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Finite-Densîty Onsager-Type Theory for the Isotropic-Nematic Transition of Hard Ellipsoids 
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We propose a simple density-functional theory for the isotropic-nematic transition of a System of hard 
ellipsoids which yields results in fair agreement with the computer simulation studies and which reduces 
exactly to Onsager's theory in the limit of infinitely dilute Systems of infinitely long ellipsoids. When the 
free energy is expanded with respect to the Maier-Saupe quadrupole order parameter an explicit Landau 
theory is produced which yields good results for small nonsphericities. The theory also predicts a Lin-
demann ruie for orientational freezing. 

PACS numbers: 64.70.Md, 05.70.Fh, 64.10.+h 

A System of nonspherical molécules can exhibit a large 
variety of liquid­crystal phases or mesophases with a 
symmetry in between that of the liquid and that of the 
crystal. ' The simplest possible theoreticai model for a 
nonspherical molécule is certainly a hard ellipsoid of ré­
volution. A System of hard ellipsoids (HE) can therefore 
be expected to be as good a référence System for the 
theoreticai study of the liquid­crystal phases as the Sys­
tem of hard sphères (HS) is for the study of the con­
densed phases of spherical molécules. ̂  Récent computer 
simulations^ have shown, moreover, that the phase dia­
gram of H E already has a very rich structure, not unlike 
that of the real molecular Systems. Whiie previous 
theoreticai investigations have indicated how the clas­
sic liquid­crystal théories of Maier and S a u p e ' and of 
McMillan^ can be incorporated into the gênerai den­
sity­functional theory of phase coexistence,* relatively 
less attention has been paid to the relation between the | 

latter theory and Onsager 's theory ' of the isotropic­
nematic transition of infinitely dilute Systems of infinitely 
long rods. It is the purpose of the présent investigation 
to présent a fairly simple extension of Onsager's theory 
to Systems of H E of finite elongation and finite density. 
Only the isotropic­nematic transition of the H E System 
will be considered hère, while the results will be com­
pared to the most récent theoreticai '*' '" and computer 
simulation^ studies. 

The form of the density­functional theory which will 
be used here is a straightforward extension to the H E 
Systems of the theory used previously for the study of 
phase equilibria in H S Systems. Our starting point is 
the following exact expression*­'^ for the (Helmholtz) 
free energy of the ordered (nematic) phase, F[p] , viewed 
as a functional of its local number density p (x ) , in terms 
of the corresponding free energy of the disordered (iso­
tropic) phase, / ' [pol, of uniform and isotropic density po^ 

PF{p] ­ ^ F ( p o ] + / f / ' x p ( x ) l n [ p ( x ) / p o l " J d ^ x j d ^ x ' j \ { \ ­X )c2(x ,x ' ; [px l )Ap (x )Ap (x ' ) . ( 1 ) 

where we have neglected the contribution from external 
fields and introduced the two­body direct corrélation 
function, C2(x,x ';[pxl). of a System of density p i (x ) 
~po+>.Ap (x ) with Ap(x) —p(x) —po. The constant in­
verse température is p^X/k^T, while x ~ { r , u } with r lo­
cating the center of the H E and a its orientation, viz., u 
is a unit vector along the axes of révolution of the HE. 
The X intégral in (1) results from a functional intégra­
tion in density space'^ between the disordered ( X ~ 0 ) 
and the ordered (A. ~ 1 ) phase at constant average densi­
ty, viz., p ~po. The average density p is defined here as 
the spatial average of p ( x ) = p ( r , u ) over the volume with 
respect to r and over a unit sphère with respect to u. 

In order to locate the possible ordered phases we mini­
mize the free energy (1) with respect to a suitably 
parametrized local density p ( x ) which in the case of a 
nematic phase can be written, p ( x ) ~ p / ( u ) , with / ( u ) 
the normalized angular distribution of the HE. In the 
following we will restrict ourselves to nematics with a 
uniaxial cylindrical symmetry around a director n and 

with a plane of symmetry perpendicular to n. In this 
case / ( u ) dépends only on the angle 0 between u and n, 
viz., / ( u ) ~ / ( m ) = / ( — m ) with u i i ~ c o s 0 ~ m . The 
simplest one­order­parameter possibility is to use the 
Maier and Saupe form, 

/ (m)—exp(yOT^) rf/Mexp(ym^) j , (2) 

so that for — T ; r < 0 < y/r , / ( cos f l ) is singly peaked 
around 0 ~ O with an inverse width determined by y and 
Y^Q corresponding to an anisotropic phase. Equation (2) 
is physically acceptable and mathematically more con­
venient than the Onsager trial funct ion. ' More gênerai 
distributions can be considered but are found to give only 
little improvement. 

Before the free energy of (1) can be minimized with 
respect to y of (2) we also need an explicit expression for 
the direct corrélation function of the différent phases of 
the HE System. Since the theoreticai information on the 
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direct corrélation function of nonspherical convex bodies 
is very scarce'^ we will assume a simple factorization of 
the translational ( r ) and the orientational (u ) direct 
corrélations: 

C2(r,tt;r ' ,u';[p] ) - Z ( u - U')CPY 
CTO 

, (3) 

where the translational corrélations of the H E System 
have been fur ther approximated by those of H S of the 
same volume (or packing fraction i^—^na^p with 
CT(J~crii(Ti for ellipsoids of révolution with diameter CTH 
along the axis of révolution and a± perpendicular to this 
axis) described here within the Perçus-Yevick (PY) ap­
proximation.^ The angular direct corrélations are taken 
care of by (3) through the factor Z(u u ' ) which de-
scribes the volume excluded to two H E of respective 
orientations u and u ' when averaged over the center to 
center orientations and divided by the molecular volume 
fmoi ~ ? ;rcT||cri. Approximating the distance of closest 
approach of two H E by the Gaussian overlap model pro-
posed by Berne and Pechukas, one hnds 

ZBPCU-u') - [ 1 -xHu-u-y] ''Hl -x^) - " \ (4) 

with X-{k^-\)l{k'^+\) and k-aja^ the aspect ra­
tio, viz., 0 < A: < 1 for oblate and 1 < < «> for prolate 
HE. Notice that approximation (3) is akin to a pertur-
bational treatment of the H E System around a H S référ­
ence System. For the isotropic phase of the H E System, 
the référence H S System is taken at the same density (f;) 
as the original H E System viz., /j ~ / j in (3), whereas 
for the nematic phase the effective density, TJ, of the 
référence HS System has to be taken smaller < rj) 
than the average density of the nematic (r;) so as to take 
into account the réduction of the interactions in the or-
dered phase as compared to the disordered isotropic 
phase used as référence for the nematic. The explicit re­
lation between jj and i], f j ^ f f i r ] ) , to be used in (3) will 
be determined from a structural scaling condition be­
tween the HE and the référence H S which takes into ac­
count the géométrie constraints of the nematic phase. 
We will assume therefore that , at contact, the direct 
corrélation functions of the H S System evaluated at the 
real and at the effective density are related by 

CpY •CpY 
I r | •x(xy,ri ( 5 ) 

where CTQ is the average contact distance of the H E in the 
isotropic phase (so that the H E can be replaced by H S of 
diameter <TO), whereas CTQ times x ( < 1 ) is the average 
contact distance of the H E in the nematic phase. Since 
k is the natural length scale of the problem we put x — 
when k < 1 and x — l/k when A: > 1, or in terms of X, 
xOc)-(l-\x\)^'y(l+\x\)^'\ It is clear that the 
différence between if and r} as obtained from (5), or the 
expansion of rfij]) around T] in (3), can represent only a 

rough estimate of the influence of the higher-order terms 
of (1) if the latter were to be expanded further with 
respect to Ap(x). From the study of the liquid-solid 
transit ion'^ it is known, however, that thèse higher-order 
terms cannot be completely neglected because of the 
poor convergence properties of the Ap(x) expansion. It 
is hoped therefore that (5) takes into account the essen-
tial physics of this effect in the same way as the structur­
al scaling condition used elsewhere'^ did for the liquid-
solid transition. Two important aspects of the above ap­
proximation scheme are that ( l ) it admits an exact sym­
metry between oblate and prolate H E of the same molec­
ular volume, i.e., a X*-^ —X invariance, and (2) it reduces 
exactly to the theory proposed by O n s a g e r ' ' ' for the 
nematic phase of a dilute System of long rods. The ex­
istence of an almost perfect oblate-prolate symmetry is 
indeed one of the major flndings of the récent computer 
simulations,^ while Onsager 's t heo ry ' is an exact resuit 
in the limit as k — o», r;— 0 with kri—c constant. 

For the isotropic phase we find from (3) that the ex-
cess thermodynamic properties of the H E are given by 
those of the H S of the same molecular volume, times the 
angular-averaged excluded volume (4), viz., for the 
compressibility équation of state. 

HS 

-H0c)i4j]-2q^ + ar]^)/il-r})\ (6) 

ÉE. - 1 
P HE P 

with 

1 + 
arcsin^r 

Xi\ 

where a " 1 when the P Y approximation is used to de-
scribe the H S [as implied by (3)] and a — 0 when the 
more accurate Carnahan-Star l ing équation of state^ is 
used. In Fig. 1 we compare the results of (6) with the 
computer simulations^ and with some of the alternative 
théories '^ leading to explicit expressions [notice that (6) 
can also be obtained from the Pynn model '* used by 
Singh and S i n g h " ] . It is seen there that within the PY 
theory of H S the pressure of the H E is slightly overes-
t imated by (6) but that with the Carnahan-Star l ing H S 
expression the agreement is very good. This, in view of 
the simplicity of (6), surprising resuit certainly points to 
the soundness of our basic approximation (3). For the 
nematic phase we find that the free energy has a second 
minimum (besides the one at y—0 corresponding to the 
isotropic phase) only above a threshold density, rioik). 
Whereas rjoik) is a rapidly decreasing function of k (be­
cause of the oblate-prolate symmetry we only consider 
prolate HE , viz.. A: > 1 ), the order parameter at thresh-
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FIG. 1. Reduced pressure of the isotropic phase, 
p* "Ppvmou for k —2 and 3 as given by Eq. ( 6 ) (solid line) and 
by scaled particie theory (dashed line) as extended to convex 
bodies by Gibbons and Boublik [see Eqs. (4.96) and (4.105) of 
Réf. 13]. In each case the upper curve corresponds to the ver­
sion of the theory which in the limit of hard sphères (* ~ 1 ) 
reduces to the Perçus-Yevick compressibility resuit while the 
lower curve corresponds to the version which reduces to the 
Carnahan-Starling resuit for A: ~ 1. The dots correspond to the 
computer-simulation results of Frenkel and Mulder (Réf. 3) 
( ^ " 3 is the largest nonsphericity considered by the simula­
tions). 

old, } 'o~y( ' Jo(^) .^)> remains practically constant 
(yo—3) pointing to the existence of a Lindemann rule^ 
for orientational freezing. The nematic phase then stabi-
lizes very quickly, first at constant density and then at 
constant pressure, while for stiil higher densities the 
free-energy extremum corresponding to the isotropic 
phase disappears as a minimum so that only the nematic 
phase survives. AU thèse characteristics are very close to 
one another and decrease with k somewhat slower than 
assumed in the Onsager theory, viz., k T j i k ) is a slightly 
increasing function of k for A :>1 . The constant-
pressure isotropic-nematic transitions have been located 
hère by Maxwell 's double-tangent construction which is 
much simpler but, because of the inhérent thermo-
dynamic inconsistency, not identical to the solution of 
the two-phase coexistence conditions used previously. 
As seen f rom Fig. 2 the coexisting densities are slightly 
underestimated by the theory but smoothly join the 
simulation results (.k — 3) to the Onsager limit ( fc~>») . 

I . . . . I , . . . I i . , . I . , . L. 

1 .0 2 . 0 3 . 0 4 . 0 k 

FIG. 2. Coexisting densities (;;) of the isotropic (lower 
curve) and nematic (upper curve) phases as a function of the 
aspect ratio k as obtained from various sources. We have from 
top to bottom (1) the computer simulations (Réf. 3) (dots), 
where the only available results correspond to k "-2.75 and 3, 
(2) the présent theory (solid line), (3) the theory of Mulder 
and Frenkel (Réf. 10) (dot-dashed line), and (4) the theory of 
Singh and Singh (Réf. I I ) (dashed line). When k decreases 
the coexisting densities increase and width of the transition de­
creases very rapidly. In the high-density région (.k <2 .5 ) the 
isotropic-nematic transition will be preempted by a liquid-solid 
transition (Réf. 3). In the opposite low-density-large-A: région 
we show in the inset how the présent results (solid line) go 
slowly over into the Onsager limiting resuit r]~c/k (dashed 
line). 

The theoretical and computer simulated phase d iagrams 
are compared in Fig. 3. 

Finally, we have also investigated the status of 
Landau's theory of weakly first-order transitions ' by ex-
panding the free energy in terms of the Maier -Saupe 
quadrupole order parameter , q~Sè dm ( f m ^ — y ) 
X / ( m ) , which is a bounded order parameter (G < ^ < 1 ) 
whereas y is not, viz., PF — '^„a„q", with truncation of 
this expansion af ter the q* te rm. W e have compared the 
density-functional theory and its Landau approximation 
and found that for A: < 3 the Landau theory performs 
surprisingly well, whereas for A: > 3 it still predicts a 
transition at about the correct density but which is much 
too weak and narrow (as k tends to infinity q and STJ/TJN 
tend, respectively, to 0.386 and 0.043 for the Landau 
theory , and 0 .799 a n d 0 . 2 7 6 f o r t h e d e n s i t y - f u n t t i o n a l 
theory, whereas the exact '* results are 0.792 and 0.274). 
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FIG. 3. Theoretical (solid line) and computer-simulation 

(Réf. 3) phase diagram in the pressure(p*)-density(T;) plane 
for A: ~3. The tie line between the isotropic (dots) and nemat-
ic (triangles) branches of the simulations is indicated by a solid 
line segment. For A: —3 the coexisting densities are r\i —0.507, 
TjAr""0.517 for the simulation results (Réf. 3), r//••0.472, 
jj/v-0.484 for the présent theory, ;j/-0.419, »jw-0.437 for 
the theory of Mulder and Frenkel (Réf. 10) and -0.309, 
^N -0 .330 for the theory of Singh and Singh (Réf. 11). 
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