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FINITE-DIFFERENCE CALCULATION OF TRAVEL TIMES 

BY JOHN VIDALE 

ABSTRACT 

The travel times of the first arriving seismic waves through any velocity 

structure can be rapidly computed on a two- or three-dimensional numerical grid 

by finite-difference extrapolation from point to point. Wavefronts, rather than the 

traditional rays, are tracked. Head waves are properly treated and shadow zones 

are filled by the appropriate diffractions. Differences of less than 0.03 per cent 

are found between the results of this technique and raytracing for a complex, 

two-dimensional model. This scheme is useful for the windowing of finite-differ- 

ence calculations to increase computing speed, and promises to aid in earthquake 

location, tomographic inversion, and Kirchhoff migration in structures that have 

strong lateral velocity gradients. 

INTRODUCTION 

Transit times for seismic waves have been calculated a variety of ways. Generally, 

more complicated media require more expensive and tricky schemes to find the 

transit time. If the medium is uniform, the path of seismic waves is the straight line 

from the source to the receiver, and the travel time is simple to calculate. If the 

medium is horizontally layered, the path that the energy follows may be derived 

from the invariance of the ray parameter. The determination of travel times in 

media that  vary laterally as well as vertically has traditionally required some form 

of raytracing. 

Raytracing is based on the concept that  seismic energy of infinitely high frequency 

follows a trajectory determined by the raytracing equations. Physically, these 

equations describe how energy continues in the same direction until it is refracted 

by velocity variations. In "shooting" methods of raytracing, a fan of rays is shot 

from one point in the general direction of the other. The correct path and travel 

time to connect the two points may then be approached with successively more 

accurate guesses. Such solutions for two- and three-dimensional media were derived 

more than 10 years ago (e.g., Julian and Gubbins, 1977, and Cerveny et al., 1977). 

"Bending" methods of raytracing start with an initial, probably incorrect guess for 

the ray path. The ray path is bent by a perturbation method until it satisfies a 

minimum travel-time criterion. Thurber (1987) discusses shooting and bending 

methods in more detail. 

Difficulties with raytracing fall into three categories. First, for strongly varying 

velocity fields, there can be many paths connecting two points of interest. When 

there are many paths, it is easy to miss the one with the minimum travel time. 

Second, if many travel paths to many points are needed, computer costs make the 

method impractical. Third, even in a smooth medium, there may be a shadow zone, 

where pairs of points will be connected only by rays that have a very small geometric 

amplitude because a small change in the take-off angle results in a large change in 

the ray path. Shooting methods of raytracing often have trouble finding the correct 

ray in a shadow zone. Bending methods of raytracing do give an answer in shadow 

zones. However, in both bending and shooting methods it is possible that the answer 

is only a local minimum, and the global minimum travel time and corresponding 

ray path remain unknown. 
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Several approximate methods have been formulated to lessen these problems. 

Thurber (1981) reduced the three-dimensional problem to two dimensions for 

economy. Thurber (1983) smoothed the velocity structure to the point where it was 

practical to compute the ray paths. Um and Thurber (1987) and Prothero et al. 

(1987) presented approximate schemes that work with some realistic velocity 

structures, but which are still based on raytracing with its inherent limitations. 

This note will present a scheme that overcomes all three problems with raytracing. 

The proposed scheme has already shown its utility in speeding the execution of 

finite-difference wave-simulation codes and its potential applications to earthquake 

location, Kirchhoff migration, and tomographic inversion are presented below. 

FINITE-DIFFERENCE TRAVEL T I M E  CALCULATION 

The method is outlined in two dimensions for ease of illustration. Extension to 

three dimensions is simple, but will not be treated here. 

The method is formulated for a velocity structure that is sampled at discrete 

points in two-dimensional space, with equal horizontal and vertical spacing. The 

question of what continuous velocity structure is implied by the sampled structure 

is more complicated; for the purpose of testing this scheme, I will compare the 

results with raytracing where the velocity structure is linearly interpolated between 

the sampled points. An array of the same dimension as the velocity structure is 

created to record the travel times. These two arrays use the bulk of the computer 

memory in this scheme, and the scheme works fastest when the entire program can 

reside in core. 
The source of the seismic waves is assumed to be at grid point A (Figure 1). The 

timing process is initiated by assigning point A the travel time of zero. The four 

points adjacent to the point A, labeled B1 through B4 in Figure 1, are given the 

travel times 

h 
ti = ~ (sBi + sA), 

C2 B2 C1 

B3 A B1 

C3 B4 C4 

FIG. 1. The source grid point A and the eight points in the ring surrounding point A. 
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where h is the mesh spacing, sA is the slowness at the point A, and sBi is the slowness 

at the grid point Bi being timed. Next, the travel times for the four corners labeled 

C1 through C4 in Figure 1 are found by the method described below. 

I next derive the two formulas that extrapolate the travel times from three corners 

of a square to the fourth. The first formula will be most accurate for nearly flat 

wavefronts, the second will be most accurate for strongly curved wavefronts. 

Consider the geometry in Figure i where the travel times between the points A (to), 

B1 (tl), and B2 (t2) and the origin are known, and the travel time t3 between point C1 

and the origin is sought. For the initial calculation, to is zero since it is the travel 

time of the source grid point, but in general to is not zero and A is not restricted to 

be the source point. 

The propagation of two-dimensional geometric rays and therefore the propagation 

of two-dimensional wavefronts is guided by the eikonal equation of ray tracing 

ax/ \az/  s(x, z) ~ (1) 

that  relates the gradient of the travel time to the velocity structure (see, for example, 

p. 203, Officer, 1974). The co-ordinate axes are x and z, and s is the slowness 

(inverse of velocity). The two differential terms in equation (1) can be approximated 

with finite differences as 

0t 1 
- ( to  + t2 - t l  - t ~ )  ( 2 a )  

Ox 2h 

and 

Ot 1 
- ( t o  + t l  - t2 - t 3 ) .  ( 2 b )  

Oz 2h 

Substituting equations (2a) and (2b) into equation (1), 

t3 -- to + ~/2(hs) 2 - (t2 - tl) 2. (3) 

Equation (3) gives the travel time to point C1 using the travel times from the source 

to points A, B1, and B2, in a plane wave approximation. Point A does not need to 

be the source point for this equation to apply. 

The second extrapolation formula assumes locally circular wavefronts. A circular 

wavefront can be specified by three parameters: (1) the x co-ordinate of the virtual 

source point, -xs; (2) the z co-ordinate of the virtual source point, -z~; and (3) the 

origin time for the virtual source t~. The virtual source point lies at the center of 

the curvature of the circular wavefronts. For simplicity, the origin of this co- 

ordinate system is placed at point A, and grid points B1, B2, and C1 have co- 

ordinates (h, 0), (0, h), and (h, h), respectively. The travel times to points A, B1, 

and B2 can be expressed as 

t o =  ts + S~Xs~ + Z~ 2, 

tl = ts + s~/(xs + h)  2 + z~ 2, 

( 4 a )  

(4b) 
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and 

t~ = t~ + s~/x~ ~ + (z8 + h)  ~. (4c) 

This system of three equations for the three unknowns ts, x~, and zs can be reduced 

to a quartic equation in xs. With knowledge of x~, z~, and ts, t3 may be calculated 

from the equation 

t3 = t~ + s~/(x~ + h)  2 +  (zs + h) 2. (5) 

The accuracy of the schemes given in equations (3) and (5) may be easily evaluated 

for the uniform velocity case. The travel times to, tl, and t2 are computed for a given 

x~ and zs, and the t3 computed with equation (3) or (5) is compared to the correct 

t3 c. Figures 2 and 3 plot the percentage error E, defined by 

t 3  - -  ~3 c 

E - - -  
hs 

where h is the mesh spacing, and s is the slowness, so hs is the travel time between 

two adjacent grid points. In Figure 2, t3 is calculated for various x8 and zs from 

equation (3), which assumed planar wavefronts. The greatest error appears in the 

lower left quadrant, which corresponds to the wavefronts with the most curvature. 

Only strongly curved wavefronts have an error greater than 0.1 per cent. 

Figure 3 shows the accuracy of t3 calculated from equation (5). Since the uniform 

velocity medium used in Figure 3 only allows circular wavefronts and equation (5) 

assumes circular wavefronts, the only error will arise from round-off (or faulty 

computer programming). The test of accuracy shows that errors are uniformly small 

(on the order of 0.1 per cent) and are particularly small in the region of curved 

wavefronts. The notable increase in error away from the lower left quadrant in 

Figure 3 may be partly due to the difficulty of finding the image source from a 

wavefront with very little curvature. The errors shown in Figure 3 probably indicate 

the sensitivity of roots to a fourth order equation to round-off error. 

For optimal accuracy, one can test whether a plane wavefront is a good approxi- 

mation from the travel times to, tl, and t2. If the wavefront is nonplanar, equation 

(5) gives the best estimate of t3; if the wavefront seems flat, equation (3) gives a 

better and quicker answer. I call the combination of equations (3) and (5) the 

"mixed" scheme. For purposes that require speed but not great accuracy, equation 

(3) may be used exclusively. I call this the "simple" scheme. 

With these schemes to find the time at the fourth corner of a square from the 

times of the other three corners as a building block, the travel time may be found 

throughout the grid. First, the times of the four corners (labeled C~, C2, Ca, and C4 

in Figure 1) are found from the times of their neighbors. Solution will progress by 

solving rings of increasing radius around the source point. The source point (radius 

of 1) and the ring of 8 points (radius of 2) have already been solved. 

The inductive scheme for adding a ring of travel times to those already calculated 

will be described. Consider the ring of radius 5 shown in Figure 4, where all travel 

times inside the ring are known, but travel times on and outside the ring are 

unknown. Solution will proceed on the four sides sequentially, followed by the four 

corner points. I will start arbitrarily with the right side, and find travel times for 

the points within the rectangular box in Figure 4. 
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FIO. 2. The accuracy of the extrapolation given by equation (3). The horizontal and vertical co- 
ordinates, plotted on log scale, indicate the horizontal and vertical distance to the center of curvature of 
the wavefront incident on the three points A, B1, and B2. The size of the symbols indicates the error in 
the extrapolation of travel time to point C1 divided by the hs, where h is the grid spacing and s is the 
slowness, so the percentage represents the timing error divided by the transit time across the cell. 

One may not simply solve for the travel times on a side in order (from top to 

bottom, for example) because (1) by theory, the solution must  follow causality, tha t  

is, the time for the part  of the ray path  leading to a point  must  be known before 

the time of the point  can be found; and (2) in practice, solving for progressively 

earlier times along a row results in an instability. An example of the solution of the 

side of a ring (of radius 8, not  5 as shown in Figure 4) is shown in Figure 5. The 

points in the row are examined in order from left to right, and the points tha t  are 

at a relative minimum are identified. A relative minimum is assumed if there is a 

relative minimum in the time for the adjacent point  in the adjacent row that  has 

already been solved in the previous ring. To t ime the first point  on an edge, a 

noncentered finite-difference of equation (1) must  be used. I use the plane-wave 

formula 

t3 = to + x/(hs) 2 - 0.25(t2 - t l )  2, (6) 

where t3 is the time to be found, to is the relative minimum time in the inside row, 

and tl and t2 are the times on either side of the point  whose time is to. The accuracy 
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Fro. 3. The accuracy of the extrapolation given solving Equations (4a) through (4c). The horizontal 
and vertical co-ordinates, plotted on log scale, indicate the horizontal and vertical distance to the center 
of curvature of the wavefront incident on the three points A, B1, and B2. The size of the symbols 
indicates the error in the extrapolation of travel time to point C1 divided by the hs, where h is the grid 
spacing and s is the slowness, so the percentage represents the timing error divided by the transit time 
across the cell. 

of this expression is shown in Figure 6. The  image source for Figure 6 will lie near  

the x-axis because, near  a relative m i n i m u m  in t ravel  t ime along the column, the 

ray pa ths  t ravel  near ly horizontally.  The  accuracy is good along the x-axis. 

S tar t ing  at  each relative m i n i m u m  point ,  solution progresses along the row finding 

the t ime for each point  until  the relative m a x i m u m  is encountered.  Upon  complet ion 

of the lef t- to-r ight  sweep through the  row, the row is swept through in the reverse 

direction, and the remain ing  un t imed  points  are solved in order f rom the relative 

min ima  to the relative maxima.  

The  relative m i n i m a  are solved f rom both  sides, and  the lower of  the two es t imated  

t ravel  t imes is used. This  is equivalent  to considering two geometric rays coming 

f rom ei ther  side and  only count ing the one t ha t  arrives first. The  neglect of the 

later  arr iving of the two possibil i ty simplifies the calculation but  results in the loss 

of  all but  the first  arr ival  t ime. 

Once the four sides are solved in this way, the  t imes for the corners may  be found, 

and we proceed to the next  ring outward.  By applying this method  iteratively, the 

entire two-dimensional  grid is filled with t ravel  t imes. 
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FIG. 4. Picture of the 2-D grid as the numerical calculation of travel time is progressing. The ring of 
points shown as filled circles are about to be timed. The hollow circles indicate points that have had 
their travel time calculated. The double circle in the middle shows the source point. The dots are not yet 
timed, nor will they be timed until the ring of filled circles is done. In the rectangle is a column of points 

like the one that we will treat in Figure 5. 

S o l v e  p o i n t s  a t  r e l a t i v e  m i n i m a  

• • • • • • • • • • • • • 

S o l v e  to  r i g h t  f r o m  m i n i m a  to  m a x i m a  

• • • • • © • • • • O O O 

S o l v e  to  l e f t  f r o m  m i n i m a  to  m a x i m a  

O 0 0 0 0 0 Q Q O 0 0 0 0  

FIG. 5. Sequence of solution of one edge of the ring like that shown in Figure 4. This edge has more 
points than the edge shown in Figure 4 for clarity of exposition. First, the points that are just outboard 
of those at a relative minimum are solved by equation (6). Next, we sweep to the right and solve the 
points from each relative minimum until either a relative maximum or the edge is encountered. Finally, 
we sweep to the left from each relative minimum until reaching a relative maximum or edge. These three 
steps will find the times for the entire edge. 
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FIG. 6. The accuracy of the extrapolation given by equation (6). The horizontal and vertical co- 
ordinates, plotted on log scale, indicate the horizontal and vertical distance to the center of curvature of 
the wavefront incident on the three points whose timing is known. The size of the symbols indicates the 
error in the extrapolation of travel time to the fourth point divided by the hs, where h is the grid spacing 
and s is the slowness, so the percentage represents the timing error divided by the transit time across 
the cell. 

RAYTRACING TEST 

Although uniform media are useful for checking accuracy, computing accurate 

travel times for uniform media is not  useful. The most  challenging test is the 

comparison of this finite-difference scheme and a raytracing scheme (from Stork, 

1988) for a medium with a strongly varying velocity. The raytracer divides each 

square of a discretely sampled velocity grid into two triangles each with linear 

gradients. The ray path  across each triangle is the arc of a circle, which may be 

solved analytically. A random medium with 5 per cent RMS velocity variation is 

sampled on a grid tha t  has 128 by 128 grid points. The correlation distance is 20 

grid points. The velocity variation in this model are shown in Figure 7. The source 

is placed at the grid point  (64, 120), and each of the 128 points at the top surface is 

a receiver. 

The travel times through this structure range from 118 to 136 seconds when a 

grid spacing of 1 km and mean velocity of 1 km/sec are chosen. The computed 
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t r a v e l  t i m e s  for  a u n i f o r m  ve loc i ty  a n d  for  t he  v a r i a b l e  ve loc i ty  s t r u c t u r e  a re  

c o m p a r e d  in  F i g u r e  8. 

F igu re  9 shows  t h e  d i f f e rences  b e t w e e n  t h e  r e su l t s  of  t h e  r a y t r a c i n g  a n d  t h e  

f i n i t e -d i f f e r ence  c a l c u l a t i o n s  u s ing  b o t h  t h e  m i x e d  s cheme  [equa t ions  (3) a n d  (5)] 

a n d  t h e  s i m p l e  s c h e m e  [only  e q u a t i o n  (3) ]. T h e  d i f fe rences  w o u l d  be  d i f f icu l t  to  see 

0 V e l o c i t y  m o d e l  6 4  1 2 8  

FIG. 7. The velocity model used to compare the finite-difference travel times with the raytraeing 
travel times. Filled circles represent fast velocity, hollow circles show slow velocity, and larger circles 
indicate more anomalous velocities. The RMS velocity variation is 5 per cent, and the grid has 128 by 
128 points, although it is resampled for this figure. The correlation length is 20 grid points. The open 
star shows the source location, and the heavy line across the top represents the line of 128 receivers. 

- 140 seconds 

Travel times // 

I / 

Y - 120 seconds 
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Offset 64 Offset 128 

Fro. 8. Comparison of travel times through a medium with a uniform velocity and through the 
variable velocity medium shown in Figure 7 for the 128 receivers located in Figure 7. 
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FIG. 9. Differences between raytracing and finite-difference results for the 128 receivers located in 
Figure 7. The two curves at the top show the differences for a model with a uniform velocity of 1.0 
km/sec. The two curves at the bottom are derived with the variable velocity medium shown in Figure 7. 
The "mixed" scheme applies the finite-difference algorithm when the wavefront is flat, and the circular- 
wavefront algorithm when it is curved. The "simple" scheme uses the finite-difference algorithm in all 
cases. 

on the scale of Figure 8. The variable velocity field is interpolated with linear 

gradients by the raytracer and simply averaged by the finite-difference method. The 

two methods of interpolation do not appear to affect the travel times noticeably, 

since the differences between the methods for the uniform and variable velocity 

cases have a similar amplitude and pattern, and the methods of interpolation 

produce different velocity fields in the variable velocity case but the same field in 

the uniform case. The differences are close to the round-off error of the single- 

precision numbers on the computer, as may be seen by the discrete nature of the 

differences. 

In summary, simply using equation (3), the errors are, at most, 0.1 per cent. If 

the solution to equations (4a), (4b), and (4c) is used when the wavefront is strongly 

curved, the error is reduced to 0.03 per cent, at most. The accuracy would improve 

with a finer grid. 

Not only is this finite-difference scheme quite accurate, but it found travel times 

at the four locations for which the powerful raytracer failed, which may be shadow 

zones, and for one location where the raytracer missed the first arrival and returned 

a later time. The simple scheme required 30 seconds, the mixed scheme required 90 

seconds, while the raytracer required 1800 seconds of CPU time. Also, the finite- 

difference schemes returned the travel times to all 16,384 (128 times 128) grid 

points, while the raytracing only returned travel times to the 128 grid points on the 

surface. The velocity structure of Figure 7 is a complicated and therefore difficult 

model for raytracing, but it serves to illustrate the simplicity and power of the 

finite-difference scheme. 
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APPLICATIONS 

Earthquake location. The problem of finding accurate locations for earthquakes 

in laterally varying structures has inspired many approximate schemes. The original 

approach was to solve for the set of station corrections that minimize the travel- 

time residuals from the best-fitting locations for a set of earthquakes (Dewey, 1971). 

Another approach is to apply station corrections based on delays observed for near- 

vertical teleseismic arrivals to correct for near-surface as well as deeper laterally 

varying structures (see Doser and Kanamori, 1986, for example). A third way to 

reduce the errors that result from not properly considering the effect of laterally 

varying structure is to put more reliance on nearby stations while using the vertical 

velocity structure inferred near the earthquake. 

The use of raytracing to compute the travel times has been tried with good results 

for limited sets of earthquakes. The three limitations mentioned above arise, namely, 

large computer costs, problems with multipathing, and no arrivals in the shadow 

zones. Perturbation methods and automated searching algorithms can speed the 

raytracing process (Prothero et al., 1987, Um and Thurber, 1987), and approxima- 

tions can effectively reduce the calculations to two dimensions (Thurber, 1981). 

Still, the process is too slow to allow what the finite-difference calculation allows: 

the calculation of travel times from each station to the entire volume. A direct 

search over the entire volume of possible locations is then possible to see which 

location best fits the observed travel times. A direct search has several advantages; 

a global minimum to the misfit is assured and the error as a function of location 

will give a direct estimate of the uncertainty about the best location. 

Kirchhof[ migration. Kirchhoff migration is a technique used primarily by the oil 

industry to convert the suite of seismograms from a standard reflection survey 

into a cross-sectional image of the location of structures that reflect seismic energy 

(see p. 252 in Yilmaz, 1987, for example). In essence, the energy at each point in 

time on each seismogram (at each receiver, for each shot), is distributed over all 

possible scatterers. The possible scatterers form a roughly elliptical surface that is 

the loci of points where the travel time from the source to the point plus the time 

from the point to the receiver adds up to the time after the shot the energy is 

observed. 

The scheme thus requires the travel times between all sources and all receivers 

and every point in space that might have scattered energy. A calculation of this 

magnitude is beyond the application of raytracing with present computers. If the 

velocity structure is assumed to be layered, then the travel time is a function only 

of source or receiver depth (usually zero), scatterer depth, and range to the scatterer, 

and it no longer depends on absolute horizontal position. In this case, the travel 

time for every path may be computed simply by the conservation of ray parameter. 

This is the approach employed by Louie (1987), for example, to examine near- 

vertical reflectors near Parkfield for a reflection profile that crossed the San Andreas 

fault. 

With the scheme proposed in this note, laterally as well as vertically varying 

velocity structure may be readily incorporated in such a Kirchhoff inversion. I am 

investigating this possibility for a fault zone where the velocity structure is known 

to greatly differ from one side to the other. The amplitude of the first arrival would 

also be helpful in the Kirchhoff inversion. Since amplitude follows a differential 

equation similar to equation (1), which relates travel time to velocity, I am also 
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Fie. 10. Location of the wavefront at 3-sec intervals when the source is at the surface of a 30-km 
thick layer with velocity 6.0 km/sec that is underlain by an 8.0-km/sec half-space. Minimum travel time 
paths from a source at A to receivers at B1, B2, and B3 are also shown. 

considering whether  it is feasible to compute  the ampli tude as well as the travel  

t ime on a numerical  grid. 

Tomographic applications. Once the t ravel  t imes are computed,  the ray pa ths  

with the m i n i m u m  travel  t ime can be found by following the  s teepest  gradient  in 

t ravel  t ime f rom the receiver back  to the source. These  rays are not  necessari ly 

geometric  rays, since they  can also be refract ions or diffractions. These  types of 

pa ths  cannot  be found by ray t rac ing  forward f rom the source to the receiver, even 

if the t ravel  t imes  are known. Once a diffraction or refract ion branches  off f rom a 

geometric  ray, it can serve as the source for an entire family of geometric rays. This  

is mos t  easily seen in the famil iar  case of a refract ion along the top of a high- 

velocity half-space below a low-velocity layer as shown in Figure 10. One rays goes 

into the refraction,  but  m a n y  rays come out, as shown in Figure 10, and shooting 

even a fan of rays to find the  pa th  along which energy travels  f rom A to B is 

difficult. Figure 10 also shows a be t te r  way to find the pa th  given the t ravel  times; 

follow the gradient  in t ravel  t ime f rom B back to A. 

Once the t iming  and  ray pa ths  can be found for first  arrivals through an arb i t ra ry  

velocity s t ructure  in a routine way, it is easy to set up a tomographic  inversion for 

the  velocity structure.  I t  is par t icular ly  easy to invest igate the resolution and  

stabil i ty of  the inversion process. Since first  arrivals follow the fastest  path,  and 

tomographic  inversions main ly  use first  arrivals,  when do the ray pa ths  bunch  up 

in the fast  regions and  miss some slow regions entirely, and what  ar t i facts  appear  

when a tomographic  inversion encounters  such problems? 

Finite difference speed-up. Knowledge of the t ravel  t ime to every point  in a 

numerical  grid can aid in schemes like finite-difference wave s imulat ion tha t  also 

use a numerical  grid. As Boore (1972) states, there is no need to compute  the wave 

field before the  first  arrival,  since it is uni formly zero. Also, if  one is in teres ted only 

in the first  arrivals,  there  is no need to compute  the wave field more t han  a few 

seconds behind  the first  arrival. The  finite-difference scheme presented above 

provides the  t iming for every point  in the grid, which is the informat ion  needed to 
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FIG. 11. Window of space that the direct arrival passed through between 13 and 17 seconds after the 
origin time for the same velocity model as was used for Figure 10. 
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FIG. 12. Comparison of seismograms that result when 3, 5, 9 and 15 seconds behind the wave front 
are included in the finite-difference calculation. The same velocity model is used as in Figure 10. 

t u r n  on  t h e  f i n i t e -d i f f e r ence  c a l c u l a t i o n  j u s t  be fo re  t h e  f i r s t  a r r i va l  a n d  t u r n  i t  off  

a f t e r  t he  w i n d o w  of  i n t e r e s t .  

T h e  cos t  o f  i n c l u d i n g  t h e  t r a v e l  t i m e s  in  f i n i t e -d i f f e r ence  c a l c u l a t i ons  is t he  

n e c e s s i t y  o f  k e e p i n g  t h e  t r a v e l - t i m e  a r r a y  in  m e m o r y  as  wel l  as  t h e  t h r e e  to  seven  

o t h e r  d i s p l a c e m e n t  a n d  m e d i a  p a r a m e t e r  a r r ays .  T h e  a d d i t i o n a l  a l ge b ra  to  keep  t h e  

f i n i t e -d i f f e r ence  c a l c u l a t i o n  w i n d o w e d  is negl ig ib le .  T h e  cos t  t h e n  is a 15 to  40 p e r  

c e n t  i nc rea se  in  t h e  m e m o r y  r e q u i r e m e n t .  T h e  sav ings  f rom reduc ing  t h e  w i n d o w  
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in which the finite-difference calculation is executed typically runs from a factor of 

three to a factor of 20, depending on the size of the run and the time after the first 

arrival during which waveforms are desired. 

For finite-difference runs simulating P and SH first arrivals that travel down 

along slabs (Vidale, 1987), windowing reduces the computer time required by a 

factor of ten. The cost of producing the travel time field is small compared to that 

of the finite difference run. 

Figure 11 shows the portion of the finite-difference grid that  is active 17 seconds 

after the origin time when a window 4-sec wide is used. The same crustal model is 

used as above. Only a small fraction of the grid is active at any given time. Figure 

12 shows the result of using windows of width 3, 5, 9, and 15 seconds. The three 

arrivals seen are the diffraction along the Moho (PMP), the direct P wave in the 

crust (P), and the crustal reverberations, starting with a single reflection off the 

Moho (ProP). From this and other experiments, it is clear that an accurate full- 

wave solution is computed from the first arrival until the end of the window. 

CONCLUSIONS 

The finite-difference scheme outlined herein is a computationally quick, accurate 

method to calculate a field of travel times. It may be used in numerous applications, 

and has several advantages over raytracing methods. Arbitrarily complicated veloc- 

ity structures may be used. The first arrival is automatically followed and later, 

multipathed arrivals are ignored. The scheme naturally follows diffractions if they 

are the first arrivals, even through shadow zones. 
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