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Finite-Difference Approximations

to Singular Sturm -Liouville Eigenvalue Problems

By G. W. Reddien

Abstract.   A modification of the central-difference method is given which greatly

improves the convergence when applied to a certain class of singular eigenvalue

problems, including the Klein-Gordon equation.   The singularity given special treat-

ment is at the finite end.

1.   Introduction.   A common technique for approximating the discrete eigenvalues

of Sturm-Liouville eigenvalue problems of the type

(1) - d2y/dx2 + q(x)y(x) = \y(x),      0 < x < -,

with y(0) = 0 and y(x) —► 0 as x —► °°, is to replace infinity by some suitably large

number b > 0 and then treat the problem over the interval [0, b] with the added

boundary condition y(b) = 0 by using either the central-difference or Numerov finite-

difference methods.  A discussion of various implementations and applications of these

methods can be found in, for example, Cooley [1] and Keller [4].  The purpose of

this paper is to give a new finite-difference method for a class of problems with a

singularity at the origin that includes the Klein-Gordon equation.  We will treat the

infinite interval as described above.

In dimensionless form, the Klein-Gordon equation may be written as

(2) - d2y/dx2 - (2/x + a2/x2)y(x) = \y(x).

The eigenfunction corresponding to the smallest eigenvalue of (2) behaves like oc*3 near

zero where ß satisfies .5 < ß < 1 for 0 < a < .5.  It is this type of singularity for which

we will develop a finite-difference formula.  For a discussion of the Klein-Gordon equa-

tion and more general singular problems, see Frank, Land and Spector [3].  A general-

ization of equation (2) can be described as follows.   Let q(x) be real-valued and in

C2(0, °°), i.e. two continuous derivatives, with q(x) = x~2?,'m=.0qmxm on 0 < x <

a + 5 for some a, Ô > 0 and q0 > - 1/4.  Let L be the linear operator Ly = - y" + qy

defined in the Hubert space L2(0, °°) with domain D = {y: y G C2(0, °°), y and Ly e

¿2(0, °°)}.   Let p = 1/2 + (q0 + 1/4)1/2.  For the case q0 < 3/4 we add boundary

condition hmx_yQ (pxp~1y - xpy) = 0 to D. The eigenvalue problem is now to find

X real and y in D so that Ly = \y.  A Frobenius expansion of such an eigenfunction

y on (0, a + 8) shows that y(x) = a1xp + a2xp + 1 + a3xp + 2 + • • • .  Thus, we

obtain for p not an integer singularities at the origin similar to the Klein-Gordon equa-

tion.  We additionally assume q behaves at infinity so that such eigenfunctions vanish
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at infinity and have four bounded derivatives on [a, °°).  This would be the case, for

example, if we assumed q(x) = x~l~Lm=Qq'mx~m for all x sufficiently large. In

Section 2 we define a finite-difference method to approximate X when Ly = Xy and y

behaves as described.  In Section 3 a numerical example is given.

2.  Finite-Difference Method.  Let An: 0 = x0 < x, < • • • < xn = a < ■ ■ ■ <

xN < xN+ j be a partition of (0, xN+1) with x¡+1 ~x¡ = a\n =hîoiO<i<N. Our

difference method is a three-point scheme, i.e. we define the difference operator Ln

so that Lhy\x. = a.A>i_l + ßjyt + y¡y¡+i, where y¡ = y(x¡). The development we give

is an adaptation of a technique used on the Bessel equation by Dershem [2].  Some

essential modifications are required here in the analysis near the origin and in determin-

ing an error bound.

For a technical reason to be made clear later, we will consider cases on p = 1/2

+ fan + 1/4)1 /2 • If P < 2> choose at> ß, and ftso that for / - 2.n - 1,

(Lhy - Ly)\x. = 0 for all functions of the form y(x) = a^ + a2xp + 1 + a3xp + 2.

One finds after solving the resulting three linear equations that

and

*-(£)'•? •(•-?);

If 2 < p < 3, define p = p - 1 and choose a¡, ß{ and y¡ so that for /' = 2, ...,«- 1,

(Lhy-Ly)\x. = 0 for all functions of the form ^(jc) = axxp + a2xp+l + a3xp + 2.

Redefining p = p, we obtain the same formulas as in (3).  For 3 < p < 4, define

p = p - 2; and proceed as above.  For p > 4 or an integer, the eigenfunctions are

smooth so that the usual central-difference formula is satisfactory.  In the remainder

of this section, we assume p < 4 is not an integer.   For / = n, . . . , N in all cases,

the central-difference formula will be used, i.e. a¡ = - 1/h2,   0,- = 2¡h2 + q(x¡) and

y¡ = - \¡h2.  Note that as / becomes large the coefficients in (3) approach the central-

difference coefficients.  For i = 1, we set aj = 0 and choose f3j and yx so that

(Lny - Ly)\n = 0 for all functions of the form y(x) = a¿xp + q1xp+ï/2p) +

a2xp + 2 with p = 1/2 + (1/4 + ^q)1'2 in all cases.  The solution of the resulting two

linear equations is

- (4p + 2)/h2 -(p + 2)(p + l)qj2ph + (p+ \jqJ2h

7l " 3-2p + h2pqjp

and

0, = - (p + 2Xp + \)lh2 + q(h) - 2p+2yi.

The difference method is now the following.  The eigenvalues of the matrix Ah

~ [fl//]/vx/v witri au ~ ft' ai,i-i = ai> ai i+i = y¡ and aij ~ 0 otherwise are computed
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and taken as approximations to the eigenvalues of (1).  In order to obtain an estimate

for the error made in these approximations, we first obtain an estimate for the trunca-

tion error.

Lemma.

\0(hi+p),   i=l,
(Lny-Ly)\x =

*<•     \0(h2),       i>2.

Proof.   The case i > n - 1 is standard [4].   For the case 2 < i < n - 1, let

v(x) = x~py(x) with p redefined as in the cases treated earlier.  Then as v is in

C4 [0, a], use Taylor's theorem to expand u(x) about x¡ obtaining v(x) = v'a[x - x¡) +

vn¡(x - Xi)2/2 + v1'(x - x,.)3/6 + Jx.(x - s)3vW(s)l6ds.  Ln - L applied to

xp(vi + v't(x - x¡) + v"(x - Xj)2l2) at x¡ gives zero by construction. L applied to

v"(x - x¡)3xpl6 + fx.(x - s)3xpif4\s)/6ds at x¡ also gives zero.  Now

£»(**/*,(* - sfvw(s)ds)\x. = 0(h2) since |a,.|, |ß,.| = 0(h~2) and

y jXx(x - sfv^\s)ds <aph4 ■   max   |u(4)(s)|.
0«î«a

Direct substitution shows that

[L^u^x-xflo)^ = (ihy-lh2\v™ \pl3<ap-1h2\v^\p/3.

Since y = xpv, this gives the result for /' = 2, . . . , n - 1.  For the case i = 1, we

observe from the Frobenius expansion of the eigen functions that

y(x) = a^x" + qlXp + 1/2p) + a2xp + 2 + a3xp+3 + •■■ .

Using the fact that (Lny - Ly)\n = 0 for the first two terms of this expansion for_y,

direct substitution leads to (Lny - Ly)\n = 0(hl +p), completing the proof.

We observe that Ah is not symmetric.  However, define the N x N diagonal

matrix Dh = [dy] for h sufficiently small by dn = 1, d,, = (a^j ¡a- .-_i)!'2 '

d-_l _j, ; = 2, . . . , N, and cL- = 0, otherwise.  The cases treated earlier on p insure

that (a_j ,/a- ,_j) is positive so that the square root can be taken.  A direct computa-

tion shows that DnAnD~^ is a symmetric matrix.  Using Lemma 3 of Dershem [2],

one can deduce (or verify directly) the existence of positive constants C1 and C2 so

that C¡ < aß < C2 for ; = 2, . . . , N and all TV.

Now write Lhvl   . - Av.- = r,, j = 1, . . . , N, where r, = 0(h2) for / = 2, . . . ,
fl        A.J ¡j I

N - 1 ; and tx = OQi1   p), where X and y are an eigenpair for (1). Since Ah is an

N x N matrix, yN+1 has been set to zero, and thus,

% = OW-1 - 2yN)/h2 -y"(xN) = 0(h2 + h~2y(xN+1)).

In matrix form, the truncation error formulas may be written as Any —\y = f ; and

so, (phAhD~^ - Xf)Dny = Dn¥.  We now proceed as in Keller [4] and deduce an

error bound.  The eigenvalues of Ah and DnAnU~hl are identical. Now if X is an

eigenvalue of i4fc) our approximation will be exact.  Otherwise, denoting the eigenvalues

of An by {A} and using the Euclidean norm, we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SINGULAR STRUM-LIOUVILLE EIGENVALUE PROBLEMS 281

-1
\\DhT\U,\\Dhy\\2 < \\(.DhAhD-

and

(4) min   \Af-\\< \\Dnr\\2l\\Dhy \\2.

Using the estimates on the entries of Dh, we have

l^lll = Z 4yf> t ^f>clj-iyfaln.
/=1 /=1 /=!

Since y is in D, it follows that

jt yfa/n-^ foy2 dx   as    n -* °°.

Thus, for « = a/« sufficiently small, |[D„yil2 > kxnl12 for some constant kx > 0. Now

IIDÄf||2 < C2\\r\\2 = C2(r2 + t\ + ■ • • + rl)1'2 < C2(C3A2 + 2" + C4Nh* + r2,)1'2

for suitably chosen constants C3 > 0 and C4 > 0.  Substituting these inequalities into

(4), we then have

k2(C3h2+2p +C4Nh* +T2)1'2
min |A, - X| < -*—-

(5) {a;.}   7 «1/2

= k2(C3h3+2p + C4ah4N/n + hr^)1'2,

where k2 = C2/k1. Taking xN+1 sufficiently large so that the h~2y(xN+l) compon-

ent of tn is negligible and keeping xN = aN\n fixed, we have from (5) that some

eigenvalue oiAn approximates X with an error of 0(h2), since p > 1/2. Note that in

the case of a finite interval, the method will be exactly 0(h2).

3.  Numerical Example. We applied the method to the problem - d2/dx2 ~

(l/4x2 + l/x)y - \y. This corresponds (with a scale change) to a = 1/2 in the case

of the Klein-Gordon equation. The first eigenvalue can be verified to be X = - 1 with

associated eigenfunction y(x) = x1/2 exp(- x); and in this case, p = 1/2.  In the

following table we give the error made in approximating X = - 1 and show the effect

of varying the point x = a, h and xN.  Also, the observed convergence rates are com-

puted, i.e. assuming the error, e(h) behaves like e(h) = C«*3, then ß =

\n(e(h1)/e(h2))/\n(hl/h2).  In the table .abc-d denotes .abc ■ 10~d.

Table

v/v e(h) ß l/v e(h)

1/16 1 12 .985-3 - 1/16 4

1/32 1 12 .270-3 1.87 1/32 4

1/64 1 12 .7074 1.94 1/64 4

1/128 1 12 .1814 1.97 1/128 4

1/256 1 12 .457-5 1.98 1/256 4

1/384 1 12 .204-5 1.99 1/128 8

1/128 2 12 .1514 — 1/256 8

1/128 1/2 12 .3864 — 1/128 8

12 .800-3 —

12 .222-3 1.85

12 .5824 1.93

12 .1494 1.97

12 .377-5 1.98

12 .1494 —

12 .377-5 1.98

20 .1494 —
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The actual difference between the approximations with «=l/128,a = 8 and

xN = 12 and xN = 20 was .48 • 10-8.  Application of the usual central-difference

formula with h = 1/128 and xN = 12 gave an error of .401 as compared to an error

of .149 • 10~4 for the new method, and h = 1/128, a = 4, and xN = 12.  This

represents an improvement by a factor of approximately 27,000.  The error was im-

proved by increasing a from a = 1 to a = 4.  However, one must trade this off against

the need to take an increased number of pth-roots.  Finally, for xN = 8, the results

were affected by the magnitude oi y(xN+1).  With a = 1 and h = 1/128, an error of

.247 • 10-4 was observed.
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