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Finite Deformation of Elastic Rods and Shells

by

P. M. Naghdi
Department of Mechanical Engineering
University of California, Berkeley

Abstract

The objective of this paper is to present an account of recent develop-
ments in the direct formulation of theories of rods and shells based on
1 and 2-dimensional continuum models originating in the works of Duhem and
E. and F. Cosserat. Following some preliminaries and description of
(3-dimensional) shell-like and rod-like bodies, the rest of the paper is
arranged in two parts, namely Part A (for shells) and Part B (for rods)
and can be read independently of each other. In each part, after providing
the main ingredients of the direct model and a statement of the conservation
laws, a rapid outline is given of the derivation of the basic equations and
nonlinear constitutive equations for elastic materials. Each part also
includes a discussion of constrained theories and an account of recent
developments on the subject.
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1. Introduction

Rods and shells are a class of 3-dimensional bodies whose boundary

surfaces have special characteristic features. In general, two entirely

different approaches may be adopted for the construction of 1-dimensional

and 2-dimensional mechanical theories of rods and shells and similarly these

two approaches may be used in the construction of theories of fluid jets and

fluid sheets. One approach starts with the 3-dimensional equations of the

classical continuum mechanics and by applying approximation procedures

strives to obtain 1-dimensional (in the case of rods and jets) and 2-

dimensional (in the case of shells and sheets) field equations and

constitutive equations for the medium under consideration. In the other

approach, the medium response is modelled as a I-dimensional and a 2-

dimensional directed continuum, called a Cosserat curve and a Cosserat

surface, respectively; and one then proceeds to the development of the field

equations and the appropriate constitutive equations . If full information

is desired regarding the motion and deformation of the continuum under

study in the context of the classical 3-dimensional theory, then there would

be no need'to develop a particular 1-dimensional and a 2-dimensional theory.

In fact, the aim of 1-dimensional and 2-dimensional theories of the type

mentioned above is to provide only partial information in some sense: for

example, in the case of shells information concerning quantities which can

be regarded as representing the medium response confined to a surface or

its neighborhood as a consequence of the (3-dimensional) motion of the body,

or the determination of certain weighted averages of quantities resulting

from the (3-dimensional) motion of the body.

Other 2-dimensional and 1-dimensional models may also be used to construct
direct theories of shells and rods but we postpone further remarks on
this until later in this section.



The nature of the difficulties in the development of both the theory

of shells and the theory of rods from the full 3-dimensional equations is

well known and has been elaborated upon in various contexts by Green, Laws

and Naghdi (1968), Green and Naghdi (1970), Naghdi (1972, Secs. 1,4; 1974;

1979a) and Lricksen (1979). In view of these it is reasonable to attempt

to formulate 1-dimensional and 2-dimensional theories of the types described

above by replacing the continuum characterizing the (3-dimensional) medium

in question with an alternative model which would reflect the main features

of the response of the 3-dimensional medium and which would then permit the

formulation of appropriate 1-dimensional and 2-dimensional theories by a

direct approach and without the appeal to special assumptions or approxima-

tions generally employed in the derivation from the 3-dimensional equations.

It should be emphasized that a Cosserat surface and a Cosserat curve are

not, respectively, just a 2-dimensional surface and a 1-dimensional curve;

but are, in fact, endowed with some structure in the form of additional

primitive kinematical vector fields.

The concept of 'directed' or 'oriented' media originated in the work

of Duhem (1893) and a first systematic development of theories of oriented

media in one, two and three dimensions was carried out by E. and F. Cosserat

(1909). In their work, the Cosserats represented the orientation of each

point of their continuum by a set of mutually perpendicular rigid vectors.

The purely kinematical aspects of oriented bodies characterized by ordinary

displacement and the independent deformation of N deformable vectors in

N-dimensional space has been discussed by Erickson and Truesdell (1958), who

also introduced the terminology of directors.

A complete general theory of a Cosserat surface with a single deformable

director given by Green, Naghdi and Wainwright (1965) was developed within

the framework of thermomechanics. This derivation (Green et al. 19651 is

2.



carried out mainly from an appropriate energy equation, together with

invariance requirements under superposed rigid body motions. A related

development utilizing three directors at each point of the surface, in the

context of a purely mechanical theory and with the use of a virtual work

principle, is given by Cohen and DeSilva (1966b). A further development

of the basic theory of a Cosserat surface along with certain general

considerations regarding the construction of nonlinear constitutive equa-

tions for elastic shells is given by Naghdi (1972, Sec. 8), which also

contains additional historical remarks relevant to oriented continua and

to the theory of thin elastic shells. Hierarchical theory of Cosserat

surfaces, namely that comprising a material surface with K (> 1) directors,

is contained in a paper by Green and Naghdi (1976a) which deals with fluid

sheets and its application to water waves.

A parallel development in the theory of a Cosserat curve with two

deformable directors begins with a paper of Green and Laws (1966) whose

derivation is carried out mainly from an appropriate energy equation,

together with invariance requirements under superposed rigid body motions.

A related development of a directed curve with three deformable directors

at each point of the curve, in the context of a purely mechanical theory

and with the use of a virtual work principle, is given by Cohen (1966). A

further development of the basic theory of a Cosserat curve along with

certain general developments regarding the construction of nonlinear

constitutive equations for elastic rods is given by Green, Naghdi and

Wenner (1974b). Hierarchical theory of Cosserat curves, namely that

comprising a material curve with L(>2) directors, is contained in a paper

" hy Naghdi (1979b) which is concerned with applications to Newtonian and

non-Newtonian flows in pipes.

Of course, the introduction of an alternative model and formulation of

3.
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1-dimensional and 2-dimensional theories by the direct approach do not mean

that one ignores the nature of the field equations in the 3-dimensional

theory. In fact, some of the developments of the field equations by direct

procedure are materially aided or influenced by available information which

can be obtained from the 3-dimensional theory. For example, the integrated

equations of motion from the 3-dimensional equations provide guidelines

for a statement of 1- and 2-dimensional conservation laws in conjunction

with the I- and 2-dimensional models, and also provide some insight into

the nature of inertia terms and the kinetic energy in the direct formula-

tion of the 1-dimensional and 2-dimensional theories.

Inasmuch as most of the difficulties associated with the derivation

of the 1-dimensional and 2-dimensional theories from the 3-dimensional equa-

tions occur in the construction of the constitutive equations, it is in fact

here that the direct approach offers a great deal of appeal. These con-

structions, as well as the entire development by the direct approach, are

exact in the sense that they rest on (1-dimensional and 2-dimensional)

postulates valid for nonlinear behavior of materials but clearly they cannot

be expected to represent all the features that could only be predicted hy

the relevant full 3-dimensional equations. Theories constructed via a

direct approach necessarily satisfy the requirements of invariance under

*i superposed rigid body motions that arise from physical considerations and,

of course, they are also consistent and fully invariant in the mathematical

sense. Moreover, the development by the direct approach is conceptually

simple and does not have the difficulties associated with approximations

usually made in the development of the theory of thin shells or the theories

of slender rods from their corresponding 3-dimensional equations.

Although the direct approach to shells and rods employed in this paper

i , hased on the 2-dimensional and 1-dimensional directed co tinIlum models,

4.



respectively, other direct 2-dimensional and 1-dimensional models may also

be used to construct theories of shells and rods. For example in the

case of shells, instead of developing a theory based on a Cosserat surface,

we may consider only a material surface and construct a direct theory in

which the basic kinematical ingredients are the position vector of the

surface together with its first and second gradients. A theory of this

kind has been discussed by Balaban, Green and Naghdi (1967) and a somewhat

less general theory by Cohen and DeSilva (1966a,1968). Although these

developments have some overlapping features with corresponding results in

the theory of Cosserat surfaces, they are more restrictive. Additional

related remarks are made in Sec. 6 of this paper.

Following some general background information and definitions of

shell-like and rod-like bodies in Sec. 2, the remainei of the paper is

arranged in two parts which can be read independently of each other: one

part (Part A) is concerned with the theory of shells and the other (Part B)

is devoted to the theory of rods. In Part A (Secs. 3-8), first a concise

development of the basic theory of a Cosserat surface with a single director

followed by its generalization is presented. For a Cosserat surface with a

single director, constitutive equations are discussed in the context of finite

deformation of elastic shells and a procedure is indicated for identification

of the assigned fields and the inertia coefficients which occur in the basic

theory. Next, a fairly detailed account of constrained theories of shells is

presented which includes the construction of an interesting nonlinear con-

strained theory not discussed previously in the literature. This is followed

by an account of recent developments pertaining to elastic shells and a

representation of the basic equations of a Cosserat surface in direct

(coordinate-free) notation. A table of contents for Part A is listed in

the introductory paragraph of Sec. 3.

.5.



Similarly, in Part B (Secs. 9-13), first a concise development of the

Cosserat curve with two directors and its generalization is presented.

Next, with reference to a Cosserat curve with two directors, constitutive

equations are discussed for finite deformation of elastic rods and a

procedure is indicated for identification of the assigned fields and the

inertia coefficients which occur in the basic theory. This is followed

by some additional remarks pertaining to elastic rods, together with a

brief discussion of the constrained theories of rods, and a representation

of the basic equations for a Cosserat curve in direct (coordinate-free)

notation. A table of contents for Part B is listed in the introductory

paragraph of Sec. 9.

6.L '



2. General Background

In this section, we provide appropriate definitions for shell-like and

rod-like bodies. To this end, consider a finite three-dimensional body 9

in a Euclidean 3-space, and let convected (or Lagrangian) coordinates 
0 i

(i=1,2,3), be assigned to each particle (or material point) of 4. Further,

t- *

let r be the position vector, from a fixed origin, of a typical partile

of!B in the present configuration at time t. Then, a motion of the (three-

dimensional) body is defined by a vector-valued function r which assigns

§
position r to each particle of 9 at each instant of time, i.e.

r = r (0l,02,63,t) (2.1)

We assume that the vector function r -- a 1-parameter family of configura-

tions with t as the real parameter-- is sufficiently smooth in the sense that

it is differentiable with respect to 0i and t as many times as required. In

some developments, it is convenient to set = and adopt the notation

0 (0', ) , 3  
= . (2.2)

We recall the formulas

3r

i - " = *j , g = det(gj) (2.3)

i i i ij i gj = ij
g gj =6j , g "g g. , g g~

1 2 3
dv = g'd1dO d6 (2.4)

t The use of an asterisk attached to various symbols is for later convenience.

The corresponding symbols without the asterisks are reserved for different
definitions or designations to be introduced later.

|Recall that when the particles of a continuum are referred to a convected
coordinate system, the numerical values of the coordinates associated with

each particle rem.ain the same for all time.

7.



and further assume thatt

i--

92 = [g123 > 0 (2.5)

j

In (2.4), gi and g are the covariant and the contravariant base vectors at
ii

time t, respectively, gij is the metric tensor, g is its conjugate, .

is the Kronecker symbol in 3-space and dv the volume element in the present

configuration.

The velocity vector v of a particle of the three-dimensional body in

the present configuration is defined by

v =r (2.o)

where a superposed dot denotes material time differentiation with respect

to t holding 0i fixed. The stress vector t across a surface in the present

configuration with outward unit normal v is given by

, i TTi
0 _

k k, T i- Tikgi gt = i--= ViTg , T=g.gT =Tk~ (2.7)

g.

where

i  T " gJ , * *gi * iji (2.8)

= g'2T1 g 2T = g T (2.)

where T is the symmetric Cauchy stress tensor, T ik its contravariant com-

ponents and ® denotes the tensor product of two vectors. In terms of

quantities defined in (2.5)-(2.8), the local field equations which follow

from the integral forms of the three-dimensional conservation laws for

mass, linear momentum and moment of momentum, respectively, are

The choice of positive sign in (2.5) is for definiteness. Alternatively,
for physically possible motions we only need to assume that gli O with
the understanding that in any given motion [g1 g2g93] is either>(0 or< 0.
The condition (2.5) also requires that 01 be a-right-handed coordinate
system.

8.



** pg = 0 (T
i  

* *, * .*

1 -1

T 0pg9v 0ir

* f*

where p is the 3-dimensional mass density, f is the body force field per

unit mass and a comma denotes partial differentiation with respect to 0i. For

later reference, we note that for an incompressible medium, the condition of

incompressibility may be expressed as

.7

g = 0 or divv 0 (2.10)

A material surface in !B can be defined by the equation = F( ); the

equation resulting from (2.1) with = (0a) represents the parametric form of

this material surface in the current configuration and defines a 1-parameter

family of surfaces in space, each of which we assume to be smooth and non-

intersecting. We refer to the surface =0 in the current configuration hy s.

Any point of the surface s is specified by the position vector r, relative to

the same fixed origin to which r is referred, where

r(O ,t) = r (6 ,Ot) (2.l1)

Let a denote the base vectors along the O-curves on the surface s. By

(2.11) and (2.3)1 , 3r

a = a ('y,t) - = g (OY,o,t) (2.12)
-a ~ca _0a ,

and the unit normal a =a (6y,t) to s may be defined by**
3 3

3
a a3 = 0 , a 3 a 3 1 a3 = a [aa 2 a3 1 >0 (2.13)~a ," a =aa ]  

3

We also recall the formulas

aa = a *a , a = det(a 0 ,

(I ct a a aS a Ya 01a =a aB  , a *a = a , =aa ~(.4

and

b =bB =-aa a a a
a B A - 3 , -3 _U 8( 2 . 1 )

a b 'a-bya ,b =1)
(1B ,3 , a-~y (A 61 Y ayj

The use of the same symbols for base vectors of a surface in (2.12)-(2.13)
and for the triad of a space curve in (2.17)-(2.18) should not give rise to
confusion. The main developments for shells and rods are dealt with
separately in the rest of the paper; this permits the use of the same symbol
for different quantities in the case of shells and rods without confusion.
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where a denote the reciprocal base vectors of the surface s, a 0 and b 0 are

the components of its first and second fundamental forms, a comma denotes partial

differentiation with respect to the surface coordinates OY , a vertical bar stands

for covariant differentiation with respect to a 0, and 6 is the Kronecker symbol

in 2-space.

A material line (not necessarily a straight line) in B can be defined by

the equations 0 =a (E); the equation resulting from (2.1) with 0a =a( ) repre-

sents the parametric form of this material line in the current configuration

and defines a 1-parameter family of curves in space, each of which we assume to

be smooth and nonintersecting. We refer to the space curve et = 0 in the current

configuration by c. Any point of this curve is specified by the position vector

r, relative to the same fixed origin to which r is referred, where

r = r(C,t) = r (O,0,C,t) (2.16)

§
Let a3 denote the tangent vector along the C-curve. By (2.16) and (2.3)1,

a3 = a3(Ct) = - = g3 (OOCt) (2.17)

and the uniL principal normal a and the unit binormal vector a2 to c may be

introduced as

13a / E a aa_ __ _ 1-33 2 -al =al't= I~a3/ I ' 2 = 2( t = ( l 2. 18)

ja31 (a 3 3 )2 1 a3 3  a 3oa 3  [aa2 a3] > 0

where the notation 1 a31 stands for the magnitude of a3. The system of base

vectors a. are oriented along the Serret-Frenet triad and satisfy the dif--1

ferential equations

la I" a2 D a3 1 a33
- 

= T(a ) a -<a , = T(a3) a = Ka + al
3~3 -2 -3 33 Al _ 33 AI 2a 33  E (21

where K and T denote, respectively, the curvature and the torsion of c. in the

special case that c is a plane curve, we may choose a as the unit normal to the

curve and then a will be perpendicular to the plane of a and a3 . If c is a

straight curve, then there is no unique Serret-Frenet triad and a. may be chosen

as any orthogonal triad with al,a 2 as unit vectors. Equations (2.19) are not

The designation of the tangent vector to a curve by a3 should not be confused

with the use of the same symbol for a different purpose in (2.13). In this

connection, see the preceding footnote.i_, , IO. . . li i!-1-(-



identical to the formulas of Frenet because the parameter is not necessarily

the arc length of c. It may be noted here that the convected coordinate may

be chosen to coincide with the arc length in any one configuration of the

material curve, e.g., in the present configuration. However, in a general

motion (involving different configurations) the arc length between any pair of

particles changes while the convected coordinates of each particle must remain

the same. Therefore, arc length would not qualify as a convected coordinate.

In the next four paragraphs (identified as subsections 2A and 2B) we

provide appropriate definitions for shell-like and rod-like bodies in fairly

precise terms.

2A. Definition of a shell-like body. A representation for the motion of
a thin shell.

Consider a two-dimensional surface s defined by the parametric equa-

tion E,=0, over a finite coordinate patch az/e01 C "', V<02 " Let r

and a3 denote, respectively, the position vector and the unit normal to s.

At each point of s, imagine material filaments projecting normally above

ard below the surface s. The surface formed by the material filaments con-

structed at the points of the closed boundary curve of s is called the lateral

surface. Such a 3-dimensional body (depicted in Fig. 1) is called a shell if the

dimension of the body along the normals, called the height and denoted by

h, is small. A shell is said to be thin if its thickness is much smaller

than a certain characteristic length L(s) of the surface s, for example, the

local minimum radius of curvature of the surface, or the smallest dimension

of s in the case of a plane. If h is constant, the shell is said to be of

tniform thickness, otherwise of variable thickness. Since a material surface

in the three-dimensional body can be defined by the equation =FkO C), it

follows that the equation resulting from (2.1) with t = (O ) represents the

paraetric form of the material surface in the present configuration. In

pirt icular, the equation --0 defines a surface in space at time t, which

We ;I'SIIIIe to be smooth and nonintersecting. lvery p)oint of this surface

~11.I



has a position vector r specified by (2.11). Let the boundary of

the three-dimensional continuum be specified by the material

surfaces

1 2 1 2
Y 10 2 ) ' = 2 ,) ' 1 <  2 (2.20)

with the surface E= 0 lying either on one of the two surfaces (2.20)12 or

between them (see, for example, Fig. 1), and a material surface

f(61 ,02 ) = 0 , (2.211

which is chosen such that E= const. form closed smooth curves on the surface

(2.21). As pointed out previously by Naghdi (1975a), in the development of a

general theory, it is preferable to leave unspecified the choice of the rela-

tion of the surface s ( = 0) to the major surfaces s+ and s In special

cases of the general theory or in specific applications, however, it is

necessary to fix the relation of s to the surfaces (2.20)1,2.

We now suppose that r in (2.1) can be represented by the Taylor

expansion in the bounded region EIE<2 with coefficients which are

continuous functions of 0 ,t and have continuous space and time derivatives

of order 2. Thus, for shell-like bodies, we write

K Na
r = r+ dN , d = d(Ot) (2.22)

N=1

and by (2.3) 1 and (2.6) we also have

K N ;dN K N-l
g =a + -E a 93 E NE N  (2.23)

N=l a 0  N-1

12.

* * -. ,..
'
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S KN
v =v+ Z v w w2 .21

N =I _N !N -N

where r is defined by (2.1) and a superposed dot in (2.22) denotes material

time differentiation with respect to t holding e fixed. A special case

of (2.22) which is of particular interest in subsequent developments is when

N = 1, namely

r = r+Ed (2.,)

where we have set d =d.

2B. Definition of a rod-like body. A representation for the motion of
.1 a slender rod.

Consider a space curve c defined by the parametric equations 0 =0,

over a finite interval l I <  E 2 " Let r be the position vector of any point

of c and let al'a2 and a3 denote its unit principal normal, unit binormal and

the tangent vector, respectively. At each point of c, imagine material fila-

ments lying in the normal plane, i.e., the plane perpendicular to a 3' and

forming the normal cross-section J . The surface swept out by the closed
n

boundary :urve MA ofA is called the lateral surface. Such a 3-dimensional
n n

body (depicted in Fig. 2) is called rod-like if the dimensions in the plane of the

normal cross-section are small compared to some characteristic dimension

L(c) of c (see Fig. 2), e.g., its local radius of curvature 1/K, or the

length of c in the case of a straight curve. A rod-like body is said to

bc slender if the largest dimension ofiA is much smaller than L(c). If
n

_4nA is independent of , the body is said to be of uniform cross-section,

otherwise of variable cross-section. Since a material curve in the three-

aX adimensional body 2 can be defined by the equations = 0 (E), it follows

that the equation resulting from (2.1) with 0 =6 0() represents the

parametric form of the material curve in the present configuration and

13.



defines a curve c in space at time t, which we assume to be sufficiently

smooth and nonintersecting. Every point of this curve has a position

vector specified by (2.14). Let the (3-dimensional) rod-like body in

some neighborhood of c be bounded by material surfaces E= CIO C

(indicated in Fig. 2) and a material surface of the form

F(O1,82, ) = 0 , (2.20)

which is chosen such that E = constant are curved sections of the body

bounded by closed curves on this surface with c lying on or within (2.20)

In the development of a general theory, it is preferable to leave unspeci-

fied the choice of the relation of the curve c to one on the boundary

surface (2.26). In special cases or in specific applications, however, it

is necessary to fix the relation of c to the surface (2.26).

We now suppose that r in (2.1) can be represented by the Taylor

expansion in the bounded region lying inside the surface (2.26) and

between E= Elf E =E2 with coefficients which are continuous functions

of &,t and have continuous space and time derivatives of order 2. Thus,

for rod-like bodies, we write

a ^, la2  o Nd

r = r+ 6 d ...e d d =d C(Llt) (2.27)~ ~ N=I ~ Il '' N ~ l''' N ~ l''"

and by (2.3)1 and (2.6) we also have

K a2  aN K .I o
96d+E NO ...0 d a. . . a 93 =3 +E 8 ... .(daaO /. ) (2.28)

N=2 N N=1 1- N

14.



Kc
v V+.. w w d , (2. 29)

~ ~ N=l 41X 1 .. "aN _a "- a "N _at "** a "N

where r in (2.27) is defined by (2.16), da N is symmetric with respect

to indices aL ...* N and a superposed dot in (2.29) denotes material time

differentiation with respect to t holding & fixed. A special case of

(2.27) which is of particular interest in subsequent developments is when

N= 1, namely

r =r+Od , (2.311)

where we have put a1 = .

15.



Part A

Elastic shells: A direct formulation

In Part A (Secs. 3-8), we summarize the main kinematics and the basic

principles of the theory of Cosserat (or directed) surfaces and then discuss

the constitutive equations for elastic shells, as well as several related

aspects of the basic theory and recent developments on the subject.

Although we are concerned here mainly with the purely mechanical theory

involving appropriate forms of the conservption laws for mass, linear

momentum, director momentum and moment of momentum, we also include a state-

ment of the conservation of energy. The latter provides motivation in the

development of certain constitutive equations, such as those for an

elastic material, and in the discussion of aspects of some special solu-

tions involving jump in energy. The contents of Part A are as follows:

3. The basic theory of Cosserat surfaces

3.1 Kinematics of a Cosserat surface C.
3.2 Basic principles of a Cosserat surface C.
3.3 Hierarchical theories of Cosserat surfaces.

4. Elastic shells.

S. Identification of the assigned fields and the inertia coefficients.

6. Constrained theories of shells

6.1 Incompressible Cosserat surface C.
6.2 A constrained theory with director along the normal

to the surface of C.

7. Additional remarks on shells.

8. Basic equations for a Cosserat surface in direct notation.

4
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3. The basic theory of Cosserat surfaces

Having introduced the notion of a (three-dimensional) shell-like body

in section 2, we now formally define a direct model for such a body. Thus,

deformable media which are modelled by a material surface S embedded in a

Euclidean 3-space, together with K (K=1,2,...,N) deformable vector fields--

called directors-- attached to every point of the material surface are called

Cosserat surfaces or directed surfaces and may be conveniently referred to

as C . The directors which are not necessarily along the unit normals to the

surface have, in particular, the property that they remain unaltered in

length tnder superposed rigid body motions.

In the absence of the directors, we merely have a 2-dimensional

material surfaceS which can serve as a model for the construction by direct

approach of the membrane theory of shells. With K= 1, the directed medium

is a body C1 =C comprising a material surface and a single deformable director

attached to every point of the material surface of C. The latter is the

simplest model for the construction of a general bending theory of thin

shells; and, for simplicity, we restrict attention to this particular model

in most of the development of section 3.

3.1 Kinematics of a Cosserat surface C.

Let the particles of the material surfaceS of C be identified by means

of a system of convected coordinates ea (a= 1,2) and let the 2-dimensional

region occupied by the material surfaceS in the present configuration of

at time t be referred to as A. Let r and d denote the position vector of a

typical point of 6 and the director at the same point, respectively. Also,

let a a designate, respectively, the base vectors along the eu-curves on 6

A brief account of the more general theory for Cosserat surfaces CK is
indicated at the end of this section.

17.
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and the outward unit normal to A. Then, a motion of the Cosserat surface is

defined by vector-valued functions which assign position r and director d to

each particle of Cat each instant of time, i.e.

r = rat) , d = d(6at) , [ala ] > 0 , (3.1)

where

a a (6a ,t) = (3.2)-a CL (X

and the condition (3.1) 3 ensures that the director d is nowhere tangent to

A. The velocity and the director velocity vectors are defined by

v r , w = d (3.3)

and since the coordinate curves on 6 are convected from (3.2), we have

a =v , (3.4)

where a superposed dot denotes differentiation with respect to t holding

91 fixed.

It is convenient to introduce here a slightly different notation than

that adopted in Naghdi (1972) and a number of earlier papers on the subject.

hI's , we put

dx a 3 d 35

and observe that, in view of (3.1)3 and (3.4), dld23 are linearly

independent vectors. Hence, we may introduce a set of reciprocal vectors

For convenience, we adopt the notation for r in (2.11) and (2.25) also for
the surface (3.1)1. This permits an easy identification of the two surfaces,
if desired. The choice of positive sign in (3.1)3 is for definiteness.
Alternatively, it will suffice to assume that [ala2d ] 0 with the under-
standing that in any given motion the scalar triple product [ la2d

] is
either>() or<0.

18.



di such that

d. dJ  , (3.(,)

where 6. is the Kronecker symbol in 3-space. Whenever desirable, the

notations d. =(d 1 d ) and (a ,d) will be used interchangeably throughout

Part A depending on the particular context. Consider now a reference

configuration, not necessarily the initial configuration, of the Cosserat

surface C. In the reference configuration, let the material surface of C

be referred to by SR with R as its position vector; let D be the director at
Ra

R; and let A ,A3 denote, respectively, the base vectors along the 0-curves

on SR and the unit normal to S R Then, in the reference configuration we have

R =R(a) , D = D(0 , [A1A2D] > 0 , (3.7)

where

aR

=A(eY) = - (3.8)

and (3.7)3 ensures that D is nowhere tangent to the surface SR. If the

reference configuration of C is specified to be the initial configuration,

say at time t= 0, then the vector-valued functions on the right-hand sides

of (3.7)1, 2 can be identified with r(O 0) and d(Oa,0), respectively.

Analogously to (3.5), we set

D =A , D = D (39)

and note that the dual of (3.6) is given by

D. •Di (3.10)
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3.2 Basic principles of a Cosserat surface C.

In the development of this subsection, we follow the mode of derivation

of the basic theory of a Cosserat surface employed by Naghdi (1972,

Sec. 8). Let 9, bounded by a closed curve D9 , be a part of 6 occupied

by an arbitrary material region of S in the present configuration at time

t and let

v=va =av (3.11)

be the outward unit normal to 9P. It is convenient at this point to define

certain additional quantities as follows: The mass density p=p(O ,t) of

the surface A in the present configuration; the contact force n=n(OY,t ;V)

and the contact director force m-nm(ey,t ;V), each per unit length of a

curve in the present configuration; the assigned force f= f(0y,t) and the

assigned director force £= Z(6Y,t), each per unit mass of the surface 6;

the intrinsic director force k per unit area of 6; the inertia coefficients
1 1y 2 2

y v (0) and y =y ( 0Y) which are independent of time; the specific internal

energy c =e(0¥,t); the heat flux h=h(0y,t ; v) per unit time and per unit

length of a curve aP; the specific heat supply r=r(0y,t) per unit time; and

the element of area do of the surface 9P, and the line elemen t ds of the curve MP.

The assigned field f may be regarded as representing the combined effect of (i)

the stress vector on the major surfaces of the shell-like body denoted by f ,

e.g., that due to the ambient pressure of the surrounding medium, and (ii) an

integrated contribution arising from the three-dimensional body force denoted

by fb' e.g., that due to gravity. A parallel statement holds for the assigned

The notations for the contact force n, the contact director force m and
the surface director force k are the same as those in Naghdi (1977), but
ditfer from Naghdi (1972) and most of the previous papers on the subject.
In fact, the vector fields n,m,k of Part A of the present paper correspond,
respectively, to N,M,m in Naghdi (1972) and most of the previous papers on
the subject. Also the notations for the inertia coefficients yl and y2 ,
which occur in (3.13)-(3.14), differ from the corresponding notations in
previous papers. In most of the previous papers (for example, Green and
Naghdi 1976a, Naghdi 1975a or Naghdi 1979a) the notations kl,k 2 or tl,c'2
were used in place of yl,y 2 .
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field £. Similarly, the assigned heat supply r may be regarded as representing

the combined effect of (i) heat supply entering the major surfaces of the

shell-like body from the surrounding environment, denoted by rc , and (ii) a

contribution arising from the three-dimensional heat supply, denoted by rb -

Thus, we may write

f = +f , = +9 + k r =r + r
b + c  b -c b c (3.12)

We assume that the kinetic energy of the Cosserat surface C per unit

area of 6 in the present configuration is given by

1 2
K=p(v v+ 2yv w+ y ww) (3.13

We further define the momentum corresponding to the velocity v and the

director momentum corresponding to the director velocity w by

K y lw) <= p(yv 2 (3.14)

Also, the physical dimensions of p,n,f are

phys. dim. p = [ML - 2

(3. 15)

phys. dim. n = [MT- ] , phys. dim. f = [LT - ]

where the symbols [L], [M] and [T] stand for the physical dimensions of length,

mass and time. The dimensions of the vector fields m,£ and k depend upon the

physical dimension of d. Here we choose d to have the dimension of length

and then m,k will have the same physical dimensions as n,f in (3.15) while k

will have the physical dimension of [ML -IT-2.

Depending on the choice of the physical dimension of d and with reference

to in,9 and k the terminologies of the contact director couple, the assigned

director couple and the intrinsic director couple, respectively, are also

used in the literature. In particular, the latter terminologies are
employed in Naghdi (1972), where d is taken to be dimensionless.
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In terms of the above definitions of the various field quantities and

with reference to the present configuration, the conservation laws in the

purely mechanical theory of a Cosserat surface C are

dt pda 0

_d y lI gd f p(v w) d = p f dr +f n ds

? (3.1 )

dt f p(y'v +y w)do = f(pm-k)do+f mds

d 1 1 2 fpikd f
dt_ f tr (v +y w) +dx (y v +y w)]do - f p(r f+dxk)dc+f (rxn+dxin)ds

The first of (3.16) is a mathematical statement of the conservation of mass,

the second that of the linear momentum, the third that of the director

momentum and the fourth is the conservation of moment of momentum. We also

record the law of conservation of energy in the form

d f P[C+KjdcY f pff -v +9 k* w + r)do'i+-f (n-v + w -h)ds . 317)

'lhe basic structure of (3.16)1,2 and (3.17) and their forms are

analogous to the corresponding conservation laws of the classical 3-dimensional

continuum field theory. The structures of (3.16)3 and (3.16)4 are less

obvious, but a motivation for their forms is provided by a derivation of

the basic field equations for shell-like bodies obtained from the

3-dimensional equations of continuum mechanics in which the position vector

r in 3-space is approximated by an expression of the form (2.19). It

should be noted here that the conservation laws (3.16)-(3.1") are consistent

with the invariarle conditions under superposed rigid body motions, which

As the integrals on the left-hand sides of (3.16), ,4 allow for coupling
in inertia terms, they are slightly more general Aan the corresponding
expressions in Naghdi (1972). The conservation laus (3.16) with coefficients
yl =0 and v2 7-t o reduce to thosc given by Fqs. (8.111 in \;mghdi (1972).



ordinarily have wide acceptance in continuum mechanics. Moreover, as shown

in Naghdi (1972, Sec. 8), the conservation laws (3.16)i , (3.16)2 and (3.16)' ar

equivalent to, and can be derived from the conservation of energy (3.17)

and the invariance conditions under superposed rigid body motions. The

conservation law (3. 16) 3 for the director momentum must be postulated

separately.

Returning to the conservation laws (3.16) and (3.17), we note that

under suitable continuity assumptions the contact force n, the contact

director force m and the heat flux h can be expressed in the forms (for

details see Naghdi 1972, Sec. 8):

n =N% , m =?vM , h =qv (3.!)

where N ,Mcx transform as contravariant surface vectors and q are the

contravariant components of the heat flux vector

(%(3. 19)q = q aa

With the use of (3.18) and by usual procedures, from the conservation laws

(3.15) and (3.16) follow the local field equations

pa '2 A or p +pa . v 0

+ Pf =P (V +y w)

(3.20

Mca + pt - k = p(y
1 +2)

a ×N( %+dxk+d xNo = 0

and

pr - q -pC + P =0, v..'1

where
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P N' v, +k'w+Ma w (3. 22)

is the mechanical power, X in (3.19)i is a function of 0 only, a comma

denotes partial differentiation with respect to I , a vertical line stands

for covariant differentiation with respect to the metric tensor of the

surface 6 and

a = [a2 3  3.23)

3.3 Hierarchical theories of Cosserat surfaces

Although the theory outlined in subsection 3.2 is sufficiently general

for many applications, on occasion it becomes necessary to consider

Cosserat surfaces with more than one director. Therefore, we now briefly

discuss the kinematics and the balance laws of Cosserat surfaces C"

having K (K= 1,2,...) directors attached to every point of a material

surface S. Thus, we admit K directors at r denoted by dM (M= 1,2,...,K);

and, instead of (3.1)1,2 specify a motion of CK by

r = r(Ot) dM = d (t) . (3.24

The velocity vector is still given by (3.3) 1 but corresponding to (3.3),

we now define the director velocities

w =d (.2 S
-M -M

We recall for K= I (Cl =C), the kinetical quantities introduced
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in subsection 3.2 consisted of n,k,m and the assigned fields fj. Keeping

this in mind, for a body CK we admit more general kinetical quantities and

assigned fields

n ,k , m

(3.2')

f ,

for N= 1,2,... ,K, and corresponding to (3.13) and (3.14)1,2 write the more

general expressions for kinetic energy of CK and associated momentum and

director momentum, namely

K N
K P E y wM N ' wo = v

M,N=o

3K K yM K M-V P (V+ E M) = p Y M (3.27)

3 M= 1 M=o II

aNKK N M+N K M+N

=M PZ !(Y V

wN  oY Y ZU - Y M

N M=I M=o

each per unit area of the surface 2. The inertia coefficients y MNare.

functions of 0U only and satisfy the conditions

M+N N+M M+o o+M M 0
y =y ,y =y =y ,y=1 .2

In the special case of Cl (=C) we may use the notations

(3.29)

For a detailed statement of conservation laws appropriate for Cosserat

surfaces C K we refer the reader to Green and Naghdi (1976a, Sec. 2) but

indicate here the structure of the corresponding local field equations. In

this connection, we first note that for a purely mechanical theory by usual

procedure in addition to (3.18)1 we now obtain mN=Ntiv Then, the local

field equations for Cosserat surface C are:
K

25.
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y 0 , X=0 , X :

KN  a + Pf =p P y w M
MWo

(3.29)

KKaN N NNk

c, PN KM+N wM (N= 1,2,...K)

a( XN + E dNxk + FdMN, :oI ~ N=Il

Also, for Cosserat surfaces CK , the expression for mechanical power cor-

responding to (3.22) is

Ot. K NK MNot

P ,=a N + E kN W+ E •w N  (3.30)
= 'Ot N=l N=- ,lo

The general development for Cosserat surfaces C K outlined above is

contained in a paper by Green and Naghdi (1976a, Sec. 2) which deals with

application of the theory to fluid sheets and to propagation of water

waves. When K= 1, the results in subsection 3.3 reduce to those of

subsection 3.2 for a Cosserat surface C.
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4. Elastic shells

Within the scope of the theory of a Cosserat surface C outlined in

Sec. 3, we discuss briefly the constitutive equations for elastic shells

in the presence of finite deformation. Preliminary to the discussion that

follows, we assume the existence of a strain energy or stored energy per

unit mass = [0( ,t) such that p is equal to the mechanical power defined

by (3.22), i.e.,

P = . (4.1)

In the development of nonlinear constitutive equations for elastic

shells, we assume that the strain energy density p at each material point

of C and for all t is specified by a response function which depends on

Ur,d and their partial derivatives with respect to 0 . But since the response

function must remain unaltered under superposed rigid body translational

displacement, the dependence on r must be excluded. Thus, the constitutive

assumption for the strain energy density can be written as

= ; X) (4.2)

and we also make similar constitutive assumptions for N ,k,NP. In these

constitutive equations, which represent the mechanical response of the

medium, the dependence of the response functions on the local geometrical

properties of a reference state and material inhomogeneity is indicated

through the argument X.

A general development of various aspects of constitutive theory of

elastic shells based on assumptions of the type (4.2) or variants thereof

is given in Naghdi (1972, Sec. 13). In the rest of this section, we limit tlL'

discussion to an elastic shell which is homogeneous in its reference con-

figuration and suppose also that the dependence of the response functions
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on the properties of the reference state occurs through the values of the

kinematical variables in the reference state (Carroll and Naghdi 1972).

Then, in place of (4.2), we have

0t ( ,d,d A D,D,) (4.3)

with similar assumptions for NaU,k,Ma. After substituting (4.3) into (4.1),

by usual techniques we obtain the following forms for the constitutive

equations:

Na =L r , k p (4.4)

along with the restriction

r x + d x + d' X- . 0 (4.5);r,,, ~ O%,

which is obtained from the conservation of moment of momentum and which

must be satisfied by the response function i (Naghdi 1972, Sec. 8).

We do not discuss here the reduced forms of the above constitutive

equations resulting from invariance requirements under superposed rigid

body motions, but for such reductions refer the reader to Naghdi (1972,

Sec. 13). Just as with the equations of motion, it is necessary in

applications to specific problems to obtain alternative forms of the above

constitutive equations or their reduced forms in terms of tensor components.

Such component forms may be expressed with respect to bases ai, or di, or

corresponding bases in the reference configuration. Reduced forms of

(4.4) have been utilized extensively in Chapters D and E of Naghdi (1972).
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5. Identification of the assigned fields and the inertia coefficients

The local field equations (3.20) in the mechanical theory of a Cosserat

surface have the same forms as those that can be derived from the three-

dimensional field equations (2.9)1,2,3 by suitable integration between the

limits EVE2 [recall (2.17) and the definition of a shell-like body in

section 21 and in terms of certain definitions for integrated mass density

and resultants of stress (for details, see Naghdi 1972, Secs. 11-12

or Naghdi (1974). Similarly, the energy equation (3.21) has the same form

as the one that can be derived from the energy equation in the three-

dimensional theory by suitable integration between the limits E1,C 2 and

in terms of certain definitions for integrated internal energy density

and heat flux in the three-dimensional theory as given in (Naghdi 1972).

To elaborate further, we confine attention to the purely mechanical theory

and recall the definitions

pa =X = X dE , X =p , (5.1)

pak f X* d , (M= 1,2) (5.2)
El

and the expressions

Xf= Paf d+tg f(1) )1+ [tg~f 2

a QZ = f2 fd 2+ [ 2 f( -=+ [tg' f(2)(K)]f=. .4)

where p ,t,f which occur in (5.1)-(5.4) are defined in section 2 [following

(2.9)] and in order to indicate the nature of the functions f(0, ((x= 1,2)

in (5.3)-(5.4), it will suffice to record
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S 2g 11 )2g22 33 12 13 223)]
ftl V('l1' (F 1,2) + g +2(C 1,1 1,2g - E1,1 g  - 1,29 (5.5)

which involves the partial derivatives of 1(6 ) and the components of the

metric tensor in (2.3). The expression for f(2) can be stated analogously.

If we now adopt the approximation (2.25), then there is a 1-1 cor-

respondence between the two-dimensional field equations that follow from

the conservation laws or a Cosserat surface and those that can be derived

from (2.9)123 provided we identify r and d in (2.25) with (3.1), and

4 (3.1)2, respectively, and adopt the definitions (5.1)-(5.4), as well as the

definitions of the resultants mentioned above. A similar 1-1 correspondence

can be shown to hold between the two-dimensional energy equation in the

theory of a Cosserat surface and an integrated energy equation derived from

the three-dimensional energy equation.

The various quantities in (3.12) are free to be specified

in a manner which depends on the particular application in mind and, in

the context of the theory of a Cosserat surface, the inertia coefficients
1 2

y ,y and the mass density p require constitutive equations. Indeed,
fCot c and r c, as well as f b'b and rb, can be identified with corresponding

expressions in a derivation from the three-dimensional equations (for

1 2
details, see Naghdi 1972,1979a). Likewise, p and the coefficients y ,y

may be identified with easily accessible results from the three-dimensional

theory.

In what follows, we assume that the above identifications have been

12
made and that the quantities p,y ,y -f bZ are known or specified. The

knowledge of f ,t depends on the nature of the boundary conditions on the

major surfaces of the particular shell-like body under consideration: they
may be specified as known quantities on the surfaces (2.20)1, 2 or they are

unknown (possibly on one of the two surfaces (2.20) 1,2 only) and must be

determined as part of the solution of the problem.
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6. Constrained theories of shells

A development of a constrained directed medium in the 3-dimensional

theory, with particular reference to an incompressible liquid crystal

having a single director of constant length, is contained in a paper of

Green, Naghdi and Trapp (1970, Sec. 6). For a Cosserat surface with a

single director, a number of constrained theories have been discussed pre-

viously. These pertain to a class of shell-like bodies for which the

director is constrained to be of constant length (Green and Naghdi 1974),

an incompressible Cosserat surface (Green, Laws and Naghdi 1974, Green and

Naghdi 1976a) and a class of fluid sheets in which the director is constrained

to remain always parallel to a fixed direction (Green and Nagh1di 1977).

A special case of the constrained theory of elastic shells discussed

by Green and Naghdi (1974) includes that for which the director is

coincident with the unit normal a 3 to the surface A. This special form

of the theory can be brought into 1-1 correspondence with that of a

restricted theory of elastic shells given by Naghdi (1972, Secs. 10, 15),

where the director is not admitted and the basic kinematical ingredients

that occur in the argument of the strain energy response function are a
~a

and a (compare with (4.3)). Related developments include the construc-

tion of a theory of a deformable surface with simple force multipoles by

Balaban, Green and Naghdi (1967), where the position vector r and its

first and second gradient (r ,r ) are taken as the basic kinematic

variables. A similar theory, but less general than that of Balaban et al.

(1967), is given by Cohen and DeSilva (1966a,1968). For additional

related comments see Naghdi (1972, Sec. 10).

The equations resulting from such a constrained theory of elastic shells
in which d= a3 correspond to those which can be obtained from a deriva-
tion of shell theory tinder the so-called Kirchhoff-Love assumption (see
N aghdi and Nordgren 19b3).
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In this section, we begin by considering a class of constraijits which

are linear relations between the kinematic variables

v ' W ' N,W (N= 1,2,...,K) (,.1)

it, the form (Green and Naghdi 1976a)

aK MNK Mot~
A~aMN

A v + B WN + E C W = 0 (M=o,2,...,Q) ((,.2)
N=l N=I ~ N cz

where A 3B 'C are vector functions of a."d d only and do not depend

explicitly on the variables (6.1). We assume that each of the functions

Nk,M are determined to within an additive constraint response so that*

No = JV + 0 , kN = -N N M
N  = oft . ((.

where 1NaNh are specified by constitutive equations and

(0.4)

which represent the response due to constraints are arbitrary functions of

,t and are workless. Thus, recalling the expression (3.30) for mechanical

power, we set

K K
Nw N  = 0 (6.s)
N=1 N=I

for all values of the variables (6.1) subject to the constraint conditions

(6.2). It then follows that

Q A Q MN ,~

NM'p E B PM=- I C )(0.b)
M=o M=o M=o

The development between (6.2)-(6.6) is similar to that for mechanical
constraints in the 3-dimension. theory (see section 30 of Truesdell and
Noll 19()r). For a corresponding thermodynamical theory of a continuum
in the presence of thermo-mechanical constraints see Green, Naghdi and
Trapp (1970) and Green and Naghdi (1977).
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where pM = pM (O ,t), (M=o,l,...,Q) are arbitrary functions which play the

role of Lagrange multipliers.

In the rest of this section, we illustrate the nature of constrained

theories with reference to two particular kinematical constraints. One of

these constraints is that appropriate for incompressible media and the other

pertains to a restriction on the director in the theory of a Cosserat

surface C with a single director.

0.1 Incompressible Cosserat surfaces

'he conditions representing approximately the (3-dimensional)

incompressibility condition (2.10) may be derived with the use of the

approximation (2.22)1. However, in the interest of brevity, we confine

attention to a special case of (2.22)1 for N=1 given by (2.25). Under

the approximation (2.25), the base vectors are given by g =a

,g3 d where a are the base vectors of the surface =0 calculated from

(2.25). Then, the incompressibility condition (2.10) may be expressed

approximately in the form

d d 3d 2d Dd d
-[a ad] + a d] + [ -~ d) +[ d] 0 (6.7)

o l d  38 -3- a

or e(luivalently as

(d )a- (d. -a()a 3+ (Ecd xd)I v

+ [a3+ a x d +' 2~d xd ] w+ [ C a xd +2Ed d, w : 0 ((1.S)
3,c -,6 -L

where in (0.7) and (6.8) use is made of the notation (3.29) and c0

1,2

denote the components of the c-system in 2-space defined by

c~ -e 11 22 12 21
- a e , e =e =0 , e C=- =1

,. (6. l))

'c-t :a e , e1 1 =e 2 2  1 , el2 =-e 2 1 =1

We now generate two conditions representing incompressibility: One of these
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is obtained from integration of (6.8) with respect to F between the limits

C1,C2 and another by first multiplying (6.8) by , neglecting terms

involving 3 and then integrating the resulting equation with respect to

between the limits F 1, 2. The resulting two conditions are:

y°[(d * a)a d- a )a j + ylcE:(d x d)) • v

+ {ya 3 ae [yI (a xd)+4y2 (d xd w

+ {c [yl(a xd) +y 2 (d x d)] w 0

fy1 [(dCa )a U - (d - a a )a +y 2 c i (d, x d)} v ,

y1 2c$B~ d)}wyz!(a3d) .+{ a 3 +y (a -3 B .. , 'Q

K

where the coefficients y are defined by

YK = 2 Kd , (K=o,l,2) (.II

It is perhaps interesting to observe that in special circumstances in which

the quantity X in (5.1)-(5.2) is or can be approximated to be independent
1 2

of , then the coefficients y and "2 in (6.10) will have the same numerical

1 2values as the inertia coefficients y and y-, respectively.

For an incompressible Cosserat surface under discussion, from (6.2)

the constraint conditions are

a  l oCla
A v + B w+ C W = 0

,a . ,( .12

A *v + B w+C w = 0

and the corresponding constrained response obtained from (6.6) has the form

(p 0
BO +pI B l  

(1,. 13)

= -(P 0oC la + P IS I l1 )

where p, p1 are the Lagrange multipliers. Gtuided by the two conditions

which follow from f(6.10), we select the vectors A ,B ,C..... which

occur in ((.12) to have the special values
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A = coeff. of v in (6.10)

KI1

B K  = coeff. of w in (6.10) (K=o,l) ((.1.1)

Klct
C = coeff. of w in (6.10)

Then, it follows from (6.13) and (6.14) that the expressions for the con-

straint response are given by

S=- [(d " 
a )a- (d a )a 3 ]- P d,

o -~3-~- 3 1 -

kz-Po -P 1 "a ×d - 7 y'Po: x d , ((,.15)
2 f d

t a 1_ a x d y c d x
0 0 - 1 , Po

(he ;irhitrary coefficient functions P0 ,P1 are related to the Lagrange multipliers

,p1 ald 21) can he expressed in terms of Po, P as follows:

0 1 1 2 Y 2 1
0 i 1  ' P1  P0  1  ' Po= 0 1 (2

Y, Y -(Y

In obtaining the results (6.10) and (o.15), no identification has been

made between the surfaces (3.1)1 in the theory of a Cosserat surface C

and an appropriate reference surface in the (3-dimensional) shell-like body.

Indeed, different values for the coefficients y K in (6.10) will

result depending on the choice of the identification with the surface

= . For example, if this surface is chosen between the major surfaces

of the shel Il-I ke body inl such a way that t1 = -2=-F 2 then the coef-

K .
ficient i ln (5.,S) and )oP P in (0.15) become

0 1 2 1

y =1 0 , = = --

Po= P 'P

Although the expressions ((6.15) have the same form as those given previously

(;reen and Naghdi 1976a, Eqs. (4.2)), they are not the same in view of the

Srelations (o.16)
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and the incompressibility conditions (6.10) reduce to those used by Green

and Naghdi (1976a, Eqs. (4.3)) for a directed fluid sheet with a single

director. On the other hand, if we identify (3.1) 1 with the bottom surface

of the shell-like body so that 1 =0, 1, then the coefficients yK and

P oP I hecome

o 1 2 1
y =1 , y =1  , y=-g

C(0.18)

P 0  p p ' P = po Pl

For a complete theory of an incompressible Cosserat surface, constitu-

tive equations are required for the quantities N,k and P but a discussion

of these can be carried out as in Sec. 4.

6.2 A constrained theory with director along the normal to the surface of (-'

We turn now to the development of a constrained theory of a Cosserat

surface in which the director is always along the normal to the material

surface so that

d - ao = 0 , d = ¢ 3 ' ( t) {.9

Differentiating the constraint condition (6.19)1 with respect to time and

using (3.3) 2 and (3.4) we obtain

d. v +a • w =0 , ((6. 2(1

which represents two constraint conditions. From (6.19),, along with the use

of (2.13)I and (2.15)3, follows the expression

d •t a 8 ,bC (o .21)

which is symmetric in a,6. Hence
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c:Kd a) = (6.22)

where F- is defined in (6.9). Differentiating (6.22) with respect to t and

observing that C (d, a )=O in view of (6.22) and the fact that
aeC0C

a e , we also have

C (d " v +a W ,) 0 , (6.23)

a a third constraint condition.

The two conditions (6.20)1,2 can be regarded as a special case (6.2)

for K= I and with the coefficient of w equal to zero. Similarly, (6.23)
jCt

i - a special case of (6.2) for M=o, K= 1 and with the coefficient of w equal

to zero. Thus, each of the three constraint conditions (6.20) 1,2 and (6.231

may be viewed as a special case of (6.2) with coefficient functions

0 ol oloC Mtx MI Mia
A ,B ,C ,.\ ,B ,C conveniently identified as

o o aP
E = , =o , C E a

(6.2-1)

A ,B am C 0Q (M=1,2)

Now according to (6.(1) and with the help of (6.24), the expressions for the

constraint response are

o + Z 1 N c. d [pOFt. (Id + p(Yd
M1 

M
-p! tpECd + E 1 l'u~I =- [ --, +P d

-- M g a W p oca%k =-Za=-pa , M=-pr a

M=I

o at
where p ,p are the Lagrangian multipliers, and in line with the notation of

(3.29)]2 and that of subsection 3.2 we have set k=k, la 4

In anticipation of the final form of the equations of the constrained

theory, we could set the skew-symmetric parts of both Mff and M¥ equal to

zero and thus require also the vanishing of the skew-symmetric part of

which is equivalent to setting p Hl.towever, we postpone such stipulations

intil later in this section, and retain in (6.25) the Lagrange multiplier po

which arises from the constraint condition (6.23).
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Before recording the modified equations of motion appropriate for the

constrained theory under discussion, we introduce the functions S=S ' (O'',t)

defined by

S _ [pO PSO ]

and note that

S = p .(x (6 27)

Also, for convenience, we introduce the abbreviation

f = f- (v+y w) , = k- (y v+y w) (6.28)

Then, after substituting (6.3) and (6.25) into (3.20)3,4,5 and making use of

(6.26) and (6.27) we obtain

(I ~ Ot

La-  kpk = Saa , (o.29)

A A A

a x +dxk+d XM =0

as the equations of motion of the constrained theory. It should be noted

that the above equations involve only two arbitrary functions of position

O a
and tine related to the three multipliers p ,p by (6.26). Moreover, (6.29)3

and the normal component of (6.29)2 are free from S

A further reduction of the system of equations (6.29) may be effected

by eliminating S between (6.29) . For this purpose it is convenient to
1,2'

refer the various vector quantities in (6.29) to the base vectors a. and

write the equations of motion in tensor components. Thus, we write

As noted earlier, the order of indices in (6.30),13 are opposite to tho:;e
used in Naghdi (1972) and most of the earlier papers on the subject.
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S i c t i a .M al=e a. a k=ka. , ?v=Nai , (6.30)

f i ai (,.31)

with similar expressions for 1a,k,NP,f,Z. Recalling (6.19)i and making use

of formulas of the type (6.30), from the scalar product of (6.29)3 with a8

3
and again with a we deduce

-~a 0
(6,.32)

N _4 -pbM -~ My

Y

where c8 is defined in (6.9).

It is instructive at this point to express the mechanical power (3.22)

in terms of the tensor components (6.30). To this end, we first note from

(6.19)1 and (2.13)1,2 that the tensor components of w and w referred to a

are

w'a -(v a ) , w -
- ~o -- ,L-3 -3

w " a =- ( b8) + b (v, . a
Y ) 

- ,o (,8 •3) (6.33)

t a (, ab (v aY)

wO - a3 , O,  (b , Yv - a 3)a

Then, remembering (6.4), (6.5) for N=I and the notation (3.29) 1,2' we may

write (3.22) as

P = ( - eb Y)(v a + - ( +

Y c t Ot-~o35 , a a

+ [N - b M ]( a

Since the coefficient of (v, a) vanishes identically in view of
-3

(..32)2, the last expression reduces to
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p _- ( yb ) ( v , " a & 3

- ( 6 ( +b •M (6.34)

and does not involve the coiponents N3a and k . Next, with the help of

ka+ b= N - a  which follows from (6.32)2, the component formY

of the equations of motion (6.29)1, referred to a can be written as

N lo -b OLN +Pf 0 N' C +b N +pf 0 ,(6.35)
,' I, ap + +p = 0 (6.36)

where in recording (6.35) and (6.36) we have also substituted N for the

quantity (N +4S ). By substitution from (6.36)1, we can now eliminate

N from (6.35)1,2. In this way, the resulting two equations may be put

in the form
_(f'.~ B Y IY a 3 {(M a

a) 0b (M ~a) I 1 a + + y-p~ a )}a

+ {pf + cpaa3) 1} 0 (0.37)

In a general theory of an elastic Cosserat surface (Sec. 4), constitutive

equations for both the symmetric and the skew-symmetric parts of No*,?4 can

be provided through the expression for mechanical power. Here, however, since

b a is symmetric, the term -WS'( b,) in (6.34) provides constitutive equations

for only the symmetric part of MP'. Moreover, the quantity (N - bbpY) is
'Y

symmetric by virtue of (6.32)1 and the two differential equations resulting from

(6.37) involve only the symmetric parts of N and MIa'. Thus, in line with

classical results in shell theory, in order to obtain a determinate theory he

now put

0 , W] = , ^ -M0)(0 (0.38)

In summary, the relevant system of equations of the constrained theory under

discussion are given by (6.37), the normal component of (6.29)2, i.e.,

(6.36)2 and the skew-symmetric part N is determined from (6.32)I. This

Instead of introducing (6.38)1, in anticipation of the fact that 1 0 ] makes
nycolntrihution to the mechanical power, at the outset we could have absorbed
M/ g into H~aB] or equivalently into WP in (6.25).
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completes the development of the constrained theory in which the director

is constrained to have the form (6.19)1.

If in addition to (6.37) we also set the multiplier p 0 =0, then

M[Cf]=0 and hence the skew-symmetric M 0(4]=0. It then follows that

Sa a
S - p , (6.39 )

3ot 3a (Y U c
N =N -OS , k =k'- S (.40)

and the relevant equations of motion of the determinate constrained theory

remain as before. It is of interest to examine the reduction of the fore-

going development when = 1. In this case, we have d instead of

(6.19)1 and the resulting equations are identical with those of a restricted

theory discussed by Naghdi (1972, Sees. 10 and 15). The results with O= 1

can also be brought into correspondence with a special case of the con-

strained theory discussed by Green and Naghdi (1974) or those contained in

the paper of Naghdi and Nordgren (1963).

The nature of the boundary conditions in the theory of a Cosserat

surface C discussed in subsection 3.2 is clear from the expression for the

rate of work R of contact force and contact director force over the closed
c

boundary curve 9P, namely

R f(() f (n.v+m. w)ds (6.41)

However, in a constrained theory of the type discussed in subsection 6.2,

the question of the boundary conditions must be reconsidered in view of*1
the reduction in the number of differential equations . Since the develop-

ment of the reduced boundary conditions is similar to that of a restricted

The number of the relevant scalar differential equations of the constrained
theory is five as compared to the nine scalar equations in the theory of
suhsection 3.2.
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theory (Naghdi 1972, p. 552), our discussion will be brief.

Recalling (6.30)1,2,3 and (6.33), from (6.41) we obtain

a 9c

Let / v stand for the directional derivative along the unit normal v to

the boundary curve 39P and let a/as denote the directional derivative along

the tangent to 3.P. Then, provided the quantities in (6.42) are single-

valued on a (sufficiently smooth) closed curve @SP, with the use of

av3  av3
v a C V-- (6.43)

and an integration by parts, (6.42) can be reduced to

R f pv +p 3 v3 -G-- + H*}ds (6.44)

where

p= (N -b 0M0y)v , =MYaV =v M(y)vV
Y _N a Y a

(6.45)
3 3a a a. 3a
p = N v - (4M y E ) H=M V

The nature of the reduced boundary conditions of the constrained theory is

now clear from (6.44) and (6.45).
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7. Additional remarks on shells

The theory of Cosserat surfaces can easily allow for the effect of

surface tension (Naghdi 1972, p. 547 and 1974) and can accommodate the

specification of either tractions or displacements on major surfaces of the

shell-like (or sheet-like) bodies for application to various interfacial and

contact problems. Even the theory of a Cosserat surface with a single

director can be used to formulate a fairly broad class of contact problems

of elastic shells and plates, as discussed by Naghdi (1975a). The relevance

and applicability of the basic theory of a Cosserat surface to problems of

an incompressible, inviscid fluid sheet is discussed by Green, Laws and

Naghdi (1974) and by Green and Naghdi (1975,1976a). The nonlinear dif-

ferential equations derived in these papers include the effects of gravity

and surface tension and are also valid for propagation of fairly long water

waves in a stream of initial variable depth. A discussion of an incompres-

sible viscous fluid sheet, along with further recent developments on the

subject, can be found in the papers of Green and Naghdi (1976a,b;1977a;1979c).

The basic theory is also applicable to problems of cell membranes, as has

been emphasized by Ericksen (1979).

In the remainder of this section we briefly comment on some special cases

of the general theory and also mention some recent researches which bear on

the various aspects of elastic shells. Although these developments will be

described mainly in the context of a mechanical theory, some recent results

pertaining to thermal effects in shells are also discussed.

The well-known membrane theory of shells can be obtained as a special

case of the general theory by essentially suppressing the effect of the

director and corresponding kinetical variables and this is discussed briefly

in Naghdi (1972, Sec. 14). A development of another special theory, known

as the inextensionai theory, wherein the length of each clement of the

surface of 6 is assumed to remain constant throughout all motions is also
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contained in Naghdi (1972, Sec. 14). Similarly, a nonlinear restricted

theory of shells by direct approach, motivated mainly by the classical

theory corresponding to Kirchhoff-Love theory of shells and plates, is

given by Naghdi (1972, Secs. 10 and 15). Related constrained theories of

an elastic Cosserat surface are already mentioned in Sec. 6 and need not

be repeatec here.

The nonlinear constitutive equations in Sec. 4 are valid for an elastic

(:osserat surface which may be anisotropic with reference to preferred direc-

tions associated with material points of S. A general discussion of material

symmetries for shells is given by Naghdi (1972, Sec. 13). Carroll and Naghdi

(1972) have subsequently examined the influence of the reference geometry on

the response of elastic shells by assuming the existence of a local preferred

state of the body and then stipulating that the influence of the reference

geometry, as in (4.3), occurs through the values of the constitutive variables

in the preferred state. Material symmetry restrictions for elastic shells

have been discussed also, from a different point of view, by Ericksen (1972a,

1973b) who has also indicated (Ericksen 1973) a comparison with the results

contained in the paper of Carroll and Naghdi (1972).

Some general aspects of wave propagation in elastic shells, based on

the theory of a Cosserat surface have been discussed by Ericksen (1971). A

related study on the subject, limited only to wave propagation in a surface

not endowed with a director, was given earlier by Cohen and Suh (1970). The

theory of small deformation superposed on a large deformation of an elastic

Cosserat surface, along with related problems of stability and vibrations of

initially deformed plates, is discussed by Green and Naghdi (1971). Related

developments concerning plane waves and stability of elastic plates are given

by Ericksen (1973c,1974). For a system of linear equations characterizing the

initial mixed boundary-value problem of elastic shells, Naghdi and Trapp (1972)
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have obtained a uniqueness theorem without the use of definiteness assumption

for the strain energy density. This result (Naghdi and Trapp 1972) holds

for nonhomogeneous and anisotropic shells undergoing small motions super-

posed on a large deformation.

In still another study, the theory of a Cosserat surface has been

employed by Naghdi (1975a) to formulate contact problems of shells and

plates mentioned above. In the derivation of shell theory from the 3-

dimensional equations, equations of motion in terms of resultants and

detailed consideration of constitutive equations for shells are usually

obtained relative to an interior surface, rather than one of the major

surfaces of the shell-like body which may be the contacting surface; the

interior surface ordinarily is identified with the middle surface of the

shell or plate in the reference configuration. In the development of shell

theory by direct approach, although the material surface of S may be

identified with any surface of the (3-dimensional) shell-like body,

nevertheless the complete discussion of constitutive equations and the

identification of the inertia coefficients and the assigned fields may

again require explicit use of a reference surface in the shell-like body.

For certain problems it is more natural and conceptually more appealing to

select one of the two major surfaces as the reference surface but then the

detailed available development of the constitutive equations, as well as

identification of such quantities as the inertia coefficients, have to he

reconsidered relative to the new surface. This problem can be resolved by

deriving appropriate transformation relations (Naghdi 1975a), which relate

the kinetic variables n,k,m (and hence the response functions) in the two

formulations. The results (Naghdi 1975a) are applicable to any shell-like

medium and their validity is not limited to elastic shells alone.

Controllable solutions in the theory of a Cosserat surface have been
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studied by Crochet and Naghdi (1969), Ericksen (1972b) and Naghdi (1975b).

In a more recent study, Naghdi and Tang (1977) have discussed controllable

deformations that can be maintained, in the absence of body force, in every

isotropic elastic membrane by the application of edge loads and/or uniform

normal surface loads on the major surfaces of the thin shell-like body.

The static solutions of finitely deformed membranes, which are valid for

both compressible and incompressible materials, are obtained with the use

of a strain energy response function which depends on the metric tensor of

the membrane it its deformed configuration. The main results are summarized

by several theorems and their corollaries in accordance with three mutually

exclusive cases for which the initial undeformed surface of the membrane

(which may be a sector of a complete or closed surface) is, respectively,

developable, spherical and a surface of variable Gaussian curvature

satisfying certain differential criteria. The corresponding deformed

surfaces are, respectively, a plane or a right circular cylinder, a sphere

and a surface of constant mean curvature. These results are exhaustive in

that they represent all finite deformation solutions possible in every

isotropic elastic material characterized by the strain energy response

mentioned above. Also discussed in the paper of Naghdi and Tang (1977) are

some special cases of the general results and several families of solutions

in terms of an alternative description which should be useful ITn appi lcAt t1

and which permit easy interpretation.

The development of the theory of Cosserat surfaces in S.c. 3 1,

carried out within the scope of the purely mechanical theor\. In varl Icr

work on thermo-mechanical theory of shells by direct approach it(rctii tid

Naghdi 1970, Naghdi 1972), only one temperature field was admitted and thl-

allowed for the characterization of temperature changes along some refere'ce

surface, such as the middle surface, of the (3-dimensional) shell-like hod.,
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but not for temperature changes along the shell thickness. The latter

effect has been incorporated recently by Green and Naghdi (1979a) into the

thermo-mecharical theory of Cosserat surfaces, together with appropriate

thermodynamical restrictions arising from the second law of thermodynamics

for shells.
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8. The basic equations in direct notation

For some purposes it is convenient to have available the basic equa-

tions for a Cosserat surface in a direct (coordinate-free) notation and

this is the main purpose of the present section. As will be evident

presently, the forms of the basic equations in coordinate-free notation

are very similar to those of the corresponding equations in the classical

3-dimensional theory and thus may be more suitable in the discussion of

general theorems or in developments which parallel those in the 3-dimension;Jl

theory.

As in the papers of Carroll and Naghdi (1972) and Naghdi (1977), we

introduce the notations grad and Grad to denote the right spatial and

material gradient operators, respectively, with respect to the position on

the surface 6 in the current configuration and on the surface S R il the

reference configuration. The corresponding divergence operators will be

denoted by div and Div, respectively. In particular, for a vector-valued

U*

function V( ,t), we write

grad V = V Od div V = V • dU

(8.1)

Grad V = V OD , Div V = V - cX ,
-~ - ,at ~ -

where the symbol 0 denotes the tensor product. Also, the spatial surface

gradient and the spatial surface divergence operators are defined by

grad V = V a , div V=V *as ,ci- (8.~2),

We take this opportunity to correct an error in a previous paper (Naghdi

1977). The definitions (2.9)1,2 of Naghdi (1977) should be replaced with

those in (8.1)1,2 of the present paper with dc defined through (3.5).

Also, the "div" operator in (3.10) 1 of Naghdi (1977) should be replaced by
"divs" in (8.2)2. The definitions (2.9)3 4 of Naghdi (1977) remain unchanged

since previously (Naghdi 1977) the direct6r in the reference configuration
was specified to have the form D=DA3. Except for the modifications noted,
all other results in the paper of Naghdi (1977) remain intact.
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for all scalar-valued functions V and all vector-valued functions V.

We introduce a measure of deformation by the 
tensor F, namely

t

1 3
F = d. 1 0D = Grad r+d 3  D 3, (8.3)

and in view of the notations (3.5) and (3.9) we observe that

F D = PA= a = da

From the definition of the determinant of a second order tensor T given by

det T[v = [T VT 2'T Y3]

for all arbitrary vectors v,v 2 'Y3, and the conditions (3.1)3 and (3.7)3

we obtain

det F = [d1d2d3 ]/[D 1D2D3 ] > 0 (8.5)

The tensor F, a linear operator on vectors in 3-space, is nonsingular; and

there exists, therefore, the inverse deformation gradient tensor F_

defined by

F -  
= D. d

The inverse operator F 1 transforms vectors in the present configuration into

vectors in the reference configuration, i.e.,

Fld. = D. (8.7)

and it follows that

This definition of F is the same as that used by Naghdi (1977). The
symbol F in the paper of Carroll and Naghdi (1972) stands for a different
quantity. The term Grad r in (8.3) corresponds to the deformation gradient
tensor F in the paper of Carroll and Naghdi (1972).
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F- F = F F -  I - d.Od = D. OD' (8.8)
- - - - 1 - -

where I is the unit tensor in 3-space. We also introduce here the director

gradient tensor G by

G= Grad d = d (a1 = d 0Da~
.(8.9)

-3,a - a

Recalling the definitions (3.3)1,2 for the velocity and the director

velocity and since a =V ,  we have

3 3F a.OD1  O Da +d OD =v (9" + wOD
I -a - 3 - ,a- -

(8.1O

G d 0 Da D('G~ d3,a -,a -

Also,

-l i 3
FF =d.d = grad v+wo d

(8.11)

GF =w d= grad w

Having disposed of the main kinematical results in terms of the

gradient tensors F,G and their rates, we now turn to kinetical

quantities. The expressions corresponding to (3.18)1.2 for the contact

force n and the contact director m can now be expressed in the form

n = N v , m = M V, (8.12)

The second order tensors N,M in (8.12) and their tensor components N' MMJl in
(8.13) are the trapsnose of the corresnondinR auantities in Naehdi (1977). he
components Ni", N1ia were used in the paper of Green, Naghdj and
Wainwright (1965) but subsequently their transpose, namely Nal and Nfi,
were adopted in subsequent papers so that the notation would be in agree-
ment with that of the classical shell theory. It may be noted that in
terms of the latter notation, instead of (8.12), one would have n=NT,
m=MTv, where the superposed T denotes transpose. Compare (3.6) and (3.10)
of Na ,hdi (1977) with (8.12) and (8.15) of the present paper.
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w i th the second order tensors N,NM defined by

N = N '3 d Ni d. 5d , N Nd '

N 8 . 1 d
N1l icd =M bld.d NIt bl~ =bld c

wh ich a I so rc I atc the tensors N ,M to N , N'A in (4. 8) . Also, for convenicncc,

le it od l IC A " s o1Iotld oW'd yr tensor K through

3
K =- k5d- = k d d , k = Kd' (8.14)~3 -i 3 _ . .( . ,

ith the 'tl- o1 O . I 3 and b '-sual procedures, from the conservation laws

I ] toI l kw T I ' I (iqtlat iolls

+p div v = 0

div N+of = p(v +y W)
(8.15)

div I+Z - k = p (yV +y 2 w)

-1 I F I 1
[N + K + l((; F 1 = [N + K + N 1 (G

which arc equivalent to (A. l) )Also, by the definit ion of the right

divergence of a tensor field, we have

div N = N , div NI = NI (M. l,
s -. 1 ot s - --

It i s interesting that the last statement in (8. 15) is to:rl-,1 .,o tilt ".,IIi, '

O| thic stre'ss t'i'tlhl" ill the i-diiiension'l theory. In part icIlaI, it iii;i\ he

()hscrvwd that a x N , d x k and d × Ne are, respectively, the axial v(ctl-',

'If NTI, JK-K' 'I and IM . F-I(T - M((I, F-I Furthermore, in terms of t he

K lintt i cal ly ant ities, N, ,K in (8. 12)-(8.14) and th'it r e I'il L, ti es (,5. I U

th nicharii cal power hrconis

' t r{ I 1 (N + K + G NIl(I I (5.).
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With reference to consti tut ive- equations for cIitic shKI I ;lt. d

of tile I, iiliat ical viirialiles inl sectjil 1, t( lov, cmlll lt tile vairi;1hl..

an rd ( 8. 9) ThulLS, corrVson 1) Iing to cons t i ttnt i ve as, uini pt il (I. .

, G '; s I~~

wh ere

o .1,- t 1 t i m i I :ir i o t Iis f'o I' K "NI f rlu , W it h tit is..L 0F I

ad I 1w sll I t cc lli i q I is wec oh t i i n th ctel lot% i in 2 ii t cri t i kc fo r m

Oft t0e COIit I ttit iVk .' C iilit I 011s

thIIe f irst o0 ih Ii CI Cii hI I eo 1)CT(; VOI~ i T It(0

(I>d IN d 1

\ I thelt, sus funit i 11 is I-est r i etecd hi'y
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Part B

Flastic rods: A direct formulation

In Part B (Secs. 9-13), we first summarize the main kinematics and

the hasic principles of the theory of Cosserat (or directed) curves and then

discss the constitutive equations for elastic rods, as well as sonic related

aspects of the basic theory and recent developments on the subject. Although

we are concerned here mainly with the purely mechanical theory involving

approp)riate forms of the conservation laws for mass, linear momentum, director

momentum and moment of momentum, we also include a statement of the conscrva-

tion of energy. The latter provides motivation in the development of

certain constitutive equations, such as those for an elastic material, and

in the discussion of aspects of some special solutions involving jump in

energy. The contents of Part B are as follows:

9. The basic theory of Cosserat curves

9.1 Kinematics of a Cosserat curve@.

9.2 Basic principles of a Cosserat curve !R.

9.3 Ilierarchical theories of Cosserat curves.

10. Flastic rods

11. Identification of the assigned fields and the inertia coefficients

12. Additional remarks on rods

13. The basic equations for elastic rods in direct notation



9. h'le basic theory of Cosserat curves

HIaving defined a (three-dimensional) rod-like body in section 2, we, now

formally introduce a direct model for such a body. Thus, deformable media

which are modelled by a material curve -( embedded in a Euclidean .- space,

together with l, (L>2) deformable vector fields-- called directors--

attaiched to every point of the material curve are called Cosserat curves or

directed curves and may be conveniently referred to as 3R, (K= 1,2. N).

tic directors which are not necessarily along the unit principal normal and

the tinit binormal vectors to the curve have, in particular, tle property

that they remain unaltered in length under superposed rigid body motions.

In the absence of the directors, we merely have a I-dimensional material

cturve- f which can serve as a model for the construction by direct approach

of string theory. The relationship between the number of directors 1,

and the number K which identifies the order of the hierarchical theory of
K

(os crat curves can be shown to be L=E(N+I) so that (see Naghdi 1979)
1

L = K(K+3)/2 ... I)

With K 1, the directed curve is a body !R = comprising a material curve

and two deformable directors attached to every point of the material curve

of . The latter is the simplest model for the construction of a general

bending theory of slender rods; and, for simplicity, we restrict attent ion

to this particular model in most of the developjment in section 9.

Wc now turn to a brief account of the basic theory of a Cosserat curve.

9. 1 kinet ics &f a osserat curve 7(

Let the particles of the material curve £ of 9 be identified 1y means

of the convected coordinate , and let the curve occupied 1y 1' in the prCe;tmt

Nlhi mt ;iccount of the more general theory for Cosserat curves is indicated

at the ,nd of this section.

5.4.
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configuration of SR at time t be referred to as 9-. Let r and d ( = 1,2)

denote the position vector of a typical point of 9 and the directors at the

same point, respectively, and also designate the tangent vector to the

curve k by a3 . Then, a motion of the Cosserat curve is defined by vector-

valued functions which assign a position r and a pair of directors d to

each particle of at each instant of time, i.e.

r=rt) d a d (t [dlId,a 3 >0.1
-~ ..x' ~( C' . .

where

9r

a 3 = a 3 ( ,t) 9.3(

The condition (9.2)3 ensures that the directors d are nowhere tangent to

¢ and that dld 2 never change their relative orientation with respect to

each other and a The velocity and the director velocities are defined by

v = r , w =d 9.4)

and from (9.3) and (9.4) 1 we have

v

where a superposed (lot denotes material time differentiation with respect to

t holding F fixed.

It is convenient to introduce here a slightly different notation than

that adopted in a number of previous papers, e.g., Naghdi (1t975)a). lIIIs, IV

I)Ltt

* For convenience, we adopt the notation for r in (2.1,) and (2.30) also

For the surface (9.2)1. This permits an easy identification of the two
curves, if desired. The choice of positive sign in (9.2)3 is for
deti nit eness. Alternatively, it Wi 1l suff ice to assume that [dd2d3 1 0

with the understanding that in any given mot ion the scalar triple product

d d:,.3 i eit her o r - 0 .

5.-).



d = a3 d. = (d a

~3 -3 -3

and observe that in view of (9.2)3 and (9.6), dl,d 2 ,d 3 are linearly

independent vectors. Hence, we may introduce a set of reciprocal vectors

d such that

d. d = P , (.7)
-1 1

where 6i is the Kronecker symbol in 3-space. Whenever desirable, tile

notations d i  (dld2,d3) and (da 3 ) will be used interchangeably throughout

Part B depending on the particular context. Consider now a reference ont-

figuration, not necessarily the initial configuration, of the Cosserat

curve (R. In the reference configuration, let the material curve of!R he

referred to by S R and designate the unit principal normal, the unit binormal

and the tangent vector to IR by A1 ,A 2, and A, respectively. Further, let

R and I) ((x= 1,2) stand for the position of a typical point of f_" and the

directors at the same point, respectively. Then, in the reference co)-

figuration we have

R = R(E) 1) = 1) (F) [) 1),,A > ( (.8)
-. _O ' _ CX ' 1- 3~

where

R
A = A(F) = - (9.)
...3 3..

and (9.8)3 ensures that D are nowhere tangent to the curve £R" If tile

reference configuration of 9£ is specified to be the initial configtir;itioi,

say at time t= 0, then the vector-valued functions on the right-hand sides

of (9.8) can be identified with r(F:,O) and d (E,0), respectively.
1,2 -

Analogously to (9.6), we set

1)i A I)- (1 A;) (9.10)

(X

i _,, .. . .. . . . . . . . ' . - -- i . ' i •... . . . . . . ., r

_ % ..... . ,4., -,



so that the dual of (9.7) is given by

D. * D)J - (9. 11
-1 - 1 j

9.2 Basic principles of a Cosserat curve9Z

Consider an arbitrary part of the material curve I in the present con-

figuration, i.e., a part if the space curve Z bounded by = and

= (F < ), and let

ds = (a33 )'d , a 3 3  a a (9.12)

be the element of the arc length of Z. It is convenient at this point to

define the following additional quantities: The mass density p =p(F,t) of

the curve Z; the contact force n =n(C,t) and the contact director forces

I (F ,t), each a 3-dimensional vector field in the present configuration;

the assigned force f= f( ,t) and the assigned director forces £a =9 VR,t),

each a 3-dimensional vector field and each per unit mass of the curve Z; the

intrinsic (curve) director forces k = k (E,t) per unit length of 9. which make

no contribution to the supply of moment of momentum; the inertia coefficients
= v"(U and y'*=ya(F), with yu being components of a symmetric tensor.

which are independent of time; the specific internal energy c =c(,t); the

specific heat supply r= r(U,t) per unit time; and the heat flux h =h(Ft)

along 2, in the direction of increasing ,, per unit time. 'Me assigned field

f represents the combined effect of (i) the stress vector on the lateral

surface (2.20) of the rod-like body denoted by f , and (ii) an integrated

contribution arising from the 3-dimensional body force denoted by f , e.g.,

that due to gravity. A parallel statement holds for the assigned fields 9.

Similarly, the assigned heat supply r represents the combined effect of

(i) heat supply entering the lateral surface (2.26) of the rod-like bodv from

the surrounding env i ronmen t, denoted by r , and (ii) an integrated contrilmitim

The notations for the contact force n, the contact director forces m and the

curve director forces 0 differ from-those in Green and Laws (1900), (recn,

Naghdi and Wenner (IT)74a,b}, Naghdi (1979a ,h) I and 1%)t of the preIOt -i) aIcrs

on the tibj ect. In fact, the vector fields r,matk 0 of Part B of tthis paper

correspond, respectively, to n ,1{ ,i C of Green,-Naghdi and Wenner l.7 Ia,b).
I,,! most of the previous papers on the suibject

s7.
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arising from the 3-dimensional heat supply denoted hy r h Thus, we may write

f= f + F  z + ,jx r- r (9.l )
b c -b c ' + c

We assume that the kinetic energy of a Cosserat curve R per unit

length of the curve R in the present configuration is given by

K I2 QV -v + 2yC1V W +V u6 w J (91

We further define the momentum corresponding to the velocity v and the

director momentum corresponding to the director velocities w by

aK aL -K U C= p(v+ w w p( yV +vV w

per unit length of 9. Also, the physical dimensions of p,n,f are

-l
phys. dim. p =ML ,

[T-2] -,

phys. dim. n = ,MLT -2 phys. dim. f = IJ1

where as in section 3 the symbols ILI, [MI and ITI stand for the physical

dimensions of length, mass and time. The dimensions of the vector fields

mC, zU and kU depend upon the physical dimensions of d . Herc wc choose d
- - - Li

a ato have the dimension of length. Then, m A, .z will have the same physical

dimensions as nf in (9.16) while ka will have the physical din-s ion of

I l , 2- T -2 
"

Using the above definitions of the various field quantit ies and th

notat ion

'2
If( ,t) r = f(F 1 ,t) - f( i,)t , ( .1

with retferenc to the present configuration tho, conservation laws for a

co-;,,crat curve are

I lc . on 'Io I, it i Oil I a s (W . Is) corret',p)Ondtl tO I(t5. (0. 10) in IIt' h );11)'? of

(;rtt , NIt~htl i and Iv4etin r (197,lb .

58.



d p2 ds-0 ,

d f Plv +y w )ds = p f (is + [n 1
- )  2 - + 

U I- I2

dt , + (pta _ (a33) k t)ds + [m a

d t 33

df 2 pIrxv+y a(rxw +d xv) +d xy sdt l .. -La - O ~F

f 2 (rx f+d x O)ds+ (rxn+d m,m 2

- -C -. -(I -

'ihe first of (9. 18) is a statement of the conservation of mass, the second

is tht, conservation of linear momentum, the third that of the director

t)mentum and the fourth is the conservation of moment of momentum. We

also record the law of conservation of energy in the form

d I ( w )ds + In - v + m U w -h (9.19)

l i

ie hasic structure of (9.18)1 and (9.19) are analogous to the cor-"lhebasc stuctre o (918)1,2

responding conservation laws of the classical 3-difienSio1a1

theory. le structure of (9. 18)3 and (9.18)4 are less obvious, but a

-' mtivation for their forms is provided by a derivation of the basic field

equations for rod- I ikc bodies obtained from the 3-dimensional equa-

tions of continuum mechanics in which the position vector r in 3-space is

approximated by an expression of the form (2.30). It should be noted that

the conservation laws (9.18) and (9.19) are consistent t.ith the

invariance conditions under superposed rigid body motions, which ordinarily

have wide acceptance in continuum mechanics. Moreover, the conservation laws

(9.18) (9.18), and (9.18) are equivalent to, and can he derived from the

con , rvation of energy (9.19) and the invariance condit ions under superposed

39.



t

rigid body motions. The conservation law (9.18)3 for the director momentum

must be postulated separately.

Returning to the conservation laws, after making suitable continuity

ass ump tions, by usual procedures from (9.18) 1, , and ((). I) t1 w the'

l al [I e Id t't&ili t i O0115

,0 V

a() = or pa 3 3 Pa 3  = 0 (9.p'a)

+ Xf A= k ( + y w) (9.21)

+ AX9 k +A(y v+y (9.22)

3d
a3 xn+d xka + - x Tit 0 (9.23)

and

Th
r - - X+P=0 (.21

whe re

7)v )w

P n - + k w + mC 25)

is the mechanical power.

9.3 Iierarchical theories of Cosserat curves

.\lthough the theory outlined in subsection 9.2 is sufficiently general

for many applicat ions, on occasion it becomes necessary to consider a more

g'Leral theory of Cosserat curves. Therefore, we now briefly discuss the

kinematics and the balance laws of Cosserat curves g K having I. (>2) directors

attachcd to ever\' point of a material line S, the number I. being given by

t' 1).

t(ll.



Thus, instead of (9.2) we specify a nxtion ofg N y

r = r( ,t) , d = d t (N= 1,2
, . . . 

K) , (L )
~~~~ -ClC2 • N  I c2 •. N

where the vector fumctions d are assumed to he symmetric in the

indices (A ,2...N. Thle velocity vector is still given hy (9.4) but cor-

responding to (9.4),, we now define the director velocities

w =d j27

"C~l2 N .N

We recal I that for K = ( 1 = .R), the kinetical quantities and the assigned

fiCIds ilt roduced in subsection 9.2 consist of n k ,m aInd t', Z'. Keepi g ii

in mind, for a body 9 K we admit the more general kinctical quantitic , and

ass i ged fi c ds

n , k 
, m

OL~~(0 1 
-

21 2" " " N

and corresponding to (9.14) and (9.15)1,2 write the more general expressions

for kinetic energy of N K and associated momentum and director momenta,

ui ianic I

K loa 2. .. tN
K 'p[vv + 2 Z y v w

N=1 . (4N

K t 1 " .N. 1- M

+ Z y w

- = [v + E y w
N=1 1 N

,(A c " " " N CtL . . . N l  I ~ " b

...... p[Y v + Y, y M
tW 

I  
... . N
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'*1 " "u

cach per unit length of the curve Z.. lhe inert ia coeff i c ient.s v

... tN,  l''',3 . , x' '
I In . . 29) are ftLIICt ions of ,, I N, I irt \'muct ri c

, i r SIpCct to indi ces ,I.. uN Y I N I M= Y I I n d 

also sy'iutric with respect to c 1  *2...N and 12... M  In thu speci ,11

of K I (R -i1i, (= 2, we may usc the notations

d =d , W =W--U -_U .I -(Xx
1 1 (ti .;u

ccI CA I I X
y =y , v y

For a detailed statement of conservation laws appropriate for Cosscrit

1Rxes . , i refer the reader to Naghdi (1)7,1i,, Sec. 2), ilt itlicate hiol,

thi strnct ire of the corresponding local field equat ions. Thus, for the

purelv mechaniical theory of Cosserat curves K the local field eqations

v N = CI (N = 1,...,2K) , A = 0 , X = i) a .

3n

t1 . . ! N  f!.5 'N k t
+ Aq r ~ N =k I(N=l .K

'IdK "X' ' 'N I '' '
+ d k +

N=I l . N

whe re

It 1, 2 .. <N I 1,. 2' N I "

C Th c

•I



boo-,L ...

K !.. . .

I N
V= t-v- i v (N I K).....

N=I.

I~~~~ N' K I N 1

9 -" v-ny w (N = ... K)
MI= 1 ' " I

Ao, for Cos. erat curves R, the expression for miechanical power cur-

rL.* on in,,ii to (9 2h) is

,v K . I . . . . .NK :' w --U . . . .

*' • :- + _"lk 1" I '' N + N=:Ii"... ---N 1W . 1
kI + II

VI* N N=1'

Ihe ,ncrll dvc1uopment for Cosserat curves £ O out I ined a hove i s
l K

ctmN ii ind in ai l eiper hl Naghdi (1979, Sec. 2). When K = I, thle result II

suhscCt il 9. 3 reduce to those of suhsect ion 9.2 for a Cosserat curve .

. . - ' -" ..... .. .. . .... i . .. .. .. ..-. .. .... . -*.. ... . , .. .
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onl the Zisskitlipt i on of the type ( 10 . 2) i s conta ined I it t he paper of G;reen

%,I hd i andI- Weniner (1974 ) In tile rest of this-, sct ion , we I imni t the

d Is-cus in to :Ii c 1 ast ic rod wiich is" homlogeneous in1 it S re ferenlce ".on -

tI 1011a Ii and suppose0-, J I -,o that the dependeiicc of the r~esponse fivict I ons

til the propert ies of thle reference s tate oc Ir t l-IiinI ht kvaIues- ( ofti

kineiiat I ca I var i ah I es in the reference state Then inI lace of., [I.

havc.

lvit I IS i IIIi I ar I ;1 tIItI p t i ons- for n 1 ,m'II After sub t itit in,, 101. 4 in(to)

t .I , hl il151101 tchii it)Ue5 we obitain the fol I I m i fig Cot-iris Cor- t hc

oS t it lit i' eCqua11 1t ion11S

a I o ii I, t I t 1 th 11 c v, t 1, 1 k t I onl

twhich i s obti i ned from thet conservationi oft moitt wi [1111 uriid wit I Ch

r(- tr t- e t S it hC reCSponIse fnTcr TI on *

lke do not di stns s Ii ere thle reduc ed forms t' t 1).s'~c t It It iv

titiIon-, resuilting from invariance requi renient- mitk -II;jtLrposedk r Ii' id(

hild htii,(ut for such reduction refer the i'~tto t ;rcun Natthkl i and

lk tiitt? Lt I ). 1Inst as with thle equations of mot ion , i t is etsa\i

I I i it i 0fl toi spec itf i c priV~ ems to ohti ;11 altrlmt ic f ' orms of, t ib ao

Tout I 111t I Ve etjiLat ions or their reduced forms, i n tcrms of tensor comupk t-unt

'&lt OlPiTment to mnis Ilay he expreset wi it I-C-pt ct I. ale a. , or' d l

L I'- pti I Ii, e ses in tit - ference oti urn nit. Ku-diicct. forms, ot



I1. Identi fication of the- assigned fields and the inertia coeftficien-ts

The local f iold equations in the mechanical theorY of aI Cosscrat curve

SR have the same forms as those that can be derived from the 3-dinknisional

field equations (2.9)12 by suitable integration over the cros;s-sectional

are;i of the r-od- like body with respect to 0 1and 0 2 [recall the definit ion of1

a irod-like body at the end of section 2] and in terms of certain definition,;

tbri integrated mass dens ity and resultants of stress (for details, see (4ren *

Naljhd i and Wecnner 1 974 a)j. Simnila rl y, the energy qua t ion (9. 21 ) has the

,;AIme for'm as that which canl he derived from the energy Ceqat ion in the ~

Mins i ona I theory by suit abl e i ntegra tion over the cross -sect ion area of

the r-od- Iike hody with respect to 6 1and (1 and in terms of certain defi ni tions

Coyr iittegrated internal energy dens ity and heat fluox in the 3-d imens tonal

theoi-Y (see Green and Naghdi 1 97o). 'To elaborate further, We cotfi ne attenl-

tionl to the purely mechanical theory, and recall the definitions

Apa Xfd~ld6 XA =pg
2

, (1

=X 
1 d 2  a ~Id 2  

,(I)

;jn. He cxjpresslons

=f Af d" d ~f Ido2(T I-I T 3 -del jT 2~ 2, 1 3

= 1 22 1 l 3 1 2 2

f*0( do" + f 0" [d (TI -) '-d& (T-i) F II

Ii r , F',I hich occur in AI 1- I.) are defined in sect ion 2 Ifol -

I o i 2 2. 2 tj, te line integrals are taken a long the curve const . oil

In ~ ~ ~ ~ C Ua riisrae 2 n. =* ad? dt~+g is:t vector tangentiail

tow the -sortace f'. 2o I so thlat V + Vt=N)4' 0.

t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ F I& lt io.'t, 1~)- X11Nti n l tL-1 t C-



correspondence between the 1-dimensional field equations that follow from

the conservation laws of a Cosserat curve and those that can be derived

from the 3-dimensional equations provided we identify r and the director d 4

in (2.3o) with (9.2)1 and (9.2 2, respectively, and adopt the definitions

11.1)- 11.1), as well as the definitions of the resultants mentioned above.

A similar 1-1 correspondence can be shown to hold between the 1-dimensional

energy equation in the theory of a Cosserat curve and an integrated energy

eqIUat ion derived from the 3-dimensional energy equation.

The various quantities in (9.13) are free to be specified in a manner

wi i ch depends on the particular application in mind. Also, we remark that in

the context of the theory of a Cosserat curve, the inertia coefficients

and the mass density p require constitutive equations. indeed, f ,9

CC

t lons ini a deri vat ion from the 3-dimensional equations indicated above ( for

deta Is, see Naghdi Ill Qa)i Likewise, p and the coefficients )y ,y' may be

idctificd with easily accessible results from the 3-dimensional theory.

Iii what follows, we assume that the above identifications have been

malde md that the quantities py C , 'fb'$" f Z U are known or specified. IlTle

knowledge of' f '1 depends on the nature of the boundary conditions on the

lateral surface of the particular rod-like body under consideration: they

may hub specified as known quantities on the surface (2.26) or they are

ULikHnown ;an1d Imist he determined as part of the solution of the problem.

0I.



12. Additional remarks on rods

Topics corresponding to those in Sees. 0 and 7 have so far received

less attention in the case of rods and consequently the di ,cussions that follow

arc somewhat brief. We first consider a class of constraints, apply the results

to an incompressible Cosserat curve and then go on to briefly comment on someIrecent researches which bear on various aspects of elastic rods.

Consider a class of constraints which are linear relations between the

kinematic variables

v , w ,w (N=1,2-,...,K) 12.1)
Ia 2  •. N  Iaa2  •. N

M.imi lar to the development in Sec. (6 for shel Is, we consider (I(+l

4.

constraint eqtit ions of the formt

M K NlaI. . .aNA V/ + B W
N=I - 1  2 -. aN

K M lY ... a N+ C w: 0 (M= o,1,2 ,...,Q) , (12.2)

N=I' ~C4la 2 -" "aN

Ma A ..Ot CIU,.. aN 1 Mc 2  * *' N I 2 " Nwhere A 3 ,C are vector functions of d. ,d. only and do

not depend explicitly on the variables (12.1). We assume that each of the
(12 . .Lt a1 a2 .. aN

f'tnct iols nK , are determined to within an additive

c t ,striint response so that

(12.3)

whvrc

a fala 2 . .t a l 2. • ...
nk , m =m

'(re spc i ffied , consi tutive equations and

-l I . N  I~a2  •. Nn a k " , m (12.1)

li ih r j.',-t thit rSPolHt 'C dll to cOll;t'riA nt S giI'' Ir' i tl';ll'V fIonct ions of'

It e tlti'1o'lol)cm't betcyen 12.2 1 -( .'.0) i s s imi I ar to thit for mechan ical
,u-t> -V. it ' Ill the 3

-dill ensiona l theory.

(slow
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,t and are work less. Thus, recall ing the expressj0, (.9.34), we set

K " N K . . .
n" v + Z k + Z m "w = 0 12.,)

N=1 " N N=I 1 N

for aIll values of tile variables (12.1) subject to the constrainlt con-

ditions (12.2). It then follows that

Q A~M kC '''.(X Q Ma ( L
n- - Z A I' = - E B " ''

W ,- o - M= I l12.P

_ C . - . I b 1. . . y NI -C X  N

M C

t,herc 1)l ;il '  re arbi trary functions which plIay the role of

L.. , ra I r I k I It i 1 1 jcrs .

We consider now an incompressible Cosserat curve (R with two directors

within tihe scope of the above constrained theory. As in the case of" an

incompressible shell-like body discussed in See. 0, tihe conldition,;

representing approximately the (3-dimensional) incompressibility condit ion

(2.10) may be derived with the use of approximation (2.27) for N= I given t

by (2.30). Under this approximation (2.30), the base vectors are given hv

== .- x " B

: d. a3 + 0 Ctd /, where a 3 is tile tangent vector to tile curve 0= 0

and a superposed prime is defined by (10.3). Di~en, from the incompressibility

Condition (2.10) 1 we obtain an approximate expression as a linear function

ot , in the form

d I d d a + 0 d I d d ' = o 1 2 7

)r ( quiwllently as r

• + +3) ( d {  d ,d - 0 (d d )d(I

+ ((0 3 dWia (3, t b v o r ie

an, uepsdpiei eie y(1.) hn rmteicipesb I-i • .



where in (12.7) and (12.8) use is made of the notation (9.6)1, 2 and (9.7).

Wc now generate three conditions representing incompressibility: One of

these is obtained from integration of (12.8) with respect to 0 1 ,0 over the

cros s-sect ion of the rod-like body and the other two are obtained by first

miiltiplving (12.8) by 0 (A,= 1,2) and then integrating the result ing equa-

tion with respect to 01 ,0 2 over the cross-section of the rod-like body.

'1lise three coniditions can be written as

I"1 V + d (d i d' d ~- (d' d) dn w +(I w 0 12 (j9)

ld ( . .. .)d3  w + A d / = 12 10)

f v f [{d ' dO , d3}dx -( (dd .

%., :r e

I I
-1:f di ldf< , ,= f 0 d -6 , f=~ ~d 1 U . (1..1)

For an incompressible Cosserat curve under discussion, from (12.2) the

constraint conditions are

A v+B •w +C w 0 (M=o,L,2) (12.12)
-- U

and the constrained response obtained from (12.6) has the form

n (poA
° + A

1  + p A
2)

k = PB0% + P I B l x + P2 B 2  (12. 13)

- -c a O UlI t p g 2Ot
m=-(Po cJ PIC + P

"herc ,p 1,p are the Lagrange mul tipl1iers . Guided by the threc coiiditions

N1 Ni
12.9) and (12. 1() for A = 1,2, we select the vector-valued f tnct ions A ,B

Nit
I j 12.!21 and (12.13) to 1haveC the speciaI values
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Mo
A coeff. of w1 in (12.9) and( (12.10)

CBm = coeff. of w Iin ( 12.9) and ( 12. 1~ (N 1,(I- I1

Then, it follows from (12.13) and (12.4) that the expressions for the

constraint r'esp~onse are given by

3
n = P d

o-I

0' 1

miultipilier's by

= Y01)+ YP OL 1) t P L=Ya 61 1.0

The applicability of the theory of Cosserat curves is not limited to

only elastic rods but in fact can be applied also to problems of fluid

Ject s. These deove lopments, which pertain to both in'i scid and viscouis Jets,

hive bee(n discuIssed in the papers of Green and Laws (1968) , Green (1075,

1070h) and Naghdi (19791).

A constrained theory of a Cosserat curve with two directors is dis-

cuissed I1w Green and Laws (1973) and includes as a special case results, cor-

1.esponding to those of the Bernoull13-Lul er beam theory. 'Fie theory ofI smallI

deftormat ion superposed on a 1large deformation of anl elastic Cosserat curve,

toi~ether with a discussion of stability problems of rods, is given by Creeii,

Kriops and Laws (1968) and somic simpl er prolemsif inl the context Of the 110111I IrA I'

tHeory" Of rodIs are- dIiscu'sed by En cksen (1970).

'(he de'velopmen'It o1' thc theory of Cosserat curves in Sec. 9 is carried

otit withIini thle -;*(I)p- of the purely mecian icalI theory. lIn earl ier work oil



the thermo-mechanical theory of rods by direct approach (Green and Naghdi

1970), only one temperature field was admitted and this allowed for the

characterization of the temperature changes along some reference curve

such as the central line of a rod in the (3-dimensional) rod-like body,

but not for temperature changes in the cross-section of the rod. The

latter effect has been incorporated recently by Green and Naghdi (1979h)

into the thermo-mechanical theory of Cosserat curves, together with

appropriate thermodynamical restrictions arising from the second law of

thermodynamics for rods.
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13. The basic equations for rods in direct notation

In parallel to the development of section 8 for shells, for some

purposes it is convenient to have available the basic equations of a Cosserat

curve in a direct (coordinate-free) notation and this is the main purpose of

the present section. Just as in the case of shells, we shall see that the basic

equations for rods in coordinate-free notation are very similar to thosc of

the corresponding equations in the 3-dimensional theory and thus may be

more suitable in the discussion of general theorems or in the developments

which parallel those in the 3-dimensional theory.

We introduce the notations grad and Grad to denote the right spatial

and material gradient operators, respectively, with respect to the position

on the curve c in the current configuration and on the curve 1R in the

reference configuration. The corresponding divergence operators will be

denoted by div and Div, respectively. In particLIar, for a vector-valued

function V(,,t), we write

grad V = V'Od3  
, div V = V'. d 3

(13.1)

Grad V = VIOD3
, Div V = V' . D3

where a prime denotes partial differ itiation with respect to and the

symbol 0 denotes tensor product. Also, the spatial curve gradient operator

is defined by

grad V = V'a 3  
, (1..)

c -

for all scalar-valued functions V( ,t).

As in section 8, we introduce a measure of deformation by the tensor

It is clear that the notations grad, Grad, div and Div in this section
stand for operators with respect to position on the curve c and need not
he -onfiisetl with the similar notations in section 8 for surface operators.
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namt' I y

F = d.0D Grad r+d @1)9 (13.3)

and in view of the notations (9.0) and (9.10 we observe that

FD= ,FH)= d (3.1

1r0n the definition of the determinant of a second order tensor used in

section 8 Ifollowing (8..4)] and the conditions (9.2)3 and (9.81 we oht airI

det F = I -3 IdddI) 1) 2 3 1 > 0 13.5

'hC teLnsor IF, a l i near operator on vectors in 3-space, is nonsingIul.ar; and

thcre exi sts, therefore, the inverse deformation gradient F- defined by

-1i
I L . d 1 3.1 ,

-1
!he jiverse operator F transforms vectors in the present contfiguration

iiito eectokrr in the reference configuration, i.e.,

:- d. = P.1

.IId I to I I ows that

-- I di

d. 1 1). I
1

,hk i-( I i, the unit tensor in 3-space. We also introduce here the gradienl

G Grad d = d'l 1)1113.9

k-I I II[n, the de flt niti ons (9.4ll ., for the velocitv and the director

?4.



velocities, zis well as (9.5), we have

3 V 3* +F = d)l = dwl 3 +d /a v 1  +w I)[)I

] .- 5 Ct ~ -(
(13. li))

(; = dt' l)3  = w'® I)c

A I so

F: F -  d 3 d 3 d d a  grad v + w c ;d c
1311

G F =wXd
3 =grad w

The formulas (13.3)- (13.10) represent the main kinematical result, in

terms of the gradient tensors F,G and their rates. We now turn to ki Iet ical

quantities and note that the contact force n and the contact director foice
a n - functions of d , can be expressed in the formm ,as Ilinear ucin fd

'2 3
n = dI N d , ma = dI d W

33 331 .

with the second order tensors N,NP defined by

d 12 N = nod n d 6?d
33 . . 3 .. i -.

I S . 13

3iC1

'2 r, i c c

n = d in did

33i d i  ic

n = n * , m = m * d . (1.I

Also, it is convenient to introduce a tensor K through

k dI'  K (I

33..

d'2 (d k id.( Id K = k~d = ¢
33 .... -.1 .

W ic -c



ki = k' *d . (13.1 ()

Before proceeding further, we recall the divergence of a second order

tensor field T is defined hv

c div T div(l' C)

for a I constant vector c, where supe rscript T denotes transpose . AppIvi ny,

tht' ahove d( fi 1it i o to the tenor N in (13. 12) , and recall i n. 9. 12) ,

o))ta ii

div (N' c- d iv (n c) d/d
3

)(n 'd / a = -/ d c

with a si mi lar result for the tensor N . llus, we have

div N = - div NIo = - (13.17C C) - s

' h t h sc ot (13. I , the kinematical results (13.8)-(13.9 , and (13. 7)

iii the conservation laws (9.18) follow the local field eqnations

+ , div v =0

0.

div N + pf = r(v+V w ,
c -Cx 

I 
".. 

1

di Ni + . - k = (y<V + y w )}

..........IN + K - W"(G !I I = IN + K + NPL (; G: ,~ !

N\= in corresp)onding result- in e-t ion 8, the last statement in (13.18) is

I. I i r to t lic 'ymmv trv of the stress t('nsor i1 tlt' 3-di 11W i Orfal I I IhWO'rv In

p;j t i jtl r, i t mav h(. ohse rved Itha t a. x n , d k and d /×m i are, res ect i e IV y,

t lit, I i1 T  
-I ;I T -1 1 (o I

t h d., i l e r e t ,o r s o f a -.. \ "4.,. a , _. K -K 1 a ,n d a > l N i' ( : : -l ) C( ,, h iM( I .

I(



lurthermore , in terms of the k inet i cal quant it i es N, M , K in (13.12) nId

l3. 1 and the rate qua t itis (13.()) I1 2 the llechan i;l power htcmlome

a P) = tr{ ,I F (N+K) + G T~ N F 1: 1 i3.

33 - - -L

Wi th reference to consti tut ive equations for elastic rods, instead tl

the kinematic variables used in section 10, we now employ the variableh,

I 3.3 and (13.9). Tis , corresponding to the constitutive assumption

. we now write

F G
y = !~)(I R (x I.

G; : Grad 1 : U/OZ ) 3.2

aolton, with s imi I ar assumptions tor N,K,NN '. Then, with the use of (I).l1, (t3.

and ( 1. 20), hy usual techn i ltc we obtain the following a I ternat ive forms

of the const i tut ive eq Ilat i on '

N+K - I - 2. L ([ "  d ) (13 .22

the' t i rP t of t whic c.ii hi lbOe r Cl d I to

d I K D , Uk ( I ' (I
-X- ' ' : .; ,

\~ L krn' It'! illlt. 1I ' t u'', ,t ' S,'i-L' Obt ntIll' in1 tIle ('otii'- ('

Cr hb IIt p) I I ( d t I. . , ,( I C&seaicI' C 1luder (rCit IPalt't
, I t (" 1 , I IT I I ki. T. I t; lo Ii's (' I f ; It tuitu i

i-k -I,
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