the energy balance equation. Finally, the last two 

terms are non-mechanical powers associated with heat.

Without loss of generality, we shall make the simplifying assump-

tions of incompressible water and passive air, as well as b = 1. �e 

expression for the rate of change of internal energy then becomes

( )sw w r: , 1e p s S r¢r = + u - -f + -Ñ×d q s   [9]

where the symbol á×,×ñ denotes an energy-conjugate pairing. 

Now, let F denote the deformation gradient for the solid-phase 

motion, and J = det(F) the corresponding Jacobian determinant. 

Multiplying both sides of the expression for the internal energy by 

J, and assuming a passive air condition, we get

( ) ( )
0

s
w w w r: , 1 DIV

e

S R

r =

¢ + J u +J -f + -d Q



t
  [10]

where r0 = Jr is the pull-back mass density of the mixture, t ¢ = Js ¢ 
is the effective Kirchhoff stress tensor, Jw = Jpw, R = Jr, and 

Q = JF−1q is the Piola identity. �is yields the following e�ective 

stress equation in terms of the Kirchho� stresses:

¢= - Jr w1St t   [11]

where t = Js. In terms of the �rst Piola–Kirchho� stress tensors, 

the e�ective stress equation takes the form

-¢= - J 1
r wSP P F   [12]

where P¢ = F−1t ¢ and P = F−1t. Note that the Piola transform of 

the Kronecker delta is not an isotropic tensor.

 6Constitutive Assumptions
Assuming a passive air condition, conservation laws include the 

balance of linear momentum for the solid–water–air mixture and 

the balance of mass for the solid and water. A complete formula-

tion of the initial boundary-value problem may be found in Borja 

et al. (2013a) for in�nitesimal deformation and Song and Borja 

(2014) for �nite deformation. Motivated by the discussions above, 

we complete the formulation of the initial boundary-value prob-

lem by providing speci�c constitutive relationships between the 

e�ective Kirchho� stress and deformation of the solid matrix, the 

water retention properties of the soil, and a modi�ed Darcy’s law 

accounting for the deformation of the solid matrix. 

Multiplicative Plasticity
�e framework for the mechanical response of the soil is based on 

multiplicative decomposition of the deformation gradient. �is 

framework is relatively mature, particularly for isotropic plasticity 

models where the product formula algorithm is readily available 

(Simo, 1992; Borja and Alarcón, 1995). A three-invariant consti-

tutive model for unsaturated sand was �rst presented by Borja et 

al. (2013b) for in�nitesimal plasticity. Song and Borja (2014) pre-

sented an extension of this model to the �nite deformation regime. 

�e elastic deformation of the soil is determined from a stored 

energy function Y = Y(be), where be is the le� Cauchy–Green 

deformation tensor. �rough a spectral decomposition of be, one 

can choose, as the independent variables of this function, the volu-

metric and deviatoric invariants, ev
e and ev

s, respectively, of the 
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elastic logarithmic stretches. �e e�ective Kirchho� stress tensor 

t ¢ is then obtained from the hyperelastic constitutive equation

¶Y¢=
¶

e
e

2 b
b

t   [13]

To characterize the plastic deformation of the soil, we need to 

de�ne three components of a plasticity model, namely, a yield sur-

face, a hardening law, and a �ow rule. �e yield surface depends on 

all three invariants of the e�ective Kirchho� stress tensor:

( )
( )

¢= = q=
c

3

3

tr1 3
tr , , cos3 6

3 2
p q

x
t x   [14]

where x = t ¢ − p1 is the deviatoric component of the e�ective 

Kirchho� stress tensor t ¢, and c2 = tr(x2). �e quantity p is called 

the mean normal stress and has a negative value throughout; q is 

Lode’s angle, whose value ranges from 0 £ q £ p/3 (Borja 2013). 

�e speci�c yield criterion is given by

=V +h £0F q p   [15]

where V is a scaling function de�ned by Borja et al. (2013b). Lode’s 

angle q represents the e�ect of the third stress invariant modifying 

the shape of the yield surface on a deviatoric plane and h is de�ned 

as a function of the slope of the critical state line M, the curvature 

of the yield surface N on the hydrostatic axis, mean normal stress 

p, and image stress pi (Borja et al., 2013b). Figure 1 shows a three-

dimensional representation of the three-invariant yield surface in 

principal e�ective Kirchho� stress space.

To simplify the formulation, we assume the associative �ow rule 

and express the symmetric part of the plastic velocity gradient as

¶
=l

¢¶
p F

d 
t

  [16]

where l  is the consistency parameter.

To complete the plasticity model, we need to de�ne a hardening law 

that accommodates the e�ect of a spatially varying density. For the 

dry sand case, the hardening law is a function of deviatoric plastic 

strain that allows the proper qualitative capture of key features in 

both loose and dense sands (Je�eries, 1993; Borja and Andrade, 

2006; Andrade and Borja, 2006, 2007; Borja et al., 2013a). In a 

critical-state isotropic model, preconsolidation pressure is a mea-

sure of the size of the yield surface in the fully saturated state. For 

isotropic plasticity models, the preconsolidation pressure char-

acterizes the distance from the origin of the stress space to the 

intersection of the compression cap with the hydrostatic axis. Borja 

et al. (2013b) modi�ed this hardening law to account for the par-

tially saturated sand by enhancing the preconsolidation pressure 

with a so-called bonding variable x (Gallipoli et al., 2003a; Borja, 

2004; Borja et al., 2013b):

( ) ( ) xé ù=- x -ë û
( )

c cexp
b

p a p   [17]

where cp  is the preconsolidation pressure in the fully saturated 

state, and a(x) and b(x) are functions of the so-called bonding vari-

able x, which varies with Kirchho� suction stress and degree of 

saturation. A returning mapping algorithm is used to numerically 

integrate the constitutive model (Song and Borja, 2014).

Water Retention Surface
A suitable water retention law is crucial for characterizing the e�ect 

of the degree of saturation on the hydromechanical properties of 

unsaturated porous media. Here, we adopt the water retention 

law proposed by Gallipoli et al. (2003b) in which the degree of 

saturation is a function of suction and porosity. Recalling that for 

the problem at hand, the Kirchho� suction stress −Jw > 0 (see 

Hassanizadeh and Gray, 1993), whereas the porosity 1 − fs is a 

linear function of the Jacobian determinant J of the solid-phase 

motion, we write

-ì üï ïé ùï ïæ öï ïê ú÷çï ï÷ç= + - - Jí ýê ú÷ç ÷ï ï÷çê úfè øï ïï ïë ûï ïî þ

2

r 1 ws
0

1 1

mna
J

S a  [18]

where f0
s is the initial solid volume fraction and a1, a2, m, and n 

are material parameters. �is soil-water retention law is a simpli-

�ed extension of the soil-water retention curve presented by van 

Genuchten (1980) in that as Jw ® 0, Sr ® 0 and as Jw ® −¥, 

Sr ® 0. However, this relationship can capture the e�ect of poros-

ity on the degree of saturation. On the other hand, it does not 

take into account the hydraulic hysteresis on wetting and drying 

(Khalili and Zargarbashi, 2010). Gallipoli et al. (2003b) used this 

relationship to characterize the water retention behavior of a com-

pacted Speswhite kaolin. Salager et al. (2010) conducted laboratory 

tests on clayey silty sand and also obtained a similar relationship, 
Fig. 1. �ree-invariant yield surface in principal e�ective Kirchho� 
stress space, where t¢ is the e�ective Kirchho� stress tensor.
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although they only showed their results graphically without an 

explicit equation. Here, we apply a three-dimensional curving �t-

ting technique on the experimental data presented by Salager et al. 

(2010) to arrive at the following coe�cients for the water reten-

tion surface de�ned by Eq. [18]: a1 = 3.8038 ´ 10−2, a2 = 3.4909, 

m = 6.3246 ´ 10−1, and n = 7.1771 ´ 10−1 for the clayey silty 

sand. Figure 2 shows such a surface in the space de�ned by the 

degree of saturation Sr, suction stress −Jw, and speci�c volume v. 

We used this particular water retention model for the numerical 

simulations presented below.

Modified Darcy’s Law
We apply the modi�ed Darcy’s law to express the super�cial veloc-

ity u  in the unsaturated state as

w
rw sa

w

1Jk k z
æ öJ ÷ç ÷u=- Ñ +ç ÷ç ÷ç gè ø

  [19]

where krw is the relative permeability of the wetting phase of water 

related to the soil-water retention curve, ksa is the isotropic satu-

rated hydraulic conductivity, gw is the unit weight of water, and z 

is the vertical coordinate. We use the Kozeny–Carman equation 

(Bear, 1972) to express the saturated permeability in the form

( )
( )
-fg

=
m f

3s2
0w

sa 2s
0

180

JD
k

J
  [20]

where m is the dynamic viscosity of water, D is the e�ective diame-

ter of the grains, J is the Jacobian determinant, and s
0f  is the initial 

volume fraction of the solid grains. �e relative permeability is a 

function of the degree of saturation through the van Genuchten 

(1980) equation:

( )é ù
= - -ê úê úë û

2
1/2 1/

rw r 1 1
mm

rk S S   [21]

where m is the same material constant used in Eq. [18]. �e degree 

of saturation Sr is calculated from Eq. [18], so krw is now also a 

function of the suction stress and deformation of the solid matrix.

 6Numerical Simulations
We conducted numerical simulations of the vertical compression 

of a rectangular specimen of unsaturated sand deforming in plane 

strain. Drainage conditions were speci�ed such that water could 

not escape or enter through the outer boundaries of the sample, but 

could �ow internally within the sample, i.e., the �ow was globally 

undrained but locally drained. Because the balance of air mass was 

not imposed explicitly, air was assumed to drain freely through 

the atmosphere. �e two vertical faces of the sample were exposed 

to an external con�ning pressure sc, whereas the top and bottom 

horizontal faces were supported on rollers except for one corner 

of the specimen that was pinned to the support to prevent rigid-

body translation. A downward vertical displacement d = d(t) was 

then prescribed at the top supports to compress the sample. �is 

experimental setup, depicted in Fig. 3, is a realistic representation 

of a displacement-driven plane strain testing of a sand sample sup-

ported on a smooth base (Borja et al., 2013a).

�e boundary conditions described above favor the development 

of a homogeneous deformation, and so, it is necessary to introduce 

imperfections into the soil sample to trigger inhomogeneous defor-

mation. In this example, imperfections were introduced into the 

soil sample in the form of spatially varying density and degree of 

saturation. Randomization of the density, or speci�c volume, in 

the specimen was achieved through a random function generator 

Fig. 2. Water retention surface for clayey silty sand as determined by 
the degree of saturation (Sr), Kirchho� pore pressure (Jw), and the 
speci�c volume (u).

Fig. 3. Finite element mesh and boundary conditions, including the 
mean vertical compression (d) and the con�ning pressure (sc). Soil 
sample is 5 by 10 cm deforming in plane strain. Material points A and 
B are Gauss points outside and inside the band, respectively.
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with a probability distribution available in MATLAB. However, 

unlike in a previous study where inhomogeneities in density and 

degree of saturation were imposed independently (Borja et al., 

2013a), the adoption of a water retention surface makes the suction, 

degree of saturation, and density interdependent on each other.

Initial conditions were established as follows. Uniform e�ective 

stresses were speci�ed initially at the Gauss points, while uniform 

negative pore water pressures were speci�ed initially at the pore 

pressure nodes. Because of the assumption of a passive air condi-

tion, a uniform suction equal to the negative of the pore water 

pressure was generated at the nodes, as well as throughout the 

entire problem domain including the Gauss points. A spatially 

varying speci�c volume was then speci�ed at the Gauss points 

based on the random function generator. Because the degree of 

saturation depends on the suction stress and density, and because 

the suction stress was speci�ed as being uniformly distributed 

throughout the sample, the spatial variation of the degree of satu-

ration follows the same pattern as the spatial variation of speci�c 

volume. In general, the prescribed initial e�ective stresses and pore 

water pressures cannot be expected to be in static equilibrium with 

the externally applied con�ning pressures because the total stresses 

at the Gauss points also depend on the degree of saturation, which 

cannot be speci�ed independently. �erefore, the �rst time step of 

the analysis, with a very small time interval Dt and no incremental 

compression, was used to iteratively �nd an equilibrium con�gura-

tion. For purposes of analysis, the initial con�guration where the 

Jacobian determinant J is set to unity was taken as the converged 

stress con�guration a�er this �rst time step.

�e soil sample was 5 cm wide by 10 cm tall and subjected to a 

con�ning stress of sc = 120 kPa on the two vertical faces (Fig. 3). 

�e �nite element mesh consisted of 861 solid nodes, 231 pore 

pressure nodes, and 200 isoperimetric quadrilateral elements with 

nine displacement nodes and four pore pressure nodes (Q9P4). 

�is mixed element is convergent in the sense that it satis�es the 

Ladyženskaja–Babuška–Brezzi (LBB) stability condition (Brezzi, 

1990) and has been used for similar �nite deformation simula-

tions by Li et al. (2004), Andrade and Borja (2007), and Uzuoka 

and Borja (2012). �e con�ning stress sc was assumed constant 

throughout the simulation; however, because the con�guration of 

the sample is changing due to �nite deformation, the equivalent 

nodal forces generated by the con�ning pressure is con�guration 

dependent. �e contribution of the con�ning pressure to the 

algorithmic tangent operator is obtained by direct linearization 

of the equivalent nodal forces with respect to the con�guration 

of the sample.

Table 1 summarizes the relevant material parameters for the sand 

constitutive model. �e values of the parameters are similar to 

those used by Borja et al. (2013b). �e specimen was compressed 

at the rate of 0.01 mm/s, Dt = 1 s, and the total number of incre-

ments = 310. We remark that the hydromechanical response is 

generally a function of the rate of compression due to the �uid �ow 

occurring internally within the soil sample.

To generate a spatially varying initial speci�c volume in the speci-

men, we speci�ed a range of [1.56, 1.61], a mean value of 1.58, a 

standard deviation of 0.009, and a normal distribution for this 

state variable. Figure 4 shows one realization of the speci�c volume. 

In generating this realization, we assumed that all nine Gauss 

points in a quadrilateral element have the same weight, so that only 

200 random values would have to be generated (equal to the total 

number of �nite elements). Furthermore, we speci�ed an initial 

homogeneous suction stress of 20 kPa and an initial isotropic e�ec-

tive stress of −100 kPa (i.e., compressive). �e corresponding range 

of values of the degree of saturation is Sr Î [0.877, 0.896], with a 

mean value of 0.887. Figure 4 also shows the initial spatial varia-

tion of the degree of saturation within the soil sample. Note that 

the two contours follow the same trend because the suction stress 

is uniform. It is also possible to generate a di�erent realization for 

Table 1. Summary of material parameters for unsaturated sands (for 
physical meanings of these parameters, see Borja and Andrade, 2006; 
Andrade and Borja, 2006).

Symbol Value Parameter

k 0.03 compressibility

p0 −0.12 MPa reference pressure

m0
16 MPa shear modulus

M 1.1 critical state parameter

0.1 compressibility parameter

N 0.4 yield surface parameter

b 1.0 nonassociative parameter

h 280 dimensionless hardening parameter

vc0 1.85 reference speci�c volume

r 7/9 ellipticity

a −3.5 limit dilatancy parameter

l

Fig. 4. Contours of initial speci�c volume (le�) and initial degree of 
saturation (right). Note that the two contours follow the same trend 
for a uniform suction.
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the degree of saturation if the suction stress is speci�ed to follow 

its own random distribution.

Figure 5 shows the evolution of the second invariant of deviatoric 

strain within the sample, calculated from the principal logarith-

mic stretches of the deformation gradient F of the solid matrix. 

�e deviatoric strains are initially homogeneous, but at a vertical 

compression of 2.6 mm, the sample begins to exhibit a tendency to 

form a shear band that propagates upward to the right. At a vertical 

compression of 3.1 mm, a persistent shear band is fully resolved 

(Borja, 2013). We should emphasize that the �nite element mesh 

has no bias whatsoever; it is composed of symmetric quadrilateral 

elements with boundary conditions favoring the development of 

a homogeneous deformation pattern. �e tendency of the solution 

to resolve a persistent shear band in this example is due solely to 

the heterogeneity in the deformation and �uid �ow variables, as 

well as how they evolve with vertical compression.

Figure 6 depicts a more illuminating evolution of the �uid �ow 

variables. The suction stress evolves from its initial uniform 

distribution to one that re�ects the emerging persistent shear band, 

with mean values of around 3 kPa inside the shear band and 6 kPa 

outside the shear band at a vertical compression of 3.1 mm. Overall, 

the suction stress has reduced signi�cantly from its initial uniform 

value of 20 kPa. Concurrently, the degree of saturation has evolved 

from its initial random distribution to one that also re�ects the 

emerging shear band, with mean values of around 0.97 inside the 

shear band and 0.955 outside the shear band. �is is a signi�cant 

increase in the degree of saturation from its initial overall mean 

value of 0.887 at the beginning of the loading program. Because 

the water is not free to drain through the boundaries of the prob-

lem domain, we can conclude that the overall increase in degree of 

saturation inside the soil sample is due primarily to the compres-

sion of the air voids inside the sample. Moreover, we can expect 

that more air voids have compacted inside the shear band, where 

the degree of saturation is higher.

Indeed, the more pervasive compaction of the air voids inside the 

shear band is corroborated by the volumetric strain contours of Fig. 

7. �e volumetric strain in this case is the sum of the elastic and 

plastic natural logarithmic stretches, which is equal to the natural 

logarithm of the Jacobian determinant J (Borja, 2013, Chapter 6). 

�e volumetric strains are all negative, implying that the sample 

has compacted everywhere, i.e., J < 1. However, compaction is 

more pervasive inside the shear band than outside, suggesting 

that the deformation band that forms is that of a compactive shear 

band (Borja and Aydin, 2004). At around this vertical compres-

sion, some material points inside the compactive shear band have 

undergone strain localization as the determinant of the drained 

acoustic tensor reverses in sign (Rudnicki and Rice, 1975). Note 

from the plot of the localization function that the material points 

outside the band remain stable in the sense that the localization 

function is nowhere close to zero. In a way, this is equivalent to the 

vertical compression being converted into localized deformation 

Fig. 5. Evolution of second invariant of deviatoric strain with vertical 
compression. Numbers in millimeters are vertical compression.

Fig. 6. Contours of Kirchho� suction stress J = −Jw (le�) and degree 
of saturation Sr (right) at a vertical compression of 3.1 mm. Recall 
that the suction stress was initially uniformly distributed throughout 
the soil sample.
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along the band, with the subdomain outside the band deforming 

essentially as a rigid body a�er the band has formed.

Figure 8 compares two load–compression curves, one for the 

heterogeneous sample under study and the other for an equiva-

lent homogeneous sample with density and degree of saturation 

equal to the mean values of those of the heterogeneous sample. 

During the early part of loading, the two load–compression 

curves are nearly on top of one another. �is is to be expected 

since the heterogeneous specimen is nearly homogeneous except 

for some small statistical variations in density and degree of satura-

tion, as indicated in Fig. 4. As loading approaches the peak value, 

however, the two curves start to diverge slightly, with the hetero-

geneous soil sample exhibiting a slightly so�er behavior and the 

homogeneous sample showing no sign of bifurcation. �is result 

demonstrates that even relatively small imperfections can trigger 

strain localization. �e �rst element to localize bifurcates at a ver-

tical compression of around 2.9 mm, near the peak. Beyond this 

bifurcation point, the heterogeneous sample exhibits a marked 

so�ening response; in contrast, the homogeneous sample con-

tinues to approach a plateau. Clearly, the homogeneous sample 

is unable to undergo strain localization because it lacks a trigger 

to such a mechanism. At a vertical compression of 3.1 mm, the 

persistent shear band has developed completely. This vertical 

compression occurs a little a�er the �rst bifurcation point but not 

too far beyond it for the solution to be a�icted signi�cantly by 

mesh-dependency issues. In general, �nite element enhancement 

techniques, such as the assumed enhanced strain and extended 

�nite element methods, must be used to capture the evolution of 

the persistent shear band and circumvent the mesh-dependency 

issues associated with the loss of ellipticity well past the bifurcation 

point (Borja, 2013).

Figure 9 portrays an interesting comparison of two state paths on 

the water retention surface for two material points inside the soil 

sample, indicated in Fig. 1 and labeled as Gauss Point A, which 

is well outside the band, and Gauss Point B, which lies inside 

the band. �e two Gauss points started out with nearly the same 

coordinates on the water retention surface, and their state paths 

are nearly the same during the early stage of compression. �is 

is to be expected when the speci�c volume is speci�ed to have a 

very narrow range within the sample and when its variation is 

only statistical in nature, as in this particular example. As Gauss 

Point B approaches the bifurcation point, its state path deviates 

ever so slightly from that of Gauss Point A. Right a�er bifurcation, 

however, as indicated by an open circle in Fig. 9, the state path for 

material Point B diverges signi�cantly from that of Point A, whose 

state path remains nearly immobile. �is is a remarkable �nding in 

that it clearly shows that bifurcation of the �eld response can also 

Fig. 7. Contours of volumetric strain (le�) and normalized determinant 
of the localized function (right) at a vertical compression of 3.1 mm.

Fig. 8. Comparison of load–compression curves for heterogeneous 
and homogeneous soil samples. �e homogeneous sample had a uni-
form density and degree of saturation equal to the mean values of the 
heterogeneous sample. �e open circle shows the location of the �rst 
bifurcation point in the shear band.

Fig. 9. Bifurcation on the water retention surface during plane strain 
compression of unsaturated sand; Sr is the degree of saturation, −Jw is 
the Kirchho� suction stress, and u is the speci�c volume. Gauss Point 
A is a material point outside the band, which has not bifurcated; 
Gauss Point B is a material point inside the band, which has bifur-
cated (see Fig. 3); the open circle indicates the bifurcation point for 
Gauss Point B.
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manifest itself on the water retention surface. As the strain local-

izes inside the band, more and more air voids are squeezed out 

until Gauss Point B reaches a nearly perfectly saturated state as 

manifested by the suction stress approaching zero while the speci�c 

volume remains steady at a nearly constant value, suggesting that 

deformation inside the band is close to the critical state. As the 

degree of saturation approaches 100% inside the band, the pressure 

gradient builds up and triggers �uid �ow. �is is demonstrated by 

the �uid �ow patterns depicted in Fig. 10.

Figure 10 shows the evolution of stream lines with vertical com-

pression. During the early part of compression (e.g., 2.6 mm), the 

�ow lines are as random as the spatial variations of speci�c volume 

and degree of saturation, i.e., there is no distinct �uid �ow pat-

tern within the sample. As the vertical compression progresses 

(2.8 mm), the random distribution of �uid �ow appears to evolve 

into a more recognizable pattern re�ecting the developing com-

pactive shear band. At a vertical compression of 3.0 mm, the shear 

band has become a source of �uid: the pore water pressure inside 

the band has developed to such a level where �uid is now expelled 

from the deformation band and away from it. �is continues up 

to a vertical compression of 3.1 mm, when the persistent compac-

tive shear band has fully developed. We remark once again that 

the boundaries of the problem domain are no-�ow boundaries, 

i.e., �uid may not escape from or enter through the boundaries. 

�erefore, the �uid �ow trajectories of Fig. 10 simply delineate 

general directions where the water is going to �ll up the air voids 

that are continually squeezed out of the soil sample. Overall, the 

mass of the water contained in the problem domain as well as that 

of the solid are conserved.

 6Closure
�e mechanisms for �uid �ow and solid deformation in an unsatu-

rated porous material are highly intricate and necessitate a fully 

coupled hydromechanical formulation. �e continuum principle 

of thermodynamics for a mixture of solid–water–air is extremely 

useful for identifying so-called e�ective stress and the energy-con-

jugate pairings of the constitutive variables necessary for closing 

the statement of the underlying initial boundary-value problem. 

We have shown how the �nite deformation and �uid �ow mecha-

nisms play out in the context of an unsaturated porous material 

with random distributions of density and degree of saturation. To 

our knowledge, this is the �rst time that a porosity-dependent 

water retention law has been fully integrated into the solution of 

an initial boundary-value problem in the �nite deformation range. 

A water retention surface is fully consistent with the �rst law of 

thermodynamics and has been established experimentally for a 

variety of unsaturated, deformable soils. �e proposed framework 

also sets the foundation for a more generalized hysteretic water 

retention law that accounts for incremental nonlinearity on wet-

ting and drying.
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