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Summary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATypical upper mantle circulations obtained by solving Stokes’ 
equation produce finite deformations which differ in important ways from 
those produced by pure or simple shear. Finite strain, defined by the ratio 
of the long to the short axis of the deformation ellipse, in most cases shows a 
steady increase with superimposed oscillations. Similarity solutions for the 
flow near plate boundaries demonstrate that the observed seismic anisotropy 
in the oceanic lithosphere can be produced by the finite deformation beneath 
the ridge axes. The same mechanism should give rise to strong anisotropy 
in the mantle above sinking slabs. Such anisotropy has not yet been detected, 
perhaps because the observed high velocities have been attributed to thermal 
effects. Convection in the mantle remote from plate boundaries produces 
complicated deformation which varies rapidly with position and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill there- 
fore be difficult to map seismically. The fabrics of nodules in lavas and 
kimberlites suggest that large strains can occur in the mantle under stresses 
which are too small to produce dislocation movement. The large and compli- 
cated finite deformation produced by the convective circulation in the mantle 
also affects closed geochemical systems, and leads to thorough mixing of any 
convecting region. 

1 Introduction 

A number of attempts have recently been made to use observed plate motions and other 
instantaneous observations as constraints on the form of mantle circulation. The principal 
difficulty such investigations have faced is the limited number of relevant observations and 
not the calculation of the corresponding properties of the models. Little use has yet been 
made of geochemical and structural observations made on samples of mantle material 
brought up by basalt and kimberlite magmas, or of observations of seismic anisotropy, yet 
some of this information could be directly relevant to mantle convection. It is, however, 
much less straightforward to calculate the corresponding properties of the models for 
comparison with the observations because the entire history of the motion of a piece of rock 
is involved, rather than its present instantaneous deformation. A description of fluid flow in 
terms of the particle paths of individual fluid elements is known as a Lagrangian description, 
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690 D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcKenzie 

and is rarely used in fluid mechanics because of the difficulties which arise in imposing 
boundary conditions. To investigate problems involving observations of rock fabric, seismic 
anisotropy or geochemistry it is necessary first to obtain the solution to the fluid dynamical 
problem in a reference frame faed to the boundaries, called the Eulerian description, then 
to convert this to a Lagrangian description, then finally to investigate the deformation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 
paper is principally concerned with the problems of making such calculations. To complete 
the model calculations requires a theory which can relate a general time-dependent 
deformation to the resulting fabric and a theory of magma segregation from a dispersed 
partial melt. At present neither theory is available, although certain plausible statements can 
be made (see Sections 6-8). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An attempt has been made to separate the purely mathematical part of the problem 
(Sections 2-5) from the parts relevant to the Earth (Sections 6-8), but inevitably the two 
are closely connected. 

To investigate the finite deformation some model of mantle circulation is required, and 
that used here as a guide is compatible with a variety of geophysical and fluid mechanical 
arguments (Richter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& McKenzie 1978; Parsons & McKenzie 1978). In this model the flow 
consists of two parts. A large-scale flow returns material from the trenches to the ridges. 
Beneath the interior of large plates this flow involves no vertical motions and is simple 
shear. Beneath plate boundaries the flow resembles the similarity solutions discussed in 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. In addition to this large-scale flow, heat is transported vertically by a small-scale 
circulation whose plan form is unknown, although it may consist of rolls aligned along the 
shear direction. Most numerical experiments on convecting fluids are relevant to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall- 
scale circulation. Both the large- and small-scale circulations are restricted to the outer 
700 km of the Earth. Although this model is used as a guide to the investigations of finite 
strain discussed below, it contains a wide variety of types of deformation. Hence the results 
can easily be used to investigate the deformation associated with other convective models, 
such as whole mantle convection or models without small-scale flow. The only class of 
models which have not been examined are those with time dependence. These are slightly 
more difficult to investigate than the steady state flows discussed below because the particle 
paths are not stream lines. Apart from this complication the same methods described in 
Section 2 could be used. 

2 Finite deformation 

We need to be able to relate the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ’ ( t )  which joins two particles in a fluid element at 
positions x i ( t )  and x i ( t ) ,  to y the vector joining the same two particles at r = 0 

The matrix 9 i s  initially the unit matrix 3. The shape of any body at time t, represented by 
a sequence of vectors z, at f = 0 can be determined by matrix multiplication from equation 
(1) provided zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 ( t )  is known. The algebra in this section is concerned with the relationship 
between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and the Eulerian velocity field, and with how 9 can be obtained from this 
relationship. The notation and development follows that of Malvern (1969). None of the 
formulations adopted by other authors (Jaeger 1962; Dieterich & Onat 1969; Elliott 1972) 
is easily adapted to the rather complicated circulations considered below. At time t 

y ’ ( t )  = - x&) 

at a later time t + 6 t  

y ’ ( t  + 6 t )  = x;(r  t 6 t )  - x ; ( t  + 6 t )  (3) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/5
8
/3

/6
8
9
/6

7
7
0
6
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Finite deformation during fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
subtracting and taking the limit as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 gives 

D,y' = v'(x;, t )  - vf(x;, i) (4) 

where v'(xf, t) is the velocity of the fluid at position x' and time t, and D ,  is the Lagrangian 
derivative. Provided the size of the fluid element is small compared with the scale of the 
flow v'(xz, t) can be expanded as a Taylor series, giving 

where summation over repeated subscripts is implied. Malvern calls Lik the velocity gradient 
tensor, and it can be obtained by differentiation from the usual Eulerian description of the 
motion. Substitution of equation (1) into equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) gives 

Hence F can be determined by integrating equation (6), subject to an initial condition 
F(0) = f. F(t) in general depends on the position of the fluid element at t = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 
must be evaluated at the position x' of the element at time t. Since element paths are stream 
lines if the flow is two-dimensional and time independent, F i s  simpler to obtain for steady 
circulations than it is for time-dependent ones. For this reason all cases considered below 
are steady flows. 

Equation (6) and the initial conditions form a complete statement of the mathematical 
problem. However, analytic integration of equation (6) is straightforward only for the 
simplest flows where 9 is independent of both position and time. Some two-dimensional 
examples of such circulations are considered in Section 3. When this condition is not 
satisfied it is generally more straightforward to integrate equation (6) numerically. 
Numerical integration can be carried out in various ways. If analytic expressions for Lik 
and the velocity field are available then the Runge-Kutta-Gill method is the obvious 
choice, since the initial condition alone is known. However, when Lik and the velocity field 
have been obtained numerically it is not possible to choose constant time intervals for 
integration, and other methods must be used. 

The time derivative in equation (6) is the Lagrangian derivative, hence if the integration 
is carried out along a particle path the advection terms are zero. If Fij at time nAt is written 
FE, equation (6) can be written in finite difference form as 

Such a scheme is properly centred in time. Equation (7) can be rearranged to give 

6-'*4?.F" (8) p l + l =  

where 

Equation (8) is accurate to O(At2) .  Of particular importance is whether the numerical 
scheme conserves material, since a surface enclosing a unit volume in an incompressible 
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692 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcKenzie 

fluid at time t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 should do so at all later times. It is straightforward to show that the 
volume enclosed is given by det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P), the determinant of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS", and that equation (8) gives 

det (I$Y+l)=(l t O ( A @ )  det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(47) (1 1) 

when 

Furthermore when the deformation is confined to two dimensions, terms in A t 3  vanish and 
the numerical scheme conserves area exactly. 

An alternative method of integrating equation (6) is to write the Lagrangian derivative 
in Eulerian form 

Equation (1 3) may then be solved in two dimensions by methods similar to those used 
for thermal convection calculations. Using a square mesh of spacing Ax and integrating over 
a square box of side 2Ax centred on the grid point I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm gives 

n + %  A t  

2Ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91:; =*dI,-A .gl, m S y m  - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi,-A (Y, m + 1s;; - ~ 1 ,  m - 1 S, m - 1 

n + %  n + %  
(14) 

t U I +  I , m S +  1,m - U I  - 1 , m f i  - 1 ,m)  

where u and u are the x and y components of the velocity. The use of two meshes, one for 
F", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9"" ,... , the other for Fn+%, 4tn+3/2,.. ., allows the difference scheme to be 
properly centred in space and' time. The usual Courant-Friedrich-Lewy condition was 
imposed on the time step to ensure stability. One important difference between equation 
(1 4) and the corresponding equation governing the temperature in a convecting fluid is that 
no steady state solution to equation (14) exists. When (u, v)= 0 and&'.g is constant9 
grows exponentially with time (Section 3). Solutions to equation (14) behave in a more 
complicated way, and short wavelength variations which are not properly resolved by the 
mesh have complex growth rates with positive real parts. Since mesh points with I t m odd 
are independent of those with 1 t rn even propagation of short wavelength errors produces 
oscillations in Ftm . This behaviour was suppressed by introducing a small diffusion term. 

With the exception of equation (14) the general theory above applies to any three- 
dimensional deformation, and can be considerably simplified if the deformation is produced 
by two-dimensional steady flows. Since the fluid is incompressible the velocity may be 
written in terms of a stream function J / :  

v=(ayJ/ , -axJ/ ,O) .  (15) 

Hence in two dimensions 

It is convenient to separate 9' into antisymmetric V and symmetric c4p parts. In three 
dimensions 

ci, = 'A Eijk # j  (1 7) 
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Finite deformation during zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluid flow 693 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeijk is the alternating tensor and o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV x v is the vorticity. In two dimensions the 
vorticity is a scalar, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  and 

- w/21 ‘=L,2 0 

0 

where 

w = - a:$ - a;$. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(19) 

The vorticity is obtained during the integration of the equations governing thermal 
convection, and hence equation (18) is easily evaluated. The symmetric part of P i s  

The time 6 t  taken for the element to travel a distance 6s along the stream line is 

Using equation (8) or (14) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(18), (20) and (21) Fij (t) can easily be evaluated from either 
numerical values or analytic expressions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ,. All the examples considered in Sections 4 
and 5 are obtained from these expressions. 

The analysis above has been concerned with obtaining S a n d  not with interpreting this 
matrix in terms of possible geological observations. For such an interpretation it is con- 
venient to define some measure of the finite strain which has deformed an element of fluid. 
It is easy to show that any two-dimensional deformation described by $converts an 
initially circular element of fluid into an elliptical one. If the major and minor semiaxes 
of the ellipse are a and b respectively, a convenient definition of the finite strain f is  

since f =  0 when a = b. Expressing u/b in terms of the elements of Fgives 

a/b = 7 + (7’ - 1)”’ 

where 

7 = (Ftl + FtZ + Fil + Fiz)/2. 

f is closely related to the natural strain, log,(u/b). The orientation of u and b can also be 
obtained from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. If 

tan e =y&; 

where y ’=  (y;, y ; )  is given by equation (l), the orientation of the two semiaxes are given 
by 

The two solutions for 6’ differ by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/2. 

3 A simple example 

A simple type of deformation which has been widely discussed in the geological literature 
is that of progressive pure shear (see Hobbs, Means & Williams 1976). If the orientation of 
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694 D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the direction of greatest extension is at 45' to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis, then the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 = [ 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S O  

where S is a constant which is taken to be independent of time. The most commonly used 
definition of pure shear is that the vorticity of the fluid must be zero. This definition 
requires an external frame of reference. For our purposes it is more useful to define pro- 
gressive pure shear as that deformation which does not change the direction of a vector 
which initially points along the direction of greatest instantaneous extension. This definition 
avoids all reference to external frames, since progressive pure shear is then defined in terms 
of the symmetric part of 9. A more general deformation than equation (26) which includes 
rotation is 

where W is the instantaneous angular velocity about the +z axis in a positive screw sense, 
and the vorticity is 2W. As before the x and y axes are related to the symmetric part of 9. 
In this case equation (6) can be solved analytically in a frame in which v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0: 

cosh nt ,  

(Ey sinh nt ,  

where n 2 = S 2  - W 2  > 0. 

if S = W, and 

1 (Zr2 sinh nt 

cosh nt 

where i-2' = W z  - Sz > 9. Equation (28) corresponds to progressive pure shear when W = 0. 
Equation (29) can be obtained from either equation (30) or equation (28) by allowing W 
to approach S, and describes progressive simple shear when the flow is parallel to they axis. 
Fig. l(b) shows the strain as a function of time for S = 1 and for four values of W ,  obtained 
from equations (22) and (28)-(30). It is obvious that the finite strain depends on both W 
and S. For values of 1 W1 less than S the behaviour of f ( t )  is similar to that of pure shear 
and, after sufficient time, fincreases linearly with t. Progressive simple shear is a special case 
which requires I W I = S for all time, and f increases monotonically as loglot. When I WI > S, 
f is oscillatory. This behaviour is to be expected from equation (30), since f must be zero 
when sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA527 = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnnl52, where n is an integer and i-2 is the period. Fig. 1 shows that, 
provided S 1 I WI, rotation does not produce oscillatory behaviour in f. When I WI > S, 
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/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
695 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o>w>-s 
W=-5 / 

/ 
- 

x -  - 
Simple Shear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1. (a) Sketch to show the type of deformation produced by equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(28)-(30). The direction of 
maximum instantaneous extension is shown as a dashed line and, when W = 0,  vectors pointing in this 
direction are not rotated. The greater principal axis of the ellipse, a, lies in the same direction. When 
S > I WI > 0 a lies in the positive quadrant. When W = S or W = - S the invariant vectors lie along the 
y or x axes. The only cases for which a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan lie in the +x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- y  quadrant occur if I W I  > S and then only 
for some of the time. (b) The strain f ( t )  from equation (22) for four cases, obtained from equations 
(28)-(30) and (22)-(24). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f does oscillate, but with a period which depends on both the rotation and the pure shear 
rates. Similar behaviour occurs in more complicated cases discussed below. 

One question of some interest is whether the deformation described by equation (27) 
leaves the direction of any vector x unchanged. This question is easily answered using 
equation (28). If t9 =y /x  and 8’ = y’lx’ substitution of equation (28) into equation (1) gives 

Putting e = 8’ gives 

Therefore two initial directions remain unchanged. These directions are only at right angles, 
with one aligned along the direction of maximum instantaneous extension, when W = 0. 
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696 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For other values of W these two directions are symmetrical about the y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax is ,  coinciding 
with it when W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= S. When W > S equation (32) has no real solution, hence the deformation 
rotates all vectors. 

Perhaps the most surprising feature of these results is the wide range of values of W which 
result in deformation similar to that of progressive pure shear. Simple shearing, however, is 
a special type of deformation which occurs only for two values of W, +S. As perhaps might 
be expected from these results, none of the more general circulations discussed below 
resemble simple shearing. The commonest type of behaviour is similar to equation (30) and 
occurs when I W I > S. The principal difference between f ( t )  obtained from equation (30) 
and Fig. 1 and that for more general flows arises because of spatial variations of both W and 
S, which prevent f returning to zero once the deformation has started. The oscillating 
behaviour o f f  occurs because the vorticity of most flows in fluid mechanics is substantial 
compared with the symmetric part of the deformation tensor. These examples clearly show 
the importance of vorticity during finite deformation. 

The only part of the circulation in the mantle to which these results are relevant is the 
interior part of the large-scale flow. Far from plate boundaries this consists of progressive 
simple shear. If Richter & McKenzie’s (1978) model is used the shearing in the low viscosity 
layer is much more rapid than that in the deeper more viscous layer. If the plate velocity is 
100 mm/yr and the low viscosity layer is 50 km thick the curve marked ‘simple shear’ in 
Fig. 1 describes the strain if each division of the time axis corresponds to 1 Myr. In the more 
viscous layer the strain varies with depth, but the same curve describes the fastest rate of 
strain accumulation if each division of the time axis corresponds to about 100 Myr. 

4 Some similarity solutions 

Various authors (McKenzie 1969; Lachenbruch 1976) have used a similarity solution for 
two-dimensional Stokes flow in a corner, given by Batchelor (1967), to discuss the stress and 
stream lines near ridges and trenches. All such solutions have stress singularities in the 
corner, although no singularity occurs within the Earth because the flow ceases to obey 
Stokes’ equation when power law creep occurs at large stresses. Despite this difficulty the 
similarity solutions are useful because they approximately describe the flow field near two 
important types of plate boundaries. In these regions the geometry of the plate motions 
themselves produce large finite strains, and it is of interest to know the magnitude of the 
resulting strain and its orientation. Such calculations are the first stage in understanding 
how the fabric of the rock and its velocity anisotropy are produced in such regions. 

We need solutions to Stokes’ equation in the absence of buoyancy forces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V4$ = o  (33) 

in cylindrical coordinates for the geometry shown in Fig. 2. Batchelor (1967) gives the 
general solution to equation (33): 

$ = r @ = r ( A  sin8 t B c o s 8  tC8s inB  tDBcos8)  

v = (0, u,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU e )  = (0, do 0, - 0). (34) 

We shall consider the four cases for which the boundary conditions and coefficients are 
given in Table 1. The first case, (a), has stream lines which are symmetric about boundary 1 ,  
and boundary 2 moves at constant velocity in the t x  direction in Fig. 2. This solution is 
appropriate for a ridge axis. In the second solution, (b), boundary 1 is stress free but 2 
moves at constant velocity in the radial direction. This solution is appropriate for the region 
above a sinking slab, equivalent to 2, when the back arc basin has no strength, or when the 
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Finite deformation during fluid flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Constant coefficients in similarity solution, equation (34). 

Boundary conditions on boundary 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C  D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2vx cos' a 

(a) ore = 0 v = v x  
2a - sin 20 

0 0  
2vra cos a 

(b) are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O  v = v r  
2a - sin 2a 

- 2vx 

- 2vr 

2a - sin 2a 

2a - sin 2a 

ur (a cos a - sin a) 

a* - sin'a 

- vr( l  + cos a) 

ura sin a 

a* - sin'a 

Vr  sin a 

0 
ura sin a 

a' - sin'a 

vra 

(c) v = 0 v = vr 

(d) v = v r  v = - v r  ___ 
O ! + S i n O !  

0 
a+sina O l + S i n o l  

vr is the velocity in the outward radial direction in Fig. 2, vx that in the x direction. 

697 

Figure 2. The geometry of the similarity solutions, see Table 1. Only the sector between boundaries 1 
and 2 contains fluid, and 2 moves rigidly. 

flow is decoupled from the lithosphere by a thin low viscosity layer. This can easily be 
seen by viewing Fig. 2 with the y axis, rather than the x axis, horizontal. Solution (c) is 
appropriate when the plate behind the arc does not deform. The last solution (d) is 
appropriate for the region beneath the plate being consumed and beneath the sinking slab, 
provided a > 90" and Fig. 2 is viewed with boundary 2 horizontal. 

To obtain F(t) we need the vorticity o about the z axis 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

r 
- + 1) =-(D sin 8 - CCOS 8) o = - ; (diO (35) 

and the symmetric part of -Y(see McKenzie 1969) is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl is expressed in cylindrical, not Cartesian, coordinates. Hence 

(36) 

(37) 
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698 D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
At first sight equation (37) resembles equation (27) when S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ,  an example of simple 
shear. However this is not the case. Yonly has the simple form of equation (37) in 
cylindrical coordinates. Rotation through - (90 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  to transform Y to Cartesian 
coordinates gives 

1 - sin e cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, - sin2 8 

L S 2  e ,  sin e cos e Yc =939 = = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

where 

-case, sine cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"I sine, 
9!= [ (39) 

and transforms from Cartesian to cylindrical coordinates. Since the vorticity is a function of 
both r and 0 it is clear that substitution of equation (38) into equation (6) does not lead to 
an equation for 4F which is easily integrated. One simplification is, however, possible. Since 
the time derivative must be taken along a particle path, and hence a stream line, it may be 
transformed to an angular derivative: 

where ds is an infinitesimal distance along a stream line 

ds2 = dr2 + r2dB '. 
Since the path must be a stream line 

dJ,=O=rdeOdB t 0 d r .  

Hence equation (41) becomes 

r 

0 
ds =- [(do 0)' + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02]1'2 dB 

and 

D O d  

Dt r do '  

Equation (6) now may be written 

do%=- ( d ~ O + l ) [ o ~ e ~ c o s B ,  -sin28 

- =- - 

0 sin 0 cos 0 

(43) 

(45) 

To solve the problem analytically we must integrate equation (45) with initial conditions 
%=fat 8 = 4,. Such integration is not straightforward, and is not attempted here. One 
important result is, however, obvious by inspection of equation (45). Since r does not appear 
on either side, F c a n  only be a function of 0. Hence F = F ( O o ,  0)  and thereforef=f(B0,8). 

This result is of particular interest for case (a), since no deformation of the fluid occurs 
when 8 > a. Hence all fluid elements which start on 0 = Bo at any value of r will have been 
deformed in precisely the same way when they reach 0 = a. This result is a consequence 
of the existence of a similarity solution and is of considerable importance (see Section 7). 

Since the analytical solution of equation (45) is not straightforward S a n d  fare obtained 
from equations (35) and (36) for the four cases using the numerical methods discussed in 
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Finite deformation during fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA699 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

km 

50 

a 2 5 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. (a) Similarity solution for flow beneath a ridge, corresponding to (a) in Table 1. The circular 
fluid elements shown on the lower boundary are deformed into the ellipses as they move along the stream 
lines, shown as continuous curved lines with arrows in the flow direction. The straight line through the 
centre of the ellipse shows the orientation of a single vector in the fluid element at successive times. To 
the right of the oblique line rigid motion occurs. The curved l i e s  passing through the origin are contours 
of the stress field, marked with the stress in bars, for a viscosity of 10”poise (lo2’ Pa s) and a half 
spreading rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAux = 20 mm/yr. The horizontal and vertical scale is shown on the left. (b) The finite strain 
f =  log,,(&), where a and b are the semimajor and semiminor axes of the strain ellipse respectively, 
along the two stream lines shown in (a), marked 1 and 2. 

Section 2. The first case shown in Fig. 3 corresponds to flow beneath a ridge. The 
integration starts with a unit matrix at the lowest point shown on each stream line and 
continues until 6 = a. In this and all other examples below 9 ( t )  is used to obtain the shape 
which a circle, drawn in the fluid at t = 0, would have at this time. The straight line joining 
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700 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the stream line to the ellipse at each time shows the orientation of one vector at various 
times. The contours of shear stress Ore in this and other similarity solutions are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown, 
obtained from 

Ore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 7 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIh (46) 
where q is the viscosity, taken to be 1022poise (102'Pa s). In Fig. 3(a) each stream line 
passes through a region where the deformation is most rapid shortly before it reaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = a. 
This is also shown in Fig. 3(b) where f is shown as a function of 8. For both stream lines 
f increases monotonically with 8 until 8 = a. The total deformation and orientation of the 
ellipses in Fig. 3(a) are similar for both of these and for other stream lines. This result is a 
consequence of the importance of the rapid deformation near 8 = a, and not of equation 
(49 ,  since the initial values of 8 are different. These results show that substantial extension 
(u/b = 6) occurs and this and similar plots show that the long axes of the resultant ellipses 
are in all cases subparallel to 8 = a where the stream lines cross this line. 

100 
km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I d  I d  

1 5 -  

1 0 -  

f 

0 5 -  

/I I I 

1 0' 2 0' 30' 4 0' 0 
0' 

e 
Figure 4. (a) Similarity solutions for the flow above and below a sinking slab when the upper surface of 
the region above the slab is fixed (Table 1, cases (c) and (d)). The convergence velocity ur is 100 mm/yr 
and the stress contours are in bars (see Fig. 3). (b) The finite strain along the two stream lines in (a) 
which are above the sinking slab. 
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Finite deformation during zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluid flow 70 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The trench model shown in Fig. 4 has v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 on the upper surface above the sinking slab. 

The deformation beneath the sinking slab is rather weak, but that above it exceeds f = 1.5 
(a/b 30). Fig. 4(b) shows that f only increases monotonically with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 on stream line 2. On 
stream line 1 f has two maxima. This behaviour is caused by the existence of a region near 
the surface where the maximum extension direction is approximately at 90" to the direction 
in the region near the slab. The fluid element is therefore first stretched to form an ellipse, 
then later stretched more strongly in a direction approximate parallel to the short axis of the 
ellipse formed during the first part of the deformation. The long axes of the ellipses near the 
slab are approximately parallel with its upper boundary. If the surface above the sinking slab 
is stress free rather than fmed the behaviour of the deformation is similar. The stress ellipses 
are orientated subparallel to the sinking slab, but f ( 6 )  is slightly smaller and contains only 
one maximum. 

From the geophysical point of view the most important result is that large strains are 
produced in the region above sinking slabs regardless of the surface boundary conditions. 
These strains are produced near the region where the material on each stream line is subject 
to the greatest shear stress. The direction of maximum extension is approximately parallel 
to the sinking slab. The deformation beneath the sinking slab is relatively small compared 
with that above. The number of cases for which calculations were carried out was con- 
siderably larger than those shown here, and demonstrated that the results were not strongly 
dependent on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Although the strain increased as a decreased, the orientation of the ellipses 
was little affected. 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStrain in convecting fluids 

The original purpose of this investigation was to understand the deformation of fluid 
elements in a vigorously convecting fluid. Since the stream function for such circulation 
must be obtained numerically so must S, using the methods discussed in Section 2. The 
stream functions used were those obtained by McKenzie, Roberts & Weiss (1974) for 
convection with free boundaries, and some new solutions obtained with rigid upper and 
lower boundaries on which the velocity vanishes. 

Fig. 5 shows the behaviour of one fluid element in convecting fluid whose Raleigh 
number is 1.4 x lo6, with upper and lower boundaries stress free and all the heat supplied 
from below (see McKenzie et al. 1974, figure 18 for details). The deformation of a fluid 
element, represented by a circle at position 1 in Fig. 5(a) and an ellipse at later times, is 
substantial. The orientation of the greater principal axis of the ellipse shows little relation- 
ship to the direction of maximum instantaneous extension. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis complicated behaviour is 
the result of the rapid rotation of any radius of the circle in a frame fixed to the direction 
of instantaneous maximum extension. It is clear from geometric considerations that the 
direction maximum extension must change by an angle of na, where n is an integer and the 
angle measured in a laboratory frame, when a fluid element describes any closed curve 
(Fig. 5(b)). In Fig. 5(a) n is 2. The rotation of a fluid element is more complicated and is 
controlled by the vorticity . Unlike the similarity solutions, where vorticity diffuses in from 
the boundaries, that in Fig. 5 is generated by horizontal temperature gradients within the 
fluid. The dimensionless relationship is (McKenzie et al. 1974) 

v20 = a,T (47) 

and the free boundary conditions require w = 0 on all boundaries. The path of the fluid 
element is shown superimposed on the vorticity in Fig. 5(c), and it is clear from (a) that the 
total rotation of a vector during one overturn is substantial. The geometry of the flow 
imposes a constraint on this rotation. Since stream lines cannot cross, and since they are 
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702 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. (a) Deformation within a convecting fluid with a Rayleigh number of 1.4 X 10' and driven by 
heat supplied from below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll boundaries are stress free (see McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1974; figure 18). Both sides 
of the square are 700 km. The position marked 1 is at a depth of 400 km where the deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis taken 
to be zero, due to the phase change from spinel or olivine. The stream line shown is that with dimension- 
less stream function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$'  = - 0.1. The deformation ellipses are at equally spaced intervals in time of 
11.9 Myr. The straight line through their centres shows the orientation of one vector in the fluid element 
at different times. (b) Stream line in (a) superimposed on vectors whose direction is that of the greatest 
instantaneous extension direction and whose length is proportional to the extension rate. (c) Stream line 
in (a) superimposed on the dimensionless vorticity. The contour interval is 1.0 and the vorticity is zero on 
the boundaries of the box. (d) The fmite strain f as a function of time in Myr for the stream line in (a). 
(e) The length of the vectors shows the magnitude of the finite strain f a t  24 Myr, and their direction is 
that of semimajor axis of the strain ellipse. 

particle paths if the flow is steady, points on the circle initially in the interior part of the 
cell cannot cross the stream line. Hence in one overturn all vectors must rotate through 
angles between n and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3n, and the two vectors tangential to the stream line must remain so 
throughout the motion, rotating through 2n. The rotation for all vectors is in the opposite 
Sense to that of the maximum extension direction. From the discussion in Section 3 this 
rapid rotation should produce an oscillation in f, and this is shown in Fig. 5(d). Because the 
environment of the element changes rapidly, f does not return to zero. In this case fcan be 
approximately described by a harmonic oscillation superimposed on a linear trend, but in 
general the behaviour is more complicated. One feature of Fig. 5(d) which is easily explained 
is the linear trend. Once the ellipse is strongly flattened, shortening in almost all directions 
will cause this flattening to increase. It is unlikely (although not impossible) that later 
shortening will return the ellipse to a circle. This argument depends on the general tendency 
of disorder to increase in complicated non-linear physical systems. The superimposed oscilla- 
tion in f is produced by the rotation between the ellipse and the extension direction, and is 
easily seen by comparing Fig. 5(a) with Fig. 5(d). The behaviour of elements on other 
stream lines (Fig. 6) is similar, although the deformation decreases strongly towards the 
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Finite deformation during zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA703 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

OO 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloo 

. . . .  I 
I 
I 
I 
I 

" I  
" I  

. _ .  
. . . . . .  

_ . . , . .  
. . . . . .  

. . . . . . . .  

. . . . .  

. . . . . .  
1 , .  _ _ .  . . .  
I , . . .  . . . . . .  
1 ,  . . . . . . . . . .  - 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F i e  5 

(b) . 

2 -  
I 

1 -  

0 . 
0 

Figure 6. (a) Stream lines for the convective flow in Fig. 6 .  Contour interval is 0.05 and Q' = 0 on the 
boundary of the box. (b)-(g) The finite strain f for all the stream lines in (a) except that shown in 
Fig. 5(d). (b) is for the outermost stream line, (g) for that in the centre. Because the overturn time varies 
with the stream line the time interval between successive points on different stream lines is not the same. 
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704 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
centre of the cell. The interior of two-dimensional convection cells at large Rayleigh number 
is a region where the vorticity varies little (Fig. 5(c)). This region, therefore, rotates in a 
manner similar to that of a solid cylinder, with little internal deformation. Such solid body 
rotation also causes the circulation time of each element to vary little with position (Fig. 
6), and produces small finite strains in the interior. The magnitude h d  orientation of the 
finite strain throughout the fluid at 24 Myr in Fig. 5(e) shows the same behaviour, and, 
because of the advection of finite deformation by the flow, differs considerably from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

pl! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -  , , .  . .  \ \ I  \ \ I  

- _ .  
\ \ \ ,  

. . .  . , , ,  \ \ \ .  

. . . . .  , , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 . . \  I , .  . \ \ -  

\ \ I  - -  . . , . . . .  
- -  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I# I I i I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ; 
. .  
. .  \ \ -  

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 100 150 

t MY 
Figure 7. (a) Deformation within a convecting fluid with the same Rayleigh number and stress boundary 
conditions as in Figs 5 and 6 ,  but with half the heat supplied by internal heating. The stream line is that 
for Q'= -0.1 and the time interval between successive ellipses is 17.4 Myr. (b)-(d) Correspond to 
5(b)-(d) and show the instantaneous direction of maximum extension rate, the vorticity and the finite 
strain for (a) respectively. 
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Finite deformation during fluid flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA705 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
corresponding plot of the instantaneous extension direction. On the edges of the region the 
deformation consists of pure shear whose rate depends on position. Because the vorticity is 
zero on these boundaries the finite strain accumulates faster than it does elsewhere. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 
rather simple behaviour in the interior of the fluid is a consequence of the absence of 
internal heat generation, which generates vorticity in the interior and prevents solid body 
rotation. If the upper and lower boundaries are fmed, the form of the flow is changed 
considerably. The velocities are considerably decreased, and each element takes about twice 
as long to describe each stream line. However, the vorticity and strain rate are increased, 
hence the finite strain is also. There is no region in the centre of the cell where the vorticity 
is constant, although presumably one would develop if the Rayleigh number was increased. 
Hence the finite strain produced during one overturn is considerable, even on stream lines 
far from the boundaries. 

Convection driven partly or entirely by internal heating does not possess an interior 
region where the vorticity is constant (Fig. 7(c)). The reason for this difference is that most 
of the vorticity generation in Fig. 5(c) occurs close to the rising sheets of hot fluid and the 
sinking sheets of cold fluid, where the horizontal temperature gradients are large. When heat 
is produced in the interior of the fluid so are horizontal temperature gradients. Fig. 7(a) 
shows the finite deformation produced on a stream line within a convection cell driven half 
by internal heating and half by heating from below, with the same Rayleigh number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.4 x lo6 as that used in Fig. 5. There is a considerable difference between the total deforma- 
tion in Figs 5(a) and 7(a). This difference is not the result of changes in the strain rate, but 
occurs because on this stream line the rotation produced by the vorticity is matched to that 
of the maximum direction of extension. Deformation on stream lines on both sides of that 
in Fig. 7(a) is considerably larger (Fig. 8(b), (d)), and the decrease towards the centre of the 
cell is less than that in Fig. 6. 

v- 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 100 

t MY 

Figure 8. (a) Contours of the stream function at 0.05 unit intervals for the flow in Fig. 7. ((b)-(e) finite 
strain for the stream Lines in (a), except that in Fig. 7(d). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) is for the outermost curve, (e) for that near 
the cenue. 
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A number of other cases were examined with Rayleigh numbers of 2.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo4 and 2.4 x 
10’. The magnitude of f  after one overturn differed little from that in Figs 5-8, although 
at low Rayleigh numbers there is no constant vorticity region in the cell interior, even when 
the heat is supplied from below. Therefore the interior region is more deformed than that 
in Fig. 6. Temperature-dependent viscosity also had little effect. 

It is clear from the remarks above that thermal convection produces complicated finite 
strain, which varies rapidly with position, and that the simpler problems discussed in 
Sections 3 and 4 are of limited help in understanding the detailed behaviour. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 The relation between finite strain and fabric 

The finite deformation of a fluid element can be observed directly if some object whose 
initial shape is known is introduced at a known time. This is the method used by most 
tectonic geologists to determine the finite strain (see Ramsay 1967). If care is taken to use 
markers which deform in the same way as the fluid, this method can give S ( t )  when the 
deformation is complete, but not that at intermediate times. Unfortunately there are no 
known markers in the mantle which can be used for this purpose. The only information 
which is available comes from preferred orientation of minerals, which can either be 
measured directly if samples are available, or indirectly by measuring the seismic 
anisotropy. Other details of the crystal fabric, such as the grain and sub-grain size or the 
dislocation density, are more sensitive to the last phase of deformation, especially if this 
took place under large stresses. Since all emplacement of mantle material has involved a high 
stress phase during extraction from the mantle and emplacement in the crust, and since this 
phase is not related directly to the motions beneath the plates, we shall only consider the 
influence of finite deformation on mineral orientations. 

The relationship between deformation and crystal orientation has generated considerable 
controversy (see Nicolas & Poirier 1976 and Williams 1977 for recent reviews). Some authors 
(Kamb 1959; Ave’Lallement & Carter 1970) have argued on thermodynamic grounds that 
crystal orientation is controlled by the stress field, and hence by the symmetric part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc9 of 
the velocity gradient tensor. On general grounds this argument seems unlikely. The density 
of small structures, such as dislocations, in a crystal depends on the past history of the 
crystal and never reaches thermodynamic equilibrium. It is hard to believe that the rotation 
of a whole crystal can be controlled by thermodynamic forces, and especially difficult to 
believe that this process can align the crystals when externally imposed rotation is also 
occurring. Furthermore crystal orientation can only occur through some form of creep, 
and this often involves dislocations. Thermodynamic theories ignore the contribution of 
these dislocations to the internal energy of the crystals, whereas studies of grain growth 
during recovery in metals suggest that this energy strongly influences grain growth (see 
Nicolas & Poirier 1976). One particularly important experiment was carried out by Kamb 
(1972) who deformed ice in simple shear. He found that the resulting fabric had mono- 
clinic symmetry, and therefore could not have been produced by the stress field. He argued 
that the velocity gradient tensor did have the required symmetry and that his experiments 
were not consistent with thermodynamic control. 

The alternative view which is now widely accepted is that the orientation is related to the 
finite strain. Evidence in favour of this model is discussed by Williams (1977) and by 
Ramsay (1967). In olivine Nicolas et al. (1971) have observed that the [OlO] direction 
(Fig. 9) is aligned normal to the shear plane in simple shear, whereas the [loo] axis is aligned 
in the shear direction. Therefore in this example the [OlO] axis is aligned along the direction 
of greatest shortening, the [loo] along that of greatest extension. The same relationship 
between strain and crystal orientation will align [OlO] along ul, the greatest principal stress, 
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Finite deformation during fluid flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA707 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and S velocities along the three principal axes of an olivine crystal. The velocities and those in 
Fig. 10 were obtained by Keith (private communication) from the constants listed by Verma (1960), 
and differ by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas much as 1.5 per cent from those measured by Verma. Four different crystallographic 
notations commonly used are indicated. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis paper we assume that [loo] is aligned along the axis of 
greatest fiiite strain, and [OlO] along the axis of least strain. 

when the deformation is carried out in pure shear (Ave'Lallement & Carter 1970). Nicolas, 
Boudier & Boullier (1 973) argue that the orientation results from intracrystalline glide, 
but grain growth during high temperature recovery could also be important. Fortunately 
the mechanism is not of major importance to the present argument. As Carter (1 976) 
has emphasized all mechanisms which have been proposed only occur when the creep is 
dominated by the movement of dislocations. 

The relationship between the axes of the finite strain ellipse and the orientation of 
olivine crystals will be used in the discussion below, but it is difficult to believe that the 
fabric is independent of the time history of S ( t ) .  Available experiments are, however, 
little help in understanding what the relationship might be, even for metals. The strain 
needed to produce a strong fabric was found to be f >" 0.4 in olivine (Nicolas et al. 1973) 
when creep occurs through dislocation climb at high temperatures (1 200-1 300OC). Because 
of recrystallization the shape of individual crystals after deformation cannot be used to 
estimate f .  

As has already been mentioned all olivine fabrics which have been studied in the field 
are believed to be the result of dislocation motions (see Nicolas & Poirier 1976). Hence the 
stress must be sufficiently large to mobilize the dislocations at mantle temperatures. The 
stress which must be applied before the creep is dominated by dislocation movement is very 
uncertain. For such discussions it is convenient to define a normalized stress by 

2 = loglo(o/P) (48) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(= 7.9 x 10" dyne cm-', 7.9 x 10'OPa) is the shear modulus. The lowest estimate is 
that of Weertman (1970) of lO-'bsr (1 kPa, Z = -7.9). Stocker & Ashby (1973) carefully 
examined all available data on olivine and believed about 7 bar (0.7 MPa, Z = - 5.05) was 
the best estimate. McKenzie (1968) collected the results of a number of experiments on 
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ceramics and thought 50 bar (5 MPa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = -4.3) was a reasonable value, whereas Twiss 
(1976) has recently used a modification of diffusion creep proposed by Ashby & Verrall 
(1973) to give estimates as large as 200 bar (20MPa, Z =  -3.6). Of these values that of 
Stocker & Ashby (1973) is probably too low because they did not consider the contribution 
of grain boundary sliding in the diffusion creep regime. Twiss' (1976) estimate is strongly 
influenced by his belief that post-glacial observations require the mantle to deform as a 
Newtonian fluid, and that dislocation creep does not occur. Although Peltier & Andrews 
(1976) and Cathles (1975) have demonstrated that the observations can be fitted by a 
Newtonian model with some accuracy, no systematic investigations have yet been made of 
non-Newtonian ones. Hence it is not yet clear what constraints these observations place on 
mantle rheology. Although this question will probably be resolved by experiments, large 
strains at low stresses are necessary and are not easily produced. 

A preferred crystal orientation once formed is not easy to destroy. Diffusion creep of the 
type proposed by Nabarro (1948), Herring (1950) and Coble (1963) leaves the crystal 
orientations unchanged, and deformation at higher stresses produces a new orientation in a 
different direction. Two processes appear to be able to destroy the fabric. The first and most 
obvious is phase changes. The change from cubic spinel to orthorhombic olivine structure 
occurs at a depth of about 400 km in the rising fluid, and for this reason the integrations in 
Section 5 were started at this depth. Although recrystallization to a phase of different 
symmetry is likely to destroy most of the fabric, the process may not be complete because 
there may be a preferred orientation between the two phases which allows grain boundaries 
to migrate rapidly (Ashby, private communication). Such complications will be ignored. The 
other process which can destroy a fabric is diffusion creep by grain boundary sliding (Ashby 
& Verrall 1973). This deformation mechanism causes grain rotation, and the preferred 
orientation is gradually lost. Ashby (private communication) estimates that strains off >" 2 
will be required to remove a strong fabric. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An obvious objection to using any of the results from Sections 4 and 5 to discuss crystal 
orientation is that all the calculations were carried out for a Newtonian fluid, and are only 
strictly valid if dislocation motions do not dominate the flow. However, recent calculations 
by Paramentier, Turcotte & Torrance (1 976) have demonstrated that the flows are scarcely 
affected if a realistic power law relationship is used instead of the Newtonian laws. Hence 
the finite strain behaviour must also be largely unaffected by the change in rheology. If 
power law creep does occur and produces a strong fabric the relationship between stress 
and strain rate will be anisotropic. Whether this effect will be important depends on the 
creep anisotropy. Durham, Goetze & Blake (1977) studied the deformation of single olivine 
crystals at high temperatures, and showed that dislocations climbed as fast as they slipped at 
low stresses. Goetze (private communication) argued that this behaviour suggested that creep 
anisotropy is unlikely to be important in the upper mantle even where the rock has a strong 
fabric. 

In summary then we will assume that the effect of finite straining is to orient the [OlO] 
axis of olivine along the direction of greatest shortening and the [loo] axis along that of 
greatest extension, provided the finite strain f exceeds 0.4 and the normalized stress Z 
exceeds - 5. For the reasons discussed these are at present reasonable assumptions, but are 
likely to be changed somewhat by future work. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 Seismic anisotropy and xenolith fabrics 

The only method available at present for observing the orientation of crystals in the mantle 
is seismic anisotropy. Hess (1964) pointed out that the velocity of the mantle beneath the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/5
8
/3

/6
8
9
/6

7
7
0
6
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Finite deformation duringjluid jlow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA709 

Moho obtained from refraction surveys in the Pacific depended on the azimuths of the lines. 
The velocity normal to the fracture zones is less than that measured parallel to them. Hess 
suggested that the shear which produced the fracture zones also orientated the olivine 
crystals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis explanation is no longer generally accepted because the shearing associated 
with transform faults is believed to be localized, and the observed offsets are generally 
inherited from earlier ridge geometries and are never produced by global shear fields. Hess' 
suggestion stimulated a number of careful refraction experiments (Raitt et al. 1969; Morris, 
Raitt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Shor 1969; Keen and Barrett 1971; Keen & Tramontini 1970) which have strongly 
confirmed the original observations. The fast direction is approximately normal to the 
magnetic anomalies, and the difference in velocity between the fast and slow directions 
varies from 0.2 to 0.6 km/s. Since the upper 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 30 km of the oceanic plate behaves 
elastically over long time-scales (1O7yr or more) any anisotropy must be produced where the 
plates are formed beneath a spreading ridge. Francis (1969) proposed a model for mantle 
emplacement which aligned the [OlO] axis vertically and the [loo] axis  horizontally and 
normal to the magnetic lineations (Fig. lO(a)). The deformation process which he believed 
produced this alignment was not examined in detail. Peselnick, Nicolas & Stevenson (1974) 
took oriented specimens from an ultramafic body which possessed the crystal fabric 
proposed by Francis and showed that the velocity anisotropy of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis model compared well 
with that observed. Fountain (1976) has carried out similar experiments with similar results, 
although he did not find a strong orientation of [OlO]. The similarity solution in Fig. 3 can 
produce the orientation proposed by Francis provided zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY is large and boundary 2 in Fig. 2 
is inclined at a small angle to the horizontal (Fig. 10). Under these conditions the up- 
welling region which produces the plates must be broad. The stresses are sufficiently large to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 10. (a) Sketch to show the crystal orientation produced by a spreading ridge when the dip of the 
base of the lithosphere is small. The Rayleigh-wave velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVR in km/s shown apply if the [ O l O J  axis 
is vertical and the [OOl] axis is parallel to the ridge. They therefore neglect the dip of the lithosphere. The 
Rayleigh wave and Love wave velocities VL shown are the limiting velocities for long-period waves, and in 
the case of Love waves the velocity is that of SH waves. (b) Corresponding sketch to (a) for the region 
above the sinking slab. 
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activate dislocation climb. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs fluid elements move along the stream lines they lose heat to 
the surface. Since the deformation rate depends exponentially on temperature, creep zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill 
cease as the fluid cools through a small temperature range, and the resulting fabric will 
thereafter be frozen in. Hence rapidly spreading ridges with large values of a! should produce 
fabrics with [loo] closer to the horizontal than slow spreading ones (Fig. lO(a)), and 
therefore with large and more easily observed seismic anisotropy. Of the observations 
mentioned above only that of Keen & Tramontini (1970) was made on a slow spreading 
ridge, and this example was also the least convincing. The model also predicts that there 
should be a large anisotropy for SV propagating horizontally, but much less for SH (Fig. 
10). The mean velocity of SH should be considerably larger than that for SV. These effects 
are in the right sense to account for the small surface wave anisotropy found by Forsyth 
(1975, 1977) and by Schlue & Knopoff (1976). However, the small velocity variations 
observed by these authors could have other origins. 

Processes beneath ridges are easier to investigate than those near island arcs because 
spreading processes control the structure of oceanic lithosphere. However, Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows that 
the strain induced by subduction above the sinking slabs is much larger than that beneath 
ridges, and should produce important anisotropy with the fastest P direction [ 1001 parallel 
to the sinking slab (Fig. lqb)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHigh velocities in this plane have been observed in most 
island arcs but, after the general acceptance of plate tectonics, have been attributed to 
thermal effects rather than crystal orientation. Earlier suggestions by Sugimura & Uyeda 
(1 966) and by Cleary (1 967) that anisotropy could be involved should be re-examined. The 
most obvious method to use is the P-wave velocity of waves propagating above the slab and 
parallel to the arc. This velocity should be large if the anomaly is thermal but not if it is 
due to anisotropy. 

The most likely form the small-scale flow will take is that illustrated in Fig. 7. Unlike the 
similarity solutions, such flow does not produce regions where the strain ellipses have 
constant shape and orientation. Therefore the anisotropy will not be easily detected by 
seismic techniques. 

Some xenoliths in lavas and kimberlite pipes equilibrated at depths up to 200 km. There- 
fore some of these xenoliths were originally part of the convecting mantle beneath the plates 
and potentially provide information about the creep processes involved. There are, however, 
two major problems in using fabric observations obtained from studies of the nodules. 
Obviously no information is available about their orientation before extraction. The other 
difficulty concerns the process by which they were extracted, which probably involved a 
steadily increasing stress field imposed at high temperatures. How much of the fabric results 
from creep during the local processes associated with the generation of the kimberlite or 
lava is unclear. This creep is not relevant to the general mantle circulation. Hence the most 
interesting nodules from the point of view of mantle circulation are those which show least 
deformation, called protogranular by Mercier & Nicolas (1975) when they occur in basalts, 
or coarse granular in kimberlites (Boullier & Nicolas 1975). These xenoliths show little 
preferred orientation of either the olivine or enstatite crystals. They do show some signs of 
high-temperature deformation by dislocation movement, but the strains involved are small. 
The important question is whether this fabric can be produced by recrystallization of a 
severely strained rock, as Harte, Cox & Gurney (1975) have suggested. If their suggestion is 
correct then fabric Observations on xenoliths cannot yet provide any constraints on the 
rheology of genfxal mantle motions. However, Boullier & Nicolas (1975) believe that the 
minor phases in the xenoliths would still be dispersed as small grains if the olivine had 
recrystallized, and found no such distribution. The type of mantle circulation now believed 
to be occurring everywhere beneath the plates produces extensive finite strain throughout 
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Finite deformation during fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 1 1 

1.0 
- 6 l  ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 8  
TIT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Paths which fluid elements follow as they describe the stream line in Fig. 5(a), (a), and that in 
Fig. 7(a), (b). The vertical axis shows B = logl0(u/p) where u is the shear stress and p is the shear 
modulus, plotted as a function of ( T +  T,)/TM, where T, = 1070 + 700 (1 - z/d) is a reference tempera- 
ture in "K and TM the melting temperature. Both TM and p were taken to be functions of depth. TM = 
1470 + llOO(1 -z/d), p = 6.7 X lo1'+ 8.3 X 10" (1 - z/d) dyne cm-2 = 6.7 X 10" + 8.3 X 1010(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zjd) Pa. 

the fluid in 10'yr or less. If we accept Boullier & Nicolas' (1975) argument, the crystals in 
all xenoliths should be oriented if dislocation climb has been important. Hence the weakly 
deformed fabrics are only compatible with the models discussed in Section 5 if diffusion 
creep is important. The paths of two fluid elements in plots of Z against T/TM are shown in 
Fig. 11 for the same stream lines discussed in Figs 5 and 7. These paths can be used to 
estimate lower bounds on the stress at which dislocation climb becomes important. If this 
stress is much less than Z = -4.5 (25 bar, 2.5 MPa) xenoliths without a strong fabric should 
be very rare. Although available laboratory experiments do not yet provide good estimates 
of the stress at which this transition occurs, this estimate is compatible with present 
limited knowledge (see Section 6). If this estimate is correct considerable deformation 
will occur in parts of the mantle without producing any fabric. The most important such 
region is the low-viscosity zone which Richter & McKenzie (1978) argued decouples the 
motions of plates from that of the mantle below. If the thickness of this zone is 50 km and 
the plate velocity is 100 mm/yr, strains o f f =  1 are produced in 1.5 Myr, although the 
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stresses involved are less than 5 bar (0.5 MPa). The creep mechanism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill probably be that of 
Ashby & Verrall (1973) and should combine grain boundary sliding with diffusion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 
process will rapidly produce a random fabric even if the initial orientation is strong. 

It might perhaps have been expected that the stresses involved in mantle convection 
would be close to those required for dislocation climb. Power law creep can be described by 
an effective viscosity which is a strongly decreasing function of stress. Hence the convective 
velocity increases more rapidly with increasing buoyancy force when the flow is governed by 
power law creep than when it is controlled by Newtonian creep. This effect will tend to 
stabilize the stress in the convecting fluid close to the transition stress. This conjecture 
should obviously be tested by numerical experiments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 Geochemistry 

Since diffusion is unimportant in the mantle on scales greater than a few metres, the ellipses 
in Figs 5 and 7 show the shape a small closed system will have after one overturn. The 
deformation in the third dimension will probably be even more severe because of the large- 
scale circulation associated with the plate motions. Hence a closed system is rapidly 
stretched into a large thin sheet. This behaviour is not properly described as mixing since 
closed systems remain closed until the deformation is sufficiently extreme for diffusion to 
become important. For instance, if a sphere of diameter 50 km is placed at position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 in 
Fig. 5(a), after one overturn the longer axis of the resulting ellipse will be about 600 km, 
the shorter about 4 km. Although surprisingly little is known about the geometry of magma 
sources, a source the shape of this ellipse is implausible. Hence on a time-scale of 108yr 
convection will produce sufficient deformation to resemble mixing. Since the large-scale 
flow involved in plate movements is time dependent, all parts of the upper mantle are mixed 
by changes in plate geometry. The only region which may not be involved in this mixing is 
the mantle below a depth of about 700 km. 

This argument in favour of a well-mixed mantle is not compatible with geochemical 
evidence. Surprisingly large variations have now been clearly demonstrated in the 87Sr/86Sr 
(Hart, Schilling & Powell 1973), the lead isotope (Sun, Tatsumoto & Schilling 1975), and 
the '43Nd/'44Nd (O'Nions, Hamilton & Evenson 1977) ratios. The only model which appears 
able to explain some of these variations is the plume model of Schilling (1973), which 
depends on the lower mantle acting as a separate geochemical system from the upper mantle. 
O'Nions, Pankhurst & Gronvold (1976) have, however, argued that a mixing model cannot 
account for all the observed ratios with only two systems. Furthermore the widespread 
nature of the anomalies requires a large number of plumes, and the small scale of the 
necessary motions seems unlikely. The only other obvious explanation is that the anomalous 
ratios are produced by the rather complicated dynamic melting which must occur beneath 
spreading ridges, and which is poorly modelled by the simple geochemical models usually 
considered. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 Discussion 

The relationship between the Eulerian velocity field and finite deformation obtained in 
Section 2 should be useful in a variety of problems in structural geology. Since the relevant 
quantities are easily obtained from numerical solutions, rather general problems can be 
investigated. The simple deformation investigated in Section 3 illustrates the importance of 
rotation or vorticity in finite deformation, and shows the relationship between pure shear, 
simple shear and flows where the vorticity is even more important. The deformation which 
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occurs in these flows differs in important ways from that which occurs in more realistic 
circulations with lower symmetry.\In the flows examined in Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 the finite 
deformation generally increases with time, but, because of rotation, complicated oscillations 
also occur. The similarity solutions discussed in Section 4 are relevant to the circulation 
beneath ridges and trenches, and can produce the seismic anisotropy observed in oceanic 
plates. The calculations also suggest that anisotropy will occur above sinking slabs, with the 
fast P-wave velocity oriented parallel to the dip of the slab. Fast P-wave velocities in such 
regions are well known, but have previously been attributed to thermal effects, rather than 
to anisotropy. Clearly further investigations are required to determine the importance of 
these two effects. 

Finite deformation in most convective circulations occurs throughout the fluid, not only 
in those parts which move close to the boundaries. Because of vorticity generation in the 
interior, the deformation produces no large regions with constant orientation, and therefore 
will be difficult to study using P-wave velocities. In Section 7 it is argued that the weakly 
deformed nodules are more relevant to mantle deformation than the strongly deformed 
ones on which more work has been done. Some of these weakly deformed xenoliths must 
come from the asthenosphere, where the calculated finite strains are large. Hence the weak 
deformation suggests that diffusion creep is important in mantle circulation. Dislocation 
climb must, however, dominate in regions of high stress. 

The large finite strains strongly deform geochemically closed regions. Although real 
mixing can only occur by diffusion, magma generation from a closed region will be difficult. 
Hence the chemistry of the magma, but perhaps not that of the nodules, should reflect 
strong and rapid mixing. 

The main shortcoming of this investigation is produced by our ignorance of the relation- 
ship between large complicated finite strains and the resulting crystal orientation and other 
microstructure of the rock. Investigation of ice in glaciers and ice sheets (Hambrey 1977) 
would be very valuable, since both the strain fields and the fabrics are more easily 
investigated than are those of the mantle. 
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