City University of New York (CUNY)

Finite-difference approach to the Hodge theory of harmonic forms

Jozef Dodziuk
CUNY Graduate Center

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_pubs/180
Discover additional works at: https://academicworks.cuny.edu

FINITE-DIFFERENCE APPROACH TO THE HODGE THEORY OF HARMONIC FORMS.*

By Jozef Dodziuk.

Table of Contents

0 Introduction

1 Whitney Forms
2 Standard Subdivision of a Complex

3 Approximation Theorem

4 Inner Product in Cochain Spaces. Combinatorial and Continuous Hodge Theories

5 Eigenvalues of the Laplacian Acting on Functions
Acknowledgments

References

0. Introduction. Let K be a finite simplicial complex. Eckmann (see [3]) observed that any inner product in real cochain spaces of K gives rise to a combinatorial Hodge theory. We show that if K is a smooth triangulation of a compact oriented, Riemannian manifold X, then the combinatorial Hodge theory (for a suitable choice of inner product) is an approximation of the Hodge theory of forms on X.

Before giving a more detailed description of our results we introduce some notation and formulas. Thus let X be a compact, oriented, C^{∞} Riemannian manifold of dimension N, whose boundary consists of two disjoint closed submanifolds M_{1} and M_{2}. We do not exclude the possibility that M_{1}, M_{2} or both are empty. The Riemannian metric provides the space $\Lambda=\Sigma \Lambda^{q}$ of C^{∞} differen-

Manuscript received June 26, 1973.
*Columbia University Ph.D. Thesis.
American Journal of Mathematics, Vol. 98, No. 1, pp. 79-104
Copyright © 1976 by Johns Hopkins University Press.
tial forms on X with an inner product

$$
\begin{equation*}
(f, g)=\int_{X} f \wedge * g, \quad f, g \in \Lambda \tag{0.1}
\end{equation*}
$$

The completion of Λ^{q} with respect to this inner product will be denoted by $L^{2} \Lambda^{q}$. Let $d: \Lambda^{q} \rightarrow \Lambda^{q+1}$ be the exterior derivative and $\delta=(-1)^{N q+N+1} * \delta *$ the formal adjoint of d on Λ^{q}. By Stokes' theorem

$$
\begin{equation*}
(d f, g)-(f, \delta g)=\int_{M_{1} \cup M_{2}} f \wedge * g \tag{0.2}
\end{equation*}
$$

for $f \in \Lambda^{q}, g \in \Lambda^{q+1}$.
At every boundary point of X a differential form f can be decomposed into its normal and tangential components: $f=f_{\tan }+f_{\text {norm }}$. The operator $*$ maps every covector corresponding to a subspace into a covector corresponding to its orthogonal complement and therefore $(* f)_{\tan }=*\left(f_{\text {norm }}\right)$. Using this we can write the boundary terms in (0.2) as follows:

$$
\begin{align*}
\int_{M_{1} \cup M_{2}} f \wedge * g & =\int_{M_{1} \cup M_{2}}(f \wedge * g)_{\tan }=\int_{M_{1} \cup M_{2}} f_{\tan } \wedge(* g)_{\tan } \\
& =\int_{M_{1} \cup M_{2}} f_{\tan } \wedge *\left(g_{\text {norm }}\right) \tag{0.3}
\end{align*}
$$

We will denote by $\Lambda_{1}=\Sigma \Lambda_{1}^{q}$ the space of C^{∞} forms on X which satisfy the boundary conditions $f_{\tan }=0$ on M_{1} and $f_{\text {norm }}=0$ on M_{2}. Then, by (0.2) and (0.3),

$$
\begin{equation*}
(d f, g)=(f, \delta g) \quad f \in \Lambda_{1}^{q}, \quad g \in \Lambda_{1}^{q+1} \tag{0.4}
\end{equation*}
$$

Finally, let K be a finite simplicial complex of a C^{∞} triangulation of X which contains subcomplexes L_{1} and L_{2} triangulating M_{1} and M_{2} respectively.

In Section 1 we describe an operation, due to Whitney [8], which assigns an L^{2} form on X to every simplicial cochain of K. More precisely, we define the linear mapping $W: C^{q}(K) \rightarrow L^{2} \Lambda^{q}$ of real cochain spaces of K into the spaces of L^{2} forms on X, where $q=0,1, \ldots, N$.

In Section 2, we describe standard subdivisions $S_{n} L$ of an arbitrary simplicial complex L, also introduced by Whitney in [8].

Section 3 is devoted to the proof of crucial approximation theorem. Let $W_{n}: C^{q}\left(S_{n} K\right) \rightarrow L^{2} \Lambda^{q}$ be the Whitney mapping for the complex $S_{n} K$. Let $R_{n}: \Lambda^{q} \rightarrow C^{q}\left(S_{n} K\right)$ be the de Rham mapping defined by integration of forms over chains of $S_{n} K$. The approximation theorem asserts that, for large $n, W_{n} R_{n} f$ is a good approximation of f.

In Section 4 we define the inner product in cochain spaces $C^{q}\left(S_{n} K\right)$ and discuss resulting combinatorial Hodge theory. We then show that if $f=d g+$ $h+\delta k$ is the Hodge decomposition of a C^{∞} form $f \in \Lambda_{1}$ and $R_{n} f=d_{n} g_{n}+h_{n}+$ $\delta_{n} k_{n}$ is the combinatorial Hodge decomposition of the cochain $R_{n} f \in C^{q}\left(S_{n} K\right)$, then $W_{n} d_{n} g_{n} \rightarrow d g, W_{n} h_{n} \rightarrow h$, and $W_{n} \delta_{n} k_{n} \rightarrow \delta k$ in $L^{2} \Lambda^{q}$. This is our main result.

We also discuss in section 4 the differences between classical finitedifference techniques for solving partial differential equations and our methods.

Finally, in Section 5, we prove that the eigenvalues of combinatorial Laplacians converge to eigenvalues of the continuous Laplacian, at least in dimension 0, i.e., for 0 -cochains and functions. Our proof is an application of the classical Rayleigh-Ritz method (see Gould [4]). As a corollary we obtain that the zeta functions of combinatorial Laplacians converge to the zeta function of the continuous Laplacian. We conjecture that the results of this section are true in all dimensions $q=0,1, \ldots, N$; but we were unable to prove it.

This eigenvalue problem is related to a question of equality of analytic torsion and Reidemeister-Franz torsion raised by Ray and Singer [7]. The proof that zeta functions converge in all dimensions would be a step toward proving that the two torsions are equal.

1. Whitney Forms. The definition of Whitney forms and all results of this section, except for (1.5), (1.6), (1.8), are from Whitney [8].

We now define a linear mapping W of the real cochain groups $C^{q}(K)$ into $L^{2} \Lambda^{q}$. To do so we identify K with X and fix some ordering of the set of vertices of K. For a vertex p of K, we denote by μ_{p} the pth barycentric coordinate in K. Since K is a finite complex we can identify chains and cochains and write every cochain $c \in C^{q}(K)$ as the sum $c=\Sigma c_{\tau} \cdot \tau$ with $c_{\tau} \in \mathbf{R}$ and τ running through all q-simplexes $\left[p_{0}, p_{1}, \ldots, p_{q}\right.$] of K whose vertices form an increasing sequence with respect to the ordering of K. It follows, that it suffices to define W_{τ} for such simplexes τ.

Definition 1.1. Let $\tau=\left[p_{0}, p_{1}, \ldots, p_{q}\right]$, where $p_{0}, p_{1}, \ldots, p_{q}$ is an increasing sequence of vertices of K. Define $W \tau \in L^{2} \Lambda^{q}$ by the formula

$$
\begin{equation*}
W \tau=q!\sum_{i=0}^{q}(-1)^{i} \mu_{p_{i}} d \mu_{p_{0}} \wedge d \mu_{p_{1}} \wedge \cdots \wedge d \mu_{p_{i-1}} \wedge d \mu_{p_{i+1}} \wedge \cdots \wedge d \mu_{p_{q}} \tag{1.2}
\end{equation*}
$$

We remark that the above definition makes sense even though the barycentric coordinates are not C^{1} functions on X. However, since the triangulation is of class C^{∞}, the barycentric coordinates are C^{∞} on the complement of ($n-1$)-dimensional skeleton of K. This allows us to apply the exterior derivative d in (1.2) and the resulting form is a well defined element of $L^{2} \Lambda^{q}$. Also, (1.2)
holds for every simplex $\tau=\left[p_{0}, \ldots, p_{q}\right]$ (the vertices need not form an increasing sequence) because both sides of (1.2) are alternating in the subscripts 0,1 , $2, \ldots, q$.

For a cochain $c \in C^{q}(K)$, we call Wc the Whitney form associated with c. We now state and verify some properties of Whitney forms.

$$
\begin{equation*}
W \tau=0 \quad \text { on } \quad X \backslash \overline{\operatorname{St}(\tau)} . \tag{1.3}
\end{equation*}
$$

for every simplex τ of $K . \operatorname{St}(\tau)$ denotes the open star of τ.
Proof. Suppose $\tau=\left[p_{0}, p_{1}, \ldots, p_{q}\right]$. Since $\operatorname{St}(\tau)=\left\{p \in X \mid \mu_{p_{\mathrm{t}}}(p) \neq 0, i\right.$ $=0, \ldots, q\}$, (1.3) follows from the definition of $W \tau$.

$$
\begin{equation*}
W d c=d W c \quad \text { for } \quad c \in C^{q}(K) \tag{1.4}
\end{equation*}
$$

Here $d c \in C^{q+1}(K)$ is the simplicial coboundary of c and $d W c$ denotes the exterior derivative applied to Wc on the complement of $(n-1)$-dimensional skeleton of K. (See the remark following Definition 1.1.)

Proof. It suffices to prove (1.4) for $c=\tau=\left[p_{0}, \ldots, p_{q}\right]$. Let μ_{0}, \ldots, μ_{q} be the barycentric coordinates corresponding to p_{0}, \ldots, p_{q}. Observe first that

$$
\begin{aligned}
d W \tau & =d\left(q!\sum_{i=0}^{q}(-1)^{i} \mu_{i} \wedge d \mu_{0} \wedge \ldots \vee \ldots \wedge d \mu_{q}\right) \\
& =q!\sum_{i=0}^{q} d \mu_{0} \wedge d \mu_{1} \wedge \ldots \wedge d \mu_{q}=(q+1)!d \mu_{1} \wedge \ldots \wedge d \mu_{q}
\end{aligned}
$$

On the other hand, $d \tau=\Sigma\left[p, p_{0}, \ldots, p_{q}\right]$ where summation is extended over all vertices p of K such that $\left[p, p_{0}, \ldots, p_{k}\right.$] is a simplex of K. In computing $W d \tau$ we shall use the following facts:

$$
\begin{aligned}
\sum_{p} \mu_{p}=1, & \sum_{p} d \mu_{p}=0, \\
\mu_{p}=0 & \text { on } \quad W \backslash \operatorname{St}(p), \\
d f \wedge d f=0 \quad & \text { for any function } f .
\end{aligned}
$$

Using these we have

$$
\begin{aligned}
& \frac{1}{(q+1)!} W d \tau=\frac{1}{(q+1)!} W\left(\sum_{p}{ }^{\prime}\left[p, p_{0}, \ldots, p_{q}\right]\right) \\
& \quad=\sum_{p}{ }^{\prime}\left(\mu_{p} d \mu_{0} \wedge \ldots \wedge d \mu_{q}+\sum_{i=0}^{q}(-1)^{i+1} \mu_{i} d \mu_{p} \wedge d \mu_{0} \wedge \ldots \vee \ldots \wedge d \mu_{q}\right) \\
& \quad=\sum_{p}{ }^{\prime} \mu_{p} d \mu_{0} \wedge \ldots \wedge d \mu_{q}+\sum_{i=0}^{q}(-1)^{i+1} \mu_{i} d\left(\sum_{p}{ }^{\prime} \mu_{p}\right) \wedge d \mu_{0} \ldots \vee \ldots \wedge d \mu_{q} \\
& \quad=\sum_{p}{ }^{\prime} \mu_{p} d \mu_{0} \wedge \ldots \wedge d \mu_{q}+\sum_{i=0}^{q}(-1)^{i} \mu_{j} d\left(\sum_{i=0}^{q} \mu_{i}\right) \wedge d \mu_{0} \wedge \ldots \vee \ldots \wedge d \mu_{q} \\
& \quad=\sum_{p}{ }^{\prime} \mu_{p} d \mu_{0} \wedge \ldots \wedge d \mu_{q}+\sum_{i=0}^{q} \mu_{i} d \mu_{0} \wedge \ldots \wedge d \mu_{q}=d \mu_{0} \wedge \ldots \wedge d \mu_{q},
\end{aligned}
$$

as required. In the above calculations $\Sigma_{p}{ }^{\prime}$ denotes the summation over all vertices p such that $\left[p, p_{0}, \ldots, p_{q}\right]$ is a $(q+1)$-simplex of K.

To state the next property we observe that the barycentric coordinates are C^{∞} on every closed simplex of K. Thus, for every closed N-dimensional simplex σ and every cochain $c \in C^{q}(K), W c \mid \sigma$ has the unique C^{∞} extension to $\bar{\sigma}$ denoted by $W c \mid \bar{\sigma}$. If $c=\tau$ is a simplex, $W c \mid \bar{\sigma}$ is given by (1.2). However, if ρ is a simplex on the boundary of more than one N-simplex, say $\rho \subset \bar{\sigma} \cap \bar{\sigma}^{\prime}$, the values on ρ of the two extensions need not agree. Nevertheless the restrictions (as forms) of $W c \mid \bar{\sigma}$ and $W c \mid \bar{\sigma}^{\prime}$ to ρ are equal. Let $i: \rho \subset \bar{\sigma}, i^{\prime}: \rho \subset \bar{\sigma}^{\prime}$ be the inclusion maps. We have

$$
\begin{equation*}
i^{*}(W c \mid \bar{\sigma})=i^{\prime *}\left(W c \mid \bar{\sigma}^{\prime}\right) \tag{1.5}
\end{equation*}
$$

Proof. We can assume that $c=\tau$ is a simplex. Then $W c$ is given by (1.2). Since the restriction commutes with exterior product it suffices to prove that, if μ is a barycentric coordinate corresponding to a vertex of K, then μ and $d \mu$ satisfy

$$
i^{*} \mu=i^{\prime *} \mu, \quad i^{*} d \mu=i^{\prime *} d \mu
$$

But $i^{*} \mu=\mu \mid \rho=i^{\prime *} \mu$ because μ is continuous and $i^{*} d \mu=d i^{*} \mu=d(\mu \mid \rho)=d i^{*} \mu$ $=i^{*} d \mu$, because exterior derivative commutes with restriction.

Let $j: M_{1} \subset W$ be the inclusion map. Let $c \in C^{q}\left(K, L_{1}\right)$, i.e., c evaluated on
every simplicial chain of L_{1} is zero. Then

$$
\begin{equation*}
j^{*} W c=0 \tag{1.6}
\end{equation*}
$$

Proof. We can assume $c=\tau=\left[p_{0}, p_{1}, \ldots, p_{q}\right]$ with $p_{0} \notin M_{1}$. The barycentric coordinate $\mu_{p_{0}}$ vanishes on M_{1} and (1.6) follows from (1.2).

Let $C_{q}(K)$ be the group of real simplicial q-chains of K and let \langle, denote the standard pairing of $C_{q}(K)$ and $C^{q}(K)$.

$$
\begin{equation*}
\int_{a} W c=\langle c, a\rangle \tag{1.7}
\end{equation*}
$$

for every $c \in C^{q}(K), a \in C_{q}(K)$. The integral above is well defined by (1.5).
Proof. The proof proceeds by induction on q. For $q=0, c$ and a can be written as

$$
c=\sum c_{p} \cdot p, \quad a=\sum a_{p} \cdot p
$$

By definition

$$
\begin{aligned}
W c & =\sum c_{p} \mu_{p} \\
\int_{a} W c & =\sum_{p, p^{\prime}} c_{p^{\prime}} \cdot a_{p} \cdot \mu_{p^{\prime}}(p)=\sum_{p} a_{p} \cdot c_{p}=\langle c, a\rangle
\end{aligned}
$$

We now assume that (1.7) holds for $q-1$. Let $\tau_{1}, \ldots, \tau_{s}$ be the basis of $C^{q}(K)$ consisting of simplexes of K. We have to show that

$$
\int_{\tau_{i}} W \tau_{j}=\delta_{i j}
$$

If $i \neq j$

$$
\int_{\tau_{i}} W \tau_{i}=0
$$

by (1.3) and (1.5). If $i=i$, choose a $(q-1)$-simplex ρ such that ρ is a face of τ_{i}. Then

$$
d \rho=\tau_{i}+\sum_{\tau^{\prime} \neq \tau_{i}} \tau^{\prime}
$$

and

$$
\int_{\tau_{i}} W \tau_{i}=\int_{\tau_{i}} W d \rho=\int_{\tau_{i}} d W \rho=\int_{\partial \tau_{i}} W \rho=\int_{\rho} W \rho+\sum_{\tau^{\prime \prime} \neq \rho} \int_{\tau^{\prime \prime}} W \rho=1
$$

by induction hypothesis, (1.4), and Stokes' theorem.

The following Lemma will be very useful.
Lemma 1.8. Let f be a $C^{\infty}(q+1)$-form on X such that $f_{\text {norm }}=0$ on M_{2}. Let $c \in C^{q}\left(K, L_{1}\right)$. Then

$$
(d W c, f)=(W c, \delta f)
$$

Proof.

$$
(d W c, f)=\sum_{\sigma} \int_{\bar{\sigma}} d W c \wedge * f
$$

where the summation is over all N -dimensional simplexes of K . Moreover

$$
\int_{\bar{\sigma}} d W c \wedge * f=\int_{\bar{\sigma}} W c \wedge * \delta f+\int_{\partial \bar{\sigma}} W c \wedge * f .
$$

Therefore

$$
(d W c, f)-(W c, \delta f)=\sum_{\sigma} \int_{\partial \bar{\sigma}} W c \wedge * f
$$

The last sum can be written as the sum of the integrals over ($N-1$)-dimensional simplexes. The integrals over simplexes of L_{1} vanish by (1.6). Similarly, the integrals over simplexes of L_{2} vanish because $(* f)_{\tan }=* f_{\text {norm }}=0$ on M_{2}. Finally, for every simplex τ in the interior of X, we get two integrals which cancel by (1.5).
2. Standard Subdivisions of a Complex. In this section we describe a method of subdividing a simplicial complex. This method was introduced by Whitney in [8]. It is very well suited to our purposes. The resulting subdivision of a given complex is called the standard subdivision.

We first discuss the standard subdivision of a simplex. Thus let σ $=\left[p_{0}, p_{1}, \ldots, p_{m}\right]$ be a simplex in $\mathbf{R}^{k}, k \geqslant m$. The vertices of $S \sigma$, the standard subdivision of σ, are the points

$$
\begin{equation*}
p_{i j}=\frac{1}{2}\left(-p_{i}+p_{j}\right) \quad i \leqslant j . \tag{2.1}
\end{equation*}
$$

We define partial ordering of the vertices of So by setting

$$
\begin{equation*}
p_{i j} \leqslant p_{k l} \quad \text { if } i \geqslant k \text { and } j \leqslant l \quad(\text { sic }) . \tag{2.2}
\end{equation*}
$$

The simplexes of So are the increasing sequences of vertices with respect to the
above ordering. There are $2^{m} m$-dimensional simplexes in $S \sigma$, which can be seen as follows. The last vertex is $p_{0, r}$. It is preceded by $p_{1, r}$ and $p_{0, r-1}$. In general, $p_{i j}$ is preceded by $p_{i+1, j}$ and $p_{i, i-1}$. The interiors of these simplexes are disjoint and So is a simplicial complex. The diagram below shows standard subdivision of a tetrahedron. The simplexes of the subdivision correspond to paths going upwards in the graph.

Let $\tau_{i}=\left[p_{0}, p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{m}\right]$ be an $(m-1)$-dimensional face of σ. The simplexes of $S \sigma$ which are contained in τ_{i} form a subdivision of τ_{i}. This subdivision is precisely $S \tau_{i}$, the standard subdivision of τ_{i}.

The last remark allows us to define the standard subdivision $S L$ of any simplicial complex L. First we fix some ordering of the vertices of L. This gives an ordering of vertices of any simplex σ of L. We subdivide each simplex σ of L separately and get a subdivision $S L$ of L. Each simplex of $S L$ has ordered vertices and we can subdivide again. Inductively, we define

$$
\begin{equation*}
S_{0} L=L, \quad S_{n+1} L=S\left(S_{n} L\right) \tag{2.3}
\end{equation*}
$$

Definition 2.4. Let $\sigma=\left[p_{0}, p_{1}, \ldots, p_{m}\right], \sigma^{\prime}=\left[p_{0}^{\prime}, \ldots, p_{m}^{\prime}\right]$ be two simplexes in \mathbf{R}^{m}. We say that σ is strongly similar to σ^{\prime} if there exists $\lambda>0$ such that

$$
\lambda\left(\sigma-p_{0}\right)=\sigma^{\prime}-p_{0}^{\prime}
$$

i.e., if σ^{\prime} can be obtained from σ by translation, multiplication by positive constant, and translation.

Obviously, strong similarity is an equivalence relation. The following Lemma explains why standard subdivisions are better than barycentric subdivisions.

Lemma 2.5. Let \mathfrak{A} be the set of all m-dimensional simplexes occurring in all complexes $S_{n} \sigma, n=0,1,2, \ldots$, where σ is an m-dimensional simplex in \mathbf{R}^{m}. Then, there are finitely many classes of strongly similar simplexes in \mathfrak{A}.

Proof. For $\tau=\left[q_{0}, \ldots, q_{m}\right] \subset \mathbf{R}^{m}$ we define the sequence of edge vectors of τ by setting

$$
\begin{equation*}
w_{i}=q_{i+1}-q_{i}, \quad 0 \leqslant i<m . \tag{2.6}
\end{equation*}
$$

If $w_{0}^{\prime}, \ldots, w_{m}^{\prime}$ is the sequence of edge vectors of another simplex σ^{\prime}, then the two simplexes are strongly similar if and only if there exists $\lambda>0$ such that $w_{i}=\lambda w_{i}^{\prime}$ for $i=0,1, \ldots, m-1$.

Suppose $\sigma=\left[p_{0}, \ldots, p_{m}\right]$. Its edge vectors are v_{i}. Let τ be any m-simplex of $S \sigma$. The edge vectors of τ belong to the set $\left\{ \pm(1 / 2) v_{1}, \pm(1 / 2) v_{2}, \ldots, \pm(1 / 2)\right.$ $\left.v_{m-1}\right\}$ by (2.1), (2.2), and (2.6). Inductively, we see that, if τ is an m-simplex of $S_{n} \sigma$, the edge vectors of τ are contained in $\left\{ \pm\left(1 / 2^{n}\right) v_{1}, \pm\left(1 / 2^{n}\right) v_{2}, \ldots, \pm\left(1 / 2^{n}\right)\right.$ $\left.v_{m-1}\right\}$. This finishes the proof.

Corollary 2.7 (of the proof): Fix an inner product in \mathbf{R}^{m}. Let

$$
\begin{equation*}
\epsilon_{n}(\sigma)=\sup \operatorname{diam} \tau, \tag{2.8}
\end{equation*}
$$

where sup is taken over all simplexes τ of $\mathrm{S}_{n} \sigma$. Then

$$
\lim _{n \rightarrow \infty} \epsilon_{n}(\sigma)=0
$$

Proof. $\quad \epsilon_{n}(\sigma) \leqslant\left(1 / 2^{n}\right) \sum_{i=0}^{m-1}\left\|v_{i}\right\|$.
3. Approximation Theorem. We return to the setting of Section 1. Observe that we can define the Whitney map $W_{n}: C^{q}\left(S_{n} K\right) \rightarrow L^{2} \Lambda^{q}$ for the complex $S_{n} K$. The only properties of K required in the construction of W were that it be a complex of C^{∞} triangulation of X and that the vertices of every simplex be ordered. $S_{n} K$ has these properties for all $n>0$. Observe further that the results of section 1 hold for every W_{n}.

Let $R_{n}: \Lambda^{q} \rightarrow C^{q}\left(S_{n} K\right)$ be the de Rham map

$$
\begin{equation*}
\left(R_{n} f, a\right)=\int_{a} f, \quad f \in \Lambda^{q}, \quad a \in C_{q}(K) \tag{3.1}
\end{equation*}
$$

We want to show that, for any $f \in \Lambda^{q}, W_{n} R_{n} f$ is a good approximation to f provided n is large.

Definition 3.2. We say that an m-dimensional simplex σ in \mathbf{R}^{m} is well placed if it is strongly similar to the simplex $\left[0, e_{1}, \ldots, e_{m}\right]$, where e_{1}, \ldots, e_{m} is the standard basis of \mathbf{R}^{m}.

Let (U, φ) be a coordinate chart of X, i.e., $U \subset X$ is open and $\varphi: U \rightarrow \mathbf{R}^{N}$ is a diffeomorphism onto its image.

Definition 3.3. We say that an N-simplex σ of a smooth triangulation of X is well placed in a coordinate chart (U, φ) if
(a) $\bar{\sigma} \subset U$
(b) $\varphi \mid \bar{\sigma}: \bar{\sigma} \rightarrow \mathbf{R}^{N}$ is linear
(c) $\varphi(\sigma)$ is well placed in \mathbf{R}^{N}.

The following lemma is a consequence of Lemma 2.5.
Lemma 3.4. There exists a finite set \mathfrak{U} of coordinate charts of X with the following property. For every integer $n \geqslant 0$ and every N-dimensional simplex τ of $S_{n} K$ there exist a coordinate chart $(U, \varphi) \in \mathbb{U}$ and an N-simplex σ of K such that
(a) τ is well placed in (U, φ)
(b) $\tau \subset \bar{\sigma} \subset U$.

Proof. By definition of C^{∞} triangulation there exists a homeomorphism $\chi: K \rightarrow X$ such that for every N-simplex of K there exists a coordinate chart $\left(U_{\sigma}, \varphi_{\sigma}\right)$ such that $\chi(\bar{\sigma}) \subset U_{\sigma}$ and $\varphi_{\sigma}{ }^{\circ} \chi$ maps $\bar{\sigma}$ into \mathbf{R}^{N} linearly. We identify K with X via χ. Since K is a finite complex, it suffices to construct a finite set \mathfrak{U}_{σ} of coordinate charts $\left(U_{\sigma}, \varphi\right)$ such that, for every N-simplex τ of $S_{n} \sigma, \tau$ will be well placed in some $\left(U_{\sigma}, \varphi\right) \in \mathfrak{U}_{\sigma}$. We then would set $\mathfrak{U}=\cup_{\sigma} \mathfrak{U}_{\sigma}$. The existence of \mathfrak{U}_{σ} is just a restatement of Lemma 2.5.

Definition 3.5. Let

$$
\eta_{n}=\sup _{\sigma \in \mathrm{S}_{n} K} \operatorname{diam} \sigma
$$

where diam σ is measured in the metric induced by the euclidean distance in a coordinate neighborhood in which σ is well placed. We call η_{n} the mesh of $S_{n} K$.

Lemma 3.6. $\lim _{n \rightarrow \infty} \eta_{n}=0$.
Proof. Since both K and \mathfrak{U} are finite, this is a consequence of 2.7.
Let $\Lambda^{q} T^{*}(X)_{p}$ be the q th exterior power of a cotangent space to X at p. The Riemannian structure induces inner product (,$)_{p}$ and norm $\left\|\|_{p}\right.$ on $\Lambda^{q} T^{*}(X)_{p}$.

We are now ready to state the approximation theorem.
Theorem 3.7. Let f be a $C^{\infty} q$-form on X. There exists a constant C_{f} independent of n such that

$$
\left\|f(p)-W_{n} R_{n} f(p)\right\|_{p} \leqslant C_{f} \cdot \eta_{n}
$$

almost everywhere on X.
Proof. We fix n. The $(N-1)$-dimensional skeleton of $S_{n} K$ has measure zero and, therefore, we can assume that p lies in the interior of a unique N-simplex σ of $S_{n} K$. Let (U, φ) be a coordinate chart in which σ is well placed. In U

$$
\begin{array}{r}
f=\sum a_{i_{1} \cdots i_{q}} d x_{i_{1}} \wedge \cdots \wedge d s_{i_{q}} \\
W_{n} R_{n} f=\sum a_{i_{1} \cdots i_{q}}^{\prime} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{q}} . \tag{3.9}
\end{array}
$$

In view of finiteness of U, it suffices to prove that there exist a constant C_{f}^{\prime} independent of n and p such that

$$
\begin{equation*}
\left|a_{i_{1} \ldots i_{q}}(p)-a_{i_{1} \ldots i_{q}}^{\prime}(p)\right| \leqslant C_{f}^{\prime} \cdot \eta_{n} \tag{3.10}
\end{equation*}
$$

for all $i_{1} \ldots i_{q}$. Furthermore, we can assume that $f=a_{i_{1} \ldots i_{q}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{q}}$ for some $i_{1} \ldots i_{q}$. Renumbering, if necessary, we can assume that

$$
\begin{equation*}
f=a d x_{1} \wedge \ldots \wedge d x_{q} \tag{3.11}
\end{equation*}
$$

in U. We identify U with a subset of \mathbf{R}^{N} by means of φ. The simplex σ is well placed in \mathbf{R}^{N} and, translating to the origin if necessary, we can assume that

$$
\begin{equation*}
\sigma=\left[0, h e_{0}, \ldots, h e_{N}\right] \quad \text { for some } \quad h>0 . \tag{3.12}
\end{equation*}
$$

Now we have to compute $W_{n} R_{n} f$ explicitly in terms of local coordinates. By (1.3) the values of $W_{n} R_{n} f$ on σ depend only on the values of $R_{n} f$ on the faces of σ. The only q-dimensional faces τ of σ such that

$$
\begin{equation*}
\left\langle R_{n} f, \tau\right\rangle=\int_{\tau} f \neq 0 \tag{3.13}
\end{equation*}
$$

are

$$
\begin{align*}
\tau_{0} & =\left[0, h e_{1}, \ldots, h e_{q}\right] \\
\tau_{s} & =\left[h e_{s}, h e_{1}, \ldots, h e_{q}\right] \quad s=q+1, \ldots, N \tag{3.14}
\end{align*}
$$

Set

$$
\begin{align*}
& \alpha_{0}=\int_{\tau_{0}} f=\int_{\tau_{0}} a\left(x_{1}, \ldots, x_{q}, 0, \ldots, 0\right) d x_{1} d x_{2} \ldots d x_{q} \\
& \alpha_{s}=\int_{\tau_{s}} f=\int_{\tau_{0}} a\left(x_{1}, \ldots, x_{q}, 0, \ldots, 0, h \cdot\left(1-\frac{1}{h} \sum_{i=1}^{q} x_{i}\right), 0, \ldots, 0\right) d x_{1} d x_{2} \ldots d x_{q} \tag{3.15}
\end{align*}
$$

Thus

$$
\begin{equation*}
W_{n} R_{n} f=\alpha_{0} W_{n} \tau_{0}+\sum_{s=q+1}^{N} \alpha_{s} W_{n} \tau_{s} \quad \text { on } \quad \sigma . \tag{3.16}
\end{equation*}
$$

The barycentric coordinates corresponding to the vertices $0, h e_{1}, \ldots, h e_{n}$ of σ are

$$
\begin{align*}
& \mu_{0}=1-\frac{1}{h} \sum_{i=1}^{N} x_{i} \tag{3.17}\\
& \mu_{i}=\frac{x_{i}}{h} \quad i=1,2, \ldots, N
\end{align*}
$$

respectively. We now introduce some notation. Let

$$
\begin{align*}
d x^{q}= & d x_{1} \wedge \ldots \wedge d x_{q} \\
d x^{i, s}= & d x_{1} \wedge \ldots \wedge d x_{i-1} \wedge d x_{i+1} \wedge \ldots \wedge d x_{q} \wedge d x_{s} \\
& \quad \leqslant i \leqslant q<s \leqslant N \tag{3.18}\\
A= & \frac{q!}{h^{q}}=\left(\int_{\tau_{0}} d x_{1} d x_{2} \ldots d x_{q}\right)^{-1} .
\end{align*}
$$

By (1.2)

$$
\begin{align*}
W_{n} \tau_{0}= & q!\cdot\left(1-\frac{1}{h} \sum_{i=1}^{N} x_{i}\right) \cdot \frac{1}{h^{q}} d x_{1} \wedge \ldots \wedge d x_{q} \\
& +q!\sum_{i=1}^{q}(-1)^{i} \frac{x_{i}}{h}\left(-\frac{1}{h} \sum_{i=1}^{N} d x_{i}\right) \frac{1}{h^{q-1}} d x_{1} \wedge \ldots \vee^{i} \ldots \wedge d x_{q} \\
= & A \cdot d x^{q}-A \cdot \frac{1}{h} \cdot \sum_{i=1}^{N} x_{i} d x^{q} \\
& +A \cdot \sum_{i=1}^{q}(-1)^{i+1} \frac{x_{i}}{h} \cdot\left((-1)^{i-1} d x^{q}+\sum_{s=q+1}^{N}(-1)^{q-1} d x^{i, s}\right) \\
= & A \cdot d x^{q}-A \cdot \sum_{s=q+1}^{N} \frac{x_{s}}{h} d x^{q}+A \cdot \sum_{i=1}^{q} \sum_{s=q+1}^{N}(-1)^{i+q} \frac{x_{i}}{h} d x^{i, s} \tag{3.19}
\end{align*}
$$

Similarly

$$
\begin{align*}
W_{n} \tau_{s} & =q!\cdot\left[\frac{x_{s}}{h} \frac{1}{h^{q}} d x^{q}+\sum_{i=1}^{q}(-1)^{q} \frac{x_{i}}{h} \frac{1}{h^{q}} d x_{s} \wedge d x_{1} \wedge \ldots \vee \ldots \wedge d x_{q}\right] \\
& =A \cdot \frac{x_{s}}{h} d x^{q}+A \cdot \sum_{i=1}^{q}(-1)^{q+s-1} \frac{x_{i}}{h} d x^{i, s} \quad q<s \leqslant N \tag{3.20}
\end{align*}
$$

Substituting (3.19) and (3.20) into (3.16) we get

$$
\begin{align*}
W_{n} R_{n} f= & \alpha_{0} A d x^{q}+\sum_{s=q+1}^{N} A \cdot\left(\alpha_{s}-\alpha_{0}\right) \frac{x_{s}}{h} d x^{q} \\
& +\sum_{i=1}^{q} \sum_{s=q+1}^{N}(-1)^{i+s} A \cdot\left(\alpha_{0}-\alpha_{s}\right) \cdot \frac{x_{i}}{h} d x^{i, s} \tag{3.21}
\end{align*}
$$

We now have to compare (3.21) with (3.11). We show that $\alpha_{0} \cdot A$ is a good approximation of $a(p)$ and that the numbers $A \cdot\left(\alpha_{0}-\alpha_{s}\right) \cdot\left(x_{i} / h\right)$ are small. Lemma 3.4(a) implies that we can find bounds for derivatives of the function $a\left(x_{1}, \ldots, x_{N}\right)$ in the neighborhood of p and these bounds are independent of n.

Let $p=\left(\dot{x}_{1}, \ldots, \dot{x}_{N}\right)$. By the mean value theorem and (3.18)

$$
\begin{align*}
A \cdot \alpha_{0} & =\frac{\int_{\tau_{0}} a\left(x_{1}, \ldots, x_{q}, 0, \ldots, 0\right) d x_{1} \ldots d x_{q}}{\int_{\tau_{0}} d x_{1} \ldots d x_{q}} \\
& =a\left(x_{1}^{\prime}, \ldots, x_{q}^{\prime}, 0, \ldots, 0\right) \tag{3.22}
\end{align*}
$$

for some point $\left(x_{1}^{\prime}, \ldots, x_{q}^{\prime}, 0, \ldots, 0\right) \in \overline{\tau_{0}}$. Therefore

$$
\begin{equation*}
\left|a\left(\stackrel{\circ}{x}_{1}, \ldots, \dot{x}_{N}\right)-A \cdot \alpha_{0}\right|=\left|a\left(\dot{x}_{1}, \ldots, \dot{x}_{N}\right)-a\left(x_{1}^{\prime}, \ldots, x_{q}^{\prime}, 0, \ldots, 0\right)\right| \leqslant c_{1} \cdot \eta_{n} \tag{3.23}
\end{equation*}
$$

where the constant c_{1} is independent of n.
Similarly

$$
\begin{align*}
& \left|\frac{A \cdot\left(\alpha_{0}-\alpha_{s}\right)}{h}\right| \\
& \quad=\left|\frac{\int_{\tau_{0}} a\left(x_{1}, \ldots, x_{q}, 0, \ldots, 0\right)-a\left(x_{1}, \ldots, x_{q}, 0, \ldots, h \cdot\left(1-\frac{1}{h} \sum_{i}^{q} x_{i}\right), \ldots, 0\right)}{\int_{\tau_{0}} d x_{1} \ldots d x_{q}}\right| \\
& \quad=\left|\frac{a\left(x_{1}^{\prime}, \ldots, x_{q}^{\prime}, 0, \ldots, 0\right)-a\left(x_{1}^{\prime}, \ldots, x_{q}^{\prime}, 0, \ldots, 0, h \cdot\left(1-\frac{1}{h} \sum_{1}^{q} x_{i}\right), 0, \ldots, 0\right)}{h}\right| \\
& \quad \leqslant c_{2} . \tag{3.24}
\end{align*}
$$

On $\bar{\sigma} \leqslant x_{i} \leqslant h \leqslant \eta_{n}$ and

$$
\begin{equation*}
\left|\frac{A \cdot\left(\alpha_{0}-\alpha_{s}\right)}{h} \cdot x_{1}\right| \leqslant c_{2} \cdot \eta_{n} . \tag{3.25}
\end{equation*}
$$

This implies (3.10) which proves the theorem.
We recall that $L^{2} \Lambda^{q}$ is a Hilbert space whose norm \| \| is given by

$$
\begin{equation*}
\|f\|=\left(\int_{X} f \wedge * f\right)^{1 / 2}=\left(\int_{X}\|f(p)\|_{p}^{2} d V\right)^{1 / 2}, \quad f \in L^{2} \Lambda^{q} \tag{3.26}
\end{equation*}
$$

where $d V$ is the volume element of X.

Corollary 3.27. Let $f \in \Lambda^{q}$. There exists a constant c_{f} independent of n such that.

$$
\left\|f-W_{n} R_{n} f\right\| \leqslant c_{f} \cdot \eta_{n}
$$

Proof. By (3.7) and (3.26) we have

$$
\begin{aligned}
\left\|f-W_{n} R_{n} f\right\|^{2} & =\int_{X}\left\|f(p)-W_{n} R_{n} f(p)\right\|_{p}^{2} d V \\
& \leqslant\left(\int_{X} d V\right) \cdot C_{f}^{2} \cdot \eta_{n}^{2}
\end{aligned}
$$

Setting $c_{f}=c_{f} \cdot\left(\int_{X} d V\right)^{1 / 2}$ and taking square root we get

$$
\left\|f-W_{n} R_{n} f\right\| \leqslant c_{f} \cdot \eta_{n}
$$

Remark. (1) The proof shows that approximation theorem holds if we assume that f, X, and the triangulation are of class C^{2}, and the Riemannian metric is merely continuous.
(2) The constant C_{f} is a product of a universal constant (depending only on the manifold and initial triangulation K) and the maximum of absolute values of first derivatives of the components of f in coordinate systems of \mathfrak{U}. This is also a consequence of the proof.
(3) Only Corollary 3.27 will be used in what follows.
4. Inner Product in Cochain Spaces. Combinatorial and Continuous Hodge Theories. In this section we define an inner product in cochain spaces $C^{q}\left(S_{n} K, S_{n} L_{1}\right)$. This gives rise to a combinatorial Hodge theory in every complex $C^{*}\left(S_{n} K, S_{n} L_{1}\right)$. This idea goes back to Eckmann [3]. Next we show that the Hodge theory of forms in $\Lambda_{1}=\Sigma \Lambda_{1}^{q}$ is, in a sense, the limit of combinatorial Hodge theory.

Definition 4.1. Let c, c^{\prime} be elements of $C^{q}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right)$. We define their inner product (c, c^{\prime}) by

$$
\left(c, c^{\prime}\right)=\int_{S} W c \wedge * W c^{\prime}=\left(W c, W c^{\prime}\right)
$$

We do not indicate dependence on n and q, and we use the same symbol to denote the inner products in $C^{*}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right)$ and Λ because it will not cause any confusion.

Note that (4.1) indeed defines an inner product. Only nondegeneracy is not obvious but it is a consequence of (1.7).

Consider the complex $C^{*}\left(S_{n} K, S_{n} L_{1}\right)$ for a fixed n.

$$
\begin{equation*}
0 \longrightarrow C^{0}\left(S_{n} K, S_{n} L_{1}\right) \xrightarrow{d_{n}} \cdots \xrightarrow{d_{n}} C^{N}\left(S_{n} K, S_{n} L_{1}\right) \longrightarrow 0, \tag{4.2}
\end{equation*}
$$

where d_{n} denotes the simplicial coboundary. Let δ_{n} be the adjoint of d_{n},

$$
\begin{equation*}
\left(d_{n} c, c^{\prime}\right)=\left(c, \delta_{n} c^{\prime}\right), \quad c \in C^{q}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right) \quad c^{\prime} \in C^{q+1}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right) \tag{4.3}
\end{equation*}
$$

Now set

$$
\begin{equation*}
\Delta_{n}=d_{n} \delta_{n}+\delta_{n} d_{n} \tag{4.4}
\end{equation*}
$$

on $C^{q}\left(S_{n} K, S_{n} L_{1}\right), q=0,1, \ldots, N$. Let H_{n}^{q}, the space of harmonic cochains in $C^{q}\left(S_{n} K, S_{n} L_{1}\right)$, be the kernel of $\Delta_{n} \mid C^{q}\left(S_{n} K, S_{n} L_{1}\right)$.

The following statements are well known and very easy to verify.

$$
\begin{equation*}
H_{n}^{q}=\left\{c \in C^{q}\left(S_{n} K, S_{n} L_{1}\right) \mid d_{n} c=0, \delta_{n} c=0\right\} \tag{4.5}
\end{equation*}
$$

For $0 \leqslant q \leqslant N$

$$
\begin{equation*}
C^{q}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right)=d_{n}\left(C^{q-1}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right)\right) \oplus H_{n}^{q} \oplus \delta_{n}\left(C^{q+1}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right)\right) \tag{4.6}
\end{equation*}
$$

and this direct sum is orthogonal.

$$
\begin{equation*}
H^{q}\left(X, M_{1} ; \mathbf{R}\right) \cong H^{q}\left(C^{*}\left(S_{n} K, S_{n} L_{1}\right)\right) \cong H_{n}^{q} \quad \text { for } \quad 0 \leqslant q \leqslant N \tag{4.7}
\end{equation*}
$$

The above setup is formally analogous to the Hodge theory of forms on X which we now describe (for precise statements and proofs see [7], particularly Corollary 5.7, p. 178).

First, we recall that Λ_{1}^{q} is the space of $C^{\infty} q$-forms f on X which satisfy boundary conditions $f_{\tan }=0$ on M_{1} and $f_{\text {norm }}=0$ on M_{2}.

If $f \in \Lambda_{1}^{q}$ then f has the following Hodge decomposition

$$
\begin{equation*}
f=d g+h+\delta k \tag{4.8}
\end{equation*}
$$

where $g \in \Lambda_{1}^{q-1}, k \in \Lambda_{1}^{q+1}, d g \in \Lambda_{1}^{q}, \delta k \in \Lambda_{1}^{q}, h \in \Lambda_{1}^{q}$ and h is harmonic, i.e., $\delta h=d h=0$. The summands in (4.8) are mutually orthogonal and the space H^{q} of harmonic q-forms is mapped one-to-one onto a linear space of cocycles representing $H^{q}\left(C^{*}\left(S_{n} K, S_{n} L_{1}\right)\right.$ by the de Rham map R_{n}.

Theorem 4.9. Let $f \in \Lambda_{1}^{q}$, so that $R_{n} f$ is an element of $C^{q}\left(S_{n} K, S_{n} L_{1}\right)$. Let

$$
R_{n} f=d_{n} g_{n}+h_{n}+\delta_{n} k_{n}
$$

be the Hodge decomposition of $R_{n} f$. If (4.8) is the Hodge decomposition of f, then

$$
\lim _{n \rightarrow \infty} W_{n} h_{n}=h, \quad \lim _{n \rightarrow \infty} W_{n} d_{n} g_{n}=d g, \quad \lim _{n \rightarrow \infty} W_{n} \delta_{n} k_{n}=\delta k,
$$

where the limits are in the norm of $L^{2} \Lambda^{q}$.
In particular, if $h_{\alpha_{n}} \in H_{n}^{q}$ represents a fixed class $\alpha \in H^{q}\left(X, M_{1} ; \mathbf{R}\right)$ and $h_{\alpha} \in H^{q}$ also represents α, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} W_{n} h_{\alpha_{n}}=h_{\alpha} \tag{4.10}
\end{equation*}
$$

Proof. Observe first that $R_{n} f$, is indeed, in $C^{q}\left(S_{n} K, S_{n} L_{1}\right)$ because $f_{\text {tan }}=0$ on M_{1}. We first prove (4.9) under the assumption that $f=h$ is harmonic. The cochain $R_{n} h$ is a cocycle by Stokes' theorem. It represents the same cohomology class α as h. Therefore

$$
\begin{equation*}
R_{n} h=h_{\alpha_{n}}+d_{n} g_{n} \tag{4.11}
\end{equation*}
$$

with $h_{\alpha_{n}} \in H_{q}^{n}$ representing α. By (1.8) and (1.4)

$$
\begin{equation*}
\left(W_{n} d_{n} g_{n}, h\right)=\left(d W_{n} g_{n}, h\right)=\left(W_{n} g_{n}, \delta h\right)=0 . \tag{4.12}
\end{equation*}
$$

On the other hand

$$
\left\|h-W_{n} R_{n} h\right\| \leqslant c_{h} \cdot \eta_{n}
$$

by (3.27). Therefore

$$
\begin{align*}
c_{h}^{2} \cdot \eta_{n}^{2} & \geqslant\left\|h-W_{n} R_{n} h\right\|^{2}=\left\|h-W_{n} h_{\alpha_{n}}-W_{n} d_{n} g_{n}\right\|^{2} \\
& =\left\|h-W_{n} h_{\alpha_{n}}\right\|^{2}+\left\|W_{n} d_{n} g_{n}\right\|^{2} \tag{4.13}
\end{align*}
$$

because $\left(d_{n} g_{n}, h_{\alpha_{n}}\right)=\left(W_{n} d_{n} g_{n}, W_{n} h_{\alpha_{n}}\right)=0$ by (4.1) and (4.6). This proves the theorem for a harmonic form f and, also, proves (4.10).

Now we consider the case of an arbitrary $f \in \Lambda$. Let P_{n} be the orthogonal projection of $C^{q}\left(S_{n} K, S_{n} L_{1}\right)$ onto the subspace of cocycles. We first estimate the norm of $P_{n} R_{n} \delta k$. Let $c \in C^{q}\left(S_{n} K, S_{n} L_{1}\right)$ be a cocycle. Then

$$
\begin{align*}
\left|\left(P_{n} R_{n} \delta k, c\right)\right| & =\left|\left(R_{n} \delta k, c\right)\right|=\left|\left(W_{n} R_{n} \delta k, W_{n} c\right)\right| \\
& =\left|\left(W_{n} R_{n} \delta k-\delta k, W_{n} c\right)\right| \tag{4.14}
\end{align*}
$$

because $\left(\delta k, W_{n} c\right)=0$ by (1.4) and (1.8). By the Corollary 3.27

$$
\begin{align*}
\left|\left(P_{n} R_{n} \delta k, c\right)\right| & \leqslant\left\|W_{n} R_{n} \delta k-\delta k\right\| \cdot\|c\| \\
& \leqslant c_{\delta k} \cdot \eta_{n} \cdot\|c\| . \tag{4.15}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\left\|P_{n} R_{n} \delta k\right\| \leqslant c_{\delta k} \cdot \eta_{n} \tag{4.16}
\end{equation*}
$$

Now we can complete the proof. We have

$$
\begin{equation*}
W_{n} R_{n} f=W_{n} R_{n} d g+W_{n} R_{n} h+W_{n} R_{n} \delta k \tag{4.17}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\|W_{n} R_{n} d g-d g\right\| \leqslant c_{d g} \cdot \eta_{n} \\
\left\|W_{n} R_{n} h-h\right\| \leqslant c_{h} \cdot \eta_{n} \tag{4.8}\\
\left\|W_{n} R_{n} \delta k-\delta k\right\| \leqslant c_{\delta k} \cdot \eta_{n}
\end{gather*}
$$

By the first part of the proof (case of harmonic form) we know that

$$
\begin{equation*}
R_{n} h=h_{n}^{\prime}+\epsilon_{1} \tag{4.19}
\end{equation*}
$$

where $h_{n}^{\prime} \in H_{n}^{q}$ and $\left\|\epsilon_{1}\right\| \leqslant c_{h} \cdot \eta_{n}$. Moreover

$$
\begin{equation*}
R_{n} \delta k=P_{n} R_{n} \delta k+R_{n} \delta k-P_{n} R_{n} \delta k \tag{4.20}
\end{equation*}
$$

where $R_{n} \delta k-P_{n} R_{n} \delta k=\delta_{n} k_{n}^{\prime}$ by (4.6) and $\left\|P_{n} R_{n} \delta k\right\| \leqslant c_{\delta k} \cdot \eta_{n}$. We write ϵ_{2} $=P_{n} R_{n} \delta k$. From (4.8), (4.19), (4.20) we get

$$
\begin{equation*}
R_{n} f=R_{n} d g+h_{n}^{\prime}+\delta_{n} k_{n}^{\prime}+\epsilon_{1}+\epsilon_{2} \tag{4.21}
\end{equation*}
$$

Subtracting (4.21) from the Hodge decomposition of $R_{n} f$ we see that

$$
\begin{equation*}
\left(\epsilon_{1}+\epsilon_{2}\right)=\left(h_{n}-h_{n}^{\prime}\right)+\left(\delta_{n} k_{n}-\delta_{n} k_{n}^{\prime}\right)+\left(d_{n} g_{n}-R_{n} d g\right) \tag{4.22}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\left\|h_{n}-h_{n}^{\prime}\right\| & \leqslant c_{1} \eta_{n} \\
\left\|\delta_{n} k_{n}-\delta_{n} k_{n}^{\prime}\right\| & \leqslant c_{2} \eta_{n} \tag{4.23}\\
\left\|d_{n} g_{n}-R_{n} d g\right\| & \leqslant c_{3} \eta_{n}
\end{align*}
$$

For some constants $c_{1}, c_{2}, c_{3}>0$.

Finally

$$
\begin{align*}
\left\|h-W_{n} h_{n}\right\| & \leqslant\left\|h-W_{n} R_{n} h\right\|+\left\|W_{n} R_{n} h-W_{n} h_{n}\right\| \\
& =\left\|h-W_{n} R_{n} h\right\|+\left\|R_{n} h-h_{n}\right\| \\
& \leqslant\left\|h-W_{n} R_{n} h\right\|+\left\|h_{n}^{\prime}-h_{n}\right\|+\left\|\epsilon_{1}\right\| \leqslant c^{\prime} \cdot \eta_{n} \tag{4.24}
\end{align*}
$$

by (4.19), (4.23), and (3.27).
Similarly

$$
\begin{align*}
\left\|d g-W_{n} d_{n} g_{n}\right\| & \leqslant\left\|d g-W_{n} R_{n} d g\right\|+\left\|W_{n} R_{n} d g-W_{n} d_{n} g_{n}\right\| \\
& =\left\|d g-W_{n} R_{n} d g\right\|+\left\|R_{n} d g-d_{n} g_{n}\right\| \leqslant c^{\prime \prime} \cdot \eta_{n} \tag{4.25}
\end{align*}
$$

by (4.23) and (3.27).

$$
\begin{align*}
\left\|\delta k-W_{n} \delta_{n} k_{n}\right\| & \leqslant\left\|\delta k-W_{n} R_{n} \delta k\right\|+\left\|W_{n} R_{n} \delta k-W_{n} \delta_{n} k_{n}\right\| \\
& \leqslant\left\|\delta k-W_{n} R_{n} \delta k\right\|+\left\|R_{n} \delta k-\delta_{n} k_{n}\right\| \\
& \leqslant\left\|\delta k-W_{n} R_{n} \delta k\right\|+\left\|\delta_{n} k_{n}^{\prime}-\delta_{n} k_{n}\right\|+\left\|\epsilon_{2}\right\| \\
& \leqslant c^{\prime \prime \prime} \cdot \eta_{n} \tag{4.26}
\end{align*}
$$

by (4.20), (4.23), and (3.27).
The inequalities (4.24), (4.25), (4.26) prove the theorem.
Remark. Our methods differ from the classical finite-difference technique of solving partial differential equations in two aspects. In the first place, we use the inner product in cochain spaces to obtain finite-dimensional approximation to the operators δ and Δ. In classical numerical analysis one substitutes difference quotients for the derivatives to obtain such approximations. This brings us to the second difference. Because of the way the approximations are obtained in numerical analysis, it is usually easy to estimate the difference between an operator and its approximation. The approximation is called consistent if this difference is $0\left(h^{n}\right)$ as $h \rightarrow 0$, where n is the order of the operator and h is the mesh. Then, one considers only consistent approximations. In contrast to this we have no consistency result. This is one of the reasons why our technique applies only to homogeneous Laplace equations. More precisely, we do not know if, for an arbitrary smooth form f, the solutions of $\Delta_{n} c_{n}=R_{n} f$ in $C^{q}\left(S_{n} K\right)$ are such that $W_{n} c_{n} \rightarrow u \in \Lambda^{q}$, where $\Delta u=f$.
5. Eigenvalues of the Laplacian Acting on Functions. In this section we show that the eigenvalues of the Laplacian Δ acting on smooth functions satisfying certain boundary conditions are limits of the eigenvalues of combinatorial Laplacians $\Delta_{n}: C^{0}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right) \rightarrow C^{0}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right)$.

It is known (see [1]) that there exists a complete orthonormal system $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ in the space $L^{2}(X)=L^{2} \Lambda^{0}$ such that, for all i,

$$
\begin{array}{ll}
\varphi_{i} \in C^{\infty}(X), & \Delta \varphi_{i}=\lambda_{i} \varphi_{i} \\
\varphi_{i} \mid M_{1}=0, & \left(d \varphi_{i}\right)_{\text {norm }}=0 \quad \text { on } \quad M_{2} \tag{5.1}
\end{array}
$$

Each eigenvalue has finite multiplicity and they can be numbered so that $0 \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \cdots \leqslant \lambda_{n} \rightarrow \infty$.

The mini-max principle of Courant [2] says that

$$
\begin{equation*}
\lambda_{i}=\sup _{f_{1}, \ldots, f_{i-1}, f_{\perp} f_{1}, f_{2}, \ldots, f_{i-1}} \frac{(d f, d f)}{(f, f)} \tag{5.2}
\end{equation*}
$$

$f_{1}, \ldots, f_{i-1}, f$ are smooth functions vanishing on M_{1} and $f \neq 0$.
Let $C_{1}^{\infty}(X)=\left\{f \in C^{\infty}(X)|f| M_{1}=0\right\}$. Since we want to compare the eigenvalues of Δ with the eigenvalues of Δ_{n}, it would be convenient to have a space which contains both $C_{1}^{\infty}(X)$ and $W_{n} C^{0}\left(S_{n} K, S_{n} L_{1}\right)$.

Definition 5.3. The function $f \mapsto(f, f)+(d f, d f)$ is an inner product on $C^{\infty}(X)$. Let H_{1} be the completion of $C^{\infty}(X)$ with respect to the norm given by this inner product. Let V be the closure of $C_{1}^{\infty}(X)$ in H_{1}.

Remark. Our definition of the Sobolev space H_{1} differs from the usual one. However, since X is compact and has smooth boundary, it is equivalent to the usual definition (see [1], Theorems 2.1, 2.2).

Note that the exterior derivative d extends to the mapping $\bar{d}: H_{1} \rightarrow L^{2} \Lambda^{1}$ in the obvious way.

Lemma 5.4. For all $n \geqslant 0$

$$
W_{n} C^{0}\left(S_{n} K, S_{n} L_{1}\right) \subset V
$$

Moreover, for $c \in C^{0}\left(S_{n} K, S_{n} L_{1}\right)$,

$$
W_{n} d_{n} c=\bar{d} W_{n} c .
$$

We postpone the proof of this lemma since it is rather technical.
Now we can write the mini-max principle in the following equivalent way.

$$
\begin{equation*}
\lambda_{i}=\sup _{f_{1}, \ldots, f_{i-1} \in V} \inf _{\substack{f \in V \backslash\{0\} \\\left(f, f_{k}\right)=0, k=1,2, \ldots, i-1}} \frac{(\bar{d} f, \bar{d} f)}{(f, f)} \tag{5.5}
\end{equation*}
$$

Let $d(n)$ be the dimension of $C^{0}\left(S_{n} K, S_{n} L_{1}\right)$. The eigenvalues λ_{i}^{n} of Δ_{n} are nonnegative and can be numbered so that

$$
\begin{equation*}
0 \leqslant \lambda_{1}^{n} \leqslant \lambda_{2}^{n} \leqslant \cdots \leqslant \lambda_{d(n)}^{n} . \tag{5.6}
\end{equation*}
$$

We are now ready to state the main result of this section.
Theorem 5.7. Let i be a positive integer. There exists a constant $C_{i}>0$ such that

$$
\lambda_{i}^{n}-C_{i} \eta_{n} \leqslant \lambda_{i} \leqslant \lambda_{i}^{n}
$$

whenever $i \leqslant d(n)$.
Proof. The proof proceeds by the classical Rayleigh-Ritz method (see Gould [4]). The inequality $\lambda_{i} \leqslant \lambda_{i}{ }^{n}$ is a special case of general principle due to Poincaré [6] which says roughly that the eigenvalues of a positive semidefinite quadratic form on a subspace are larger than the first eigenvalues of that form on the whole space.

To prove this inequality consider the Rayleigh-Ritz quotient

$$
\begin{equation*}
\frac{\left(\Delta_{n} c, c\right)}{(c, c)}=\frac{\left(d_{n} c, d_{n} c\right)}{(c, c)}=\frac{\left(W_{n} d_{n} c, W_{n} d_{n} c\right)}{\left(W_{n} c, W_{n} c\right)} \quad \text { on } \quad C^{0}\left(S_{n} K, S_{n} L_{1}\right) \backslash\{0\} . \tag{5.8}
\end{equation*}
$$

By (5.4)

$$
\begin{equation*}
\frac{\left(\Delta_{n} c, c\right)}{(c, c)}=\frac{\left(\bar{d} W_{n} c, \bar{d} W_{n} c\right)}{\left(W_{n} c, W_{n} c\right)} . \tag{5.9}
\end{equation*}
$$

The finite dimensional mini-max principle gives

$$
\begin{align*}
\lambda_{i}^{n} & =\sup _{c_{1}, \ldots, c_{i-1} \in C^{0}\left(S_{n} K, S_{n} L_{1}\right)} \inf _{\substack{c \neq 0 \\
\left(c, c_{k}\right)=0, k=1,2, \ldots, i-1}} \frac{\left(\Delta_{n} c, c\right)}{(c, c)} \\
& =\sup _{f_{1}, \ldots, f_{i-1} \in W_{n} C^{0}\left(S_{n} K, S_{n} L_{1}\right)} \inf _{\substack{f \in W_{n} C^{0}\left(S_{n} K, S_{n} L_{1}\right) \\
f \neq 0,\left(f, f_{k}\right)=0, k=1,2, \ldots, i-1}} \frac{(\bar{d} f, \bar{d} f)}{(f, f)} . \tag{5.10}
\end{align*}
$$

In (5.10) we can even allow f_{1}, \ldots, f_{i-1} to range over V because we can replace them by their orthogonal projections on $W_{n} C^{0}\left(S_{n} K, S_{n} L_{1}\right)$.

Comparing (5.5) with (5.10) we see that $\lambda_{i} \leqslant \lambda_{i}^{n}$ because $W_{n} C^{0}\left(S_{n} K, S_{n} L_{1}\right)$ $\subset V$ and infinum over a smaller set is larger.

To prove the second inequality we consider the space V_{i} spanned by first i eigenfunctions, $\varphi_{1}, \ldots, \varphi_{i}$, of Δ. It follows from Corollary 3.7 that $R_{n} \varphi_{1}, \ldots, R_{n} \varphi_{i}$ are linearly independent for n large. Also, the same corollary and Remark 2 following it, imply that there exists a constant c_{i} such that

$$
\begin{equation*}
\left|\frac{\left(d_{n} R_{n} \varphi, d_{n} R_{n} \varphi\right)}{\left(R_{n} \varphi, R_{n} \varphi\right)}-\frac{(d \varphi, d \varphi)}{(\varphi, \varphi)}\right| \leqslant c_{i} \eta_{n} \tag{5.11}
\end{equation*}
$$

for $\varphi \in V_{i} \backslash\{0\}$.
Observe that the largest eigenvalues λ of the form $(d c, d c)$ on $R_{n} V_{i}$ is given by

$$
\begin{equation*}
\lambda=\sup _{\varphi \in V_{i}} \frac{\left(d_{n} R_{n} \varphi, d_{n} R_{n} \varphi\right)}{\left(R_{n} \varphi, R_{n} \varphi\right)} . \tag{5.12}
\end{equation*}
$$

If n is so large that $\operatorname{dim} V_{i}=i$, the finite-dimensional analog of Poincaré principle gives

$$
\begin{equation*}
\lambda_{i}^{n} \leqslant \lambda \tag{5.13}
\end{equation*}
$$

On the other hand the supremum in (5.12) is attained for some $\varphi_{0} \in V_{i}$. Thus

$$
\begin{equation*}
\lambda=\frac{\left(d_{n} R_{n} \varphi_{0}, d_{n} R_{n} \varphi_{0}\right)}{\left(R_{n} \varphi_{0}, R_{n} \varphi_{0}\right)} \leqslant \frac{\left(d \varphi_{0}, d \varphi_{0}\right)}{\left(\varphi_{0}, \varphi_{0}\right)}+C_{i} \eta_{n} . \tag{5.14}
\end{equation*}
$$

We must have $\left(d \varphi_{0}, d \varphi_{0}\right) /\left(\varphi_{0}, \varphi_{0}\right) \leqslant \lambda_{i}$ since λ_{i} is the largest eigenvalue of $(d \varphi, d \varphi)=(\Delta \varphi, \varphi)$ on V_{i}. The inequality $\lambda_{i}^{n}-C_{i} \eta_{n} \leqslant \lambda_{i}$ follows because

$$
\begin{equation*}
\lambda_{i}^{n} \leqslant \lambda \leqslant \lambda_{i}+C_{i} \eta_{n} . \tag{5.15}
\end{equation*}
$$

In order to complete the proof of Theorem 5.7 we have to prove Lemma 5.4.

Proof of Lemma 5.4. Let $c \in C^{0}\left(\mathrm{~S}_{n} K, \mathrm{~S}_{n} L_{1}\right) ; c$ can be written as

$$
\begin{equation*}
c=\sum_{i=1}^{s} c_{i} p_{i} \quad c_{i} \in \mathbf{R}, \quad p_{i} \in S_{n} K \backslash S_{n} L_{1} . \tag{5.16}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
W_{n} c=\sum_{i=1}^{s} c_{i} \mu_{i} \tag{5.17}
\end{equation*}
$$

where μ_{i} is the barycentric coordinate corresponding to p_{i}. The function $W_{n} c$ is continuous on X, piecewise C^{∞} and $W_{n} c \mid M_{1}=0$. Let $U \approx M_{1} \times[0,2)$ be the collar neighborhood of M_{1} in X. We identify points of U with pairs (x, t), $x \in M_{1}, t \in[0,2)$. In particular M_{1} is identified with $M_{1} \times\{0\} . W_{n} c$ is continuous and piecewise C^{∞}, therefore Lipschitz on $M_{1} \times[0,1]$. Therefore there exists a constant C such that

$$
\begin{equation*}
\left|W_{n} c(x, t)\right| \leqslant C \cdot t \quad \text { for all } \quad x \in M_{1}, \quad t \in[0,1] \tag{5.18}
\end{equation*}
$$

Let g be a C^{∞} function on \mathbf{R} satisfying

$$
\begin{equation*}
1 \geqslant g \geqslant 0, \quad g=0 \quad \text { on } \quad(-\infty, 0], \quad g=1 \quad \text { on } \quad[1, \infty) \tag{5.19}
\end{equation*}
$$

For every integer $m>0$ we define $g_{m}(t)$ by

$$
\begin{equation*}
g_{m}(t)=g(2 m t-1) \tag{5.20}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \operatorname{supp}_{m}^{\prime} \subset\left[\frac{1}{2 m^{\prime}} \frac{1}{m}\right] \\
& \sup _{t \in\left[\frac{1}{2 m^{\prime}}, \frac{1}{m}\right]}\left|g_{m}^{\prime}(t)\right| \leqslant 2 m \cdot \sup _{t \in[0,1]}\left|g^{\prime}(t)\right| . \tag{5.21}
\end{align*}
$$

For every positive integer m we define a function \bar{g}_{m} on X by

$$
\begin{array}{ll}
\bar{g}_{m}(x, t)=g_{m}(t) & \text { for } x \in M_{1}, \quad t \in[0,2) \tag{5.22}\\
\bar{g}_{m}(p)=1 & \text { for } p \in X, \quad M_{1} \times[0,1]
\end{array}
$$

Obviously \bar{g}_{m} is C^{∞} on X.
Since V is closed in H_{1} it is enough to show that

$$
\begin{align*}
& \bar{g}_{m} \cdot W_{n} c \in V \quad \text { for all } m, \\
& \bar{g}_{m} \cdot W_{n} c \underset{m \rightarrow \infty}{\longrightarrow} W_{n} c, \tag{5.23}\\
& \bar{d}\left(\bar{g}_{m} W_{n} c\right) \underset{m \rightarrow \infty}{\longrightarrow} \bar{d} W_{n} c
\end{align*}
$$

in $L^{2}(X)$ and $L^{2} \Lambda^{1}$ respectively.
The function $\bar{g}_{m} W_{n} c$ is continuous and piecewise C^{∞}. The reasoning of Lemma 1.8 can be applied to show that

$$
\begin{equation*}
\left(d\left(\bar{g}_{m} \cdot W_{n} c\right), f\right)=\left(\bar{g}_{m} \cdot W_{n} c, \delta f\right) \tag{5.24}
\end{equation*}
$$

for every C^{∞} 1-form whose support is contained in $X \backslash\left(M_{1} \cup M_{2}\right)$. Therefore the form $d\left(\bar{g}_{m} \cdot W_{n} c\right)$ is the weak exterior derivative of $\bar{g}_{m} \cdot W_{n} c$ in the sense of [1], Definition 1.6. By Theorem 2.2 of [l] $\bar{g}_{m} \cdot W_{n} c \in H_{1}$ and $d\left(\bar{g}_{m} \cdot W_{n} c\right)=\bar{d}\left(\bar{g}_{m}\right.$. $\left.W_{n} c\right)$. But the support of $\bar{g}_{m} \cdot W_{n} c$ is contained in $X \backslash M_{1} \times[0,1 / 2 m)$ which implies that $\bar{g}_{m} \cdot W_{n} c \in V$.

The convergence $\bar{g}_{m} \cdot W_{n} c \rightarrow W_{n} c$ is obvious since $g_{m} \leqslant 1$ and $\bar{g}_{m} \rightarrow 1$ almost everywhere on X by (5.19), (5.20). By Leibnitz rule ([1], Theorem 1.13) we have

$$
\begin{equation*}
\bar{d}\left(\bar{g}_{m} \cdot W_{n} c\right)=W_{n} c \cdot d \bar{g}_{m}+\bar{g}_{m} \cdot d W_{n} c . \tag{5.25}
\end{equation*}
$$

On $X \backslash M_{1} \times[0,1 / m] \bar{g}_{m}=1$ and $d \bar{g}_{m}=0$. On $M_{1} \times[0,1 / m]$ we have

$$
\begin{equation*}
\bar{d}\left(\bar{g}_{m} \cdot W_{n} c\right)=\bar{g}_{m} \cdot d W_{n} c+g_{m}^{\prime} d t \cdot W_{n} c \tag{5.26}
\end{equation*}
$$

The proof will be concluded if we show that

$$
\begin{equation*}
W_{n} c \cdot g_{m}^{\prime} d t=\bar{d}\left(\bar{g}_{m} \cdot W_{n} c\right)-\bar{g}_{m} \cdot d W_{n} c \underset{m \rightarrow \infty}{\longrightarrow} 0 \tag{5.27}
\end{equation*}
$$

By (5.18) and (5.21)

$$
\begin{equation*}
\left|W_{n} c(x, t) \cdot g_{m}^{\prime}(t)\right| \leqslant C \cdot \frac{1}{m} \cdot 2 m=2 C \tag{5.28}
\end{equation*}
$$

for $x \in M_{1}, t \in[0,1]$. This means that $W_{n} c \cdot g_{m}^{\prime}$ is bounded and, since we are integrating over sets whose measure tends to zero, it proves (5.27) and finishes the proof of the Lemma.

As an application of Theorem 5.7 we show that the zeta-function of the continuous Laplacian is the limit of zeta-functions of combinatorial Laplacians.

Definition 5.29. The zeta-function $\zeta(s)$ of the Laplacian Δ is the Dirichlet. series

$$
\zeta(s)=\sum_{\lambda_{i} \neq 0} \lambda_{i}^{-s} .
$$

By analogy we define zeta-function of combinatorial Laplacian Δ_{n} by

$$
\zeta^{(n)}(s)=\sum_{\lambda_{i}^{n} \neq 0}\left(\lambda_{i}^{n}\right)^{-s}
$$

The function $\zeta(s)$ was investigated by Minakshisundaram and Pleijel in [5]. They proved that the abscissa of absolute convergence of the series defining
$\zeta(s)$ is finite, i.e., there exists a number $\sigma_{0} \in \mathbf{R}, \sigma_{0}>0$ such that $\Sigma_{\lambda_{1} \neq 0} \lambda_{i}^{-s}$ converges absolutely for every $s=\sigma+i t$ with $\sigma>\sigma_{0}$. It is well known that in this situation convergence is uniform on every set $\left\{s=\sigma+i t \mid \sigma \geqslant \sigma_{0}+\delta, \delta>0\right\}$.

Theorem 5.30. Let $H=\left\{s \in \mathbf{C} \mid \operatorname{Re} s>\sigma_{0}\right\}$. The sequence $\left\{\zeta^{(n)}(s)\right\}$ converges to $\zeta(s)$ uniformly on compact subsets of H.

Proof. Let $K \subset H$ be compact. Fix $\epsilon>0$. Let m be a positive integer such that

$$
\begin{equation*}
\sum_{i \geqslant m}\left|\lambda_{i}^{-s}\right|=\sum_{i \geqslant m} \lambda_{i}^{-\mathrm{Re} s} \leqslant \frac{\epsilon}{3} \tag{5.31}
\end{equation*}
$$

for all $s \in K$.
For every n, since $\lambda_{i}^{(n)} \geqslant \lambda_{i}$, we have

$$
\begin{equation*}
\left|\left(\lambda_{i}^{n}\right)^{-s}\right|=\left(\lambda_{i}^{n}\right)^{-\operatorname{Re} s} \leqslant \lambda_{i}^{-\operatorname{Res}}=\left|\lambda_{i}^{-s}\right| . \tag{5.32}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|\sum_{i \geqslant m} \lambda_{i}^{-s}-\sum_{i=m}^{d(n)}\left(\lambda_{i}^{n}\right)^{-s}\right| \leqslant \frac{2}{3} \epsilon . \tag{5.33}
\end{equation*}
$$

Also, since $\lambda_{i}^{n} \rightarrow \lambda_{i}$ we can find $n(\epsilon)$ such that for $n \geqslant n(\epsilon), s \in K$

$$
\begin{equation*}
\left|\sum_{\substack{i \leqslant m \\ \lambda_{i} \neq 0}} \lambda_{i}^{-s}-\sum_{\substack{i \leqslant m \\ \lambda_{i} \neq 0}}\left(\lambda_{i}^{n}\right)^{-s}\right| \leqslant \frac{\epsilon}{3} \tag{5.34}
\end{equation*}
$$

By (5.33) and (5.34)

$$
\left|\zeta(s)-\zeta^{(n)}(s)\right| \leqslant \epsilon
$$

provided $n \geqslant n(\epsilon), s \in K$. This proves the theorem.
As remarked in the introduction, we conjecture that the results of this section hold for all dimensions $q=0,1,2, \ldots, N$. The proofs for $q=0$ do not apply to higher dimensions since the eigenvalues are critical points of the form $(d f, d f)+(\delta f, \delta f)$ and we do not know how well δ_{n} approximates δ.

Acknowledgments. I was fortunate to receive generous help from several people during the work on this thesis. Professors L. Bers and H. Garland introduced me to the beautiful subject and gave advice and encouragement
without which this work would not have been possible. A conversation with Professor J. Morgan lead me to study the work of Whitney where I found the main technical tools. Professor I. M. Singer made several helpful suggestions and, most importantly, supplied me with motivation for a large portion of this research. It gives me great pleasure to express my gratitude to them.

I also wish to thank my wife, Katarzyna; there are no appropriate words to describe my indebtedness to her.

Columbia University.

Added in proof. V. K. Patodi has recently proved the convergence of eigenvalues for all $q=0,1,2, \ldots, N$.
G. Strang informed us that the techniques used in this paper are very closely related to finite element method of solving partial differential equations numerically.

REFERENCES.

[1] S. Agmon, "Lectures on elliptic boundary value problems," Mathematical Studies No. 2., Von Nostrand, Princeton, N. J., 1965.
[2] Courant and Hilbert, Methods of Mathematical Physics, Interscience Publishers Inc., New York, 1953.
[3] B. Eckmann, "Harmonische Funktionen und Randvertanfgaben in einem Komplex," Commentarii Math. Helvetici, 17 (1944-45), 240-245.
[4] S. H. Gould, Variational Methods for Eigenvalue Problems, University of Toronto Press, Toronto, 1957.
[5] Minakshisundaram and Pleijel, "Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds," Can. J. Math., 1 (1949), 242-256.
[6] H. Poincare, "Sur les équations aux derivees partielles de la physique mathematique," Amer. J. Math., 12 (1890), 211-294.
[7] D. B. Ray and I. M. Singer, "R-Torsion and the Laplacian on Riemannian Manifolds," Advances in Math., 4 (1971), 145-210.
[8] H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, N. J., 1957.

