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SUMMARY 
We present a new massively parallel method for computation of first arrival times in 
arbitrary velocity models. An implementation on conventional sequential computers 
is also proposed. 

This method relies on a systematic application of Huygens’ principle in the finite 
difference approximation. Such an approach explicitly takes into account the 
existence of different propagation modes (transmitted and diffracted body waves, 
head waves). Local discontinuities of the time gradient in the first arrival time field 
(e.g., caustics) are built as intersections of locally independent wavefronts. As a 
consequence, the proposed method provides accurate first traveltimes in the 
presence of extremely severe, arbitrarily shaped velocity contrasts. 

Associated with a simple procedure which accurately traces rays in the obtained 
time field, this method provides a very fast tool for a large spectrum of seismic and 
seismological problems. 

We show moreover that this method may also be used to obtain several arrivals at 
a given receiver, when the model contains reflectors. This possibility significantly 
extends the domain of potential geophysical applications. 

Key words: finite difference, massively parallel computation, ray tracing, seismic 
waves, traveltimes. 

INTRODUCTION 

Traveltimes for seismic waves are classically computed with 
ray tracing techniques. Conversely, graphical methods 
devoted to wavefront tracing on simple examples were 
proposed by Thornburgh as early as 1930, and further 
generalized by Riznichenko (1946) to the case of layered 
media. Recently, Vidale (1988, 1990) proposed a general 
wavefront tracing technique based on a finite difference 
approximation of the eikonal equation. Quickly acknowl- 
edged as a new and promising approach, Vidale’s first paper 
opened the way to several recent studies addressing the 
same question in a variety of ways. Saito (1989, 1990) and 
Moser (1989) use the graph theory, whereas Van Trier & 
Symes (1990, 1991) solve a Hamiltonian representation of 
the eikonal equation. Qin et al. (1990) propose an 
improvement of Vidale’s original algorithm. 

These methods are only devoted to computation of first 
traveltimes. According to Van Trier & Symes (1991), this 
limitation intrinsically comes from mathematical properties 

of the eikonal equation. As a consequence, on a given 
model, the finite difference approach should fail to provide 
several amval times at a given receiver. Although this 
statement relies on an unproved mathematical conjecture, it 
implies that Vidale’s approach should certainly not be 
considered as a mere substitute to ray tracing. Not- 
withstanding this limitation, a large spectrum of potential 
applications of a fast first traveltime computation method to 
seismic and seismological problems was immediately 
identified by Vidale. In practice, first applications published 
were devoted to earthquake location (Nelson & Vidale 
1990). 

However, all existing finite difference methods up to now 
encounter serious difficulties when applied to models 
containing sharp first-order velocity contrasts. Moreover, as 
mentioned by Van Trier & Symes, Vidale’s algorithm 
cannot be implemented on vectorial or parallel computers, 
although some applications of this method (e.g., to seismic 
tomography) might be computationally very intensive. 

In this paper, we propose a new finite difference 
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algorithm which overcomes both difficulties. This method 
may be applied to virtually any velocity model in 2-D as well 
as 3-D. Step velocity contrasts as high as 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 10, whatever 
their shape, are correctly taken into account. Moreover, this 
algorithm is explicitly designed as a massively parallel 
scheme, although it may also simply be implemented on a 
conventional computer. 

In the following section, we introduce the computational 
method, and discuss its accuracy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAposteriori ray tracing is 
then described. Some associated tools designed to extend 
the possible uses of such method are then discussed. Finally, 
we briefly present a few examples of geophysical 
applications. 

METHOD 

This section presents a new finite difference algorithm 
devoted to computation of first arrival times in virtually any 
velocity model. Although this method is inspired from 
Vidale’s (1988, 1990) approach, its basic principles are 
fundamentally different. 

Physical principles for fust arrival times computation 

In the ray approximation, wave propagation is described by 
the eikonal equation: 

(Vt)’ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2 

where s(x) is the slowness of the medium (inverse of wave 
velocity) and t ( x )  represents the arrival time of a wavefront 
at point x. According to the classical ray approximation 
(asymptotic approximation of the wave equation at infinite 
frequency), wavefronts are treated as propagating discon- 
tinuities (represented as isochrons). Vidale’s approach relies 
on a finite difference approximation of the eikonal equation. 
With this approach, wavefronts rather than rays are 
propagated in the model. In the following paragraphs, we 
shall use alternately the ray viewpoint and the wavefront 
viewpoint, although, basically, the method does not involve 
the notion of ray. Both viewpoints carry exactly the same 
information, i.e., a description of arrival time field t ( x ) .  

Computation of first amval times with ray tracing in 
heterogeneous media is difficult in part because any point in 
the model receives an unpredictable number of rays, among 
which only one is to be picked. In many cases, rays traced 
from the source may never reach certain regions of the 
medium (shadow zones), where signals received are 
diffracted by some localized secondary source. Ray tracing 
in shadow zones may then only be achieved at the expense 
of an explicit diagnosis of diffraction. The use of finite 
differences does not suppress these problems: a change in 
mathematical method does not change the nature of physical 
difficulties to be solved, but may only provide more efficient 
tools. 

This simple preliminary remark explains almost totally 
why Vidale’s algorithm fails in very contrasted models. 
Without further precautions, a plain finite difference 
approximation of the eikonal equation implicitly consists in 
mathematically propagating a single wavefront in the model, 
whereas several locally independent wavefronts may in fact 
reach any point, As a consequence, the algorithm silently 

mixes information related to these wavefronts, which may 
lead to mathematically conflicting situations (in practice, 
negative square root arguments). For this reason, the 
proposed algorithm is not, as Vidale’s method, a simple 
finite difference approximation of the eikonal equation in 
the sense that multiple arrivals at any point are 
systematically considered. A first arrival criterion is then 
used in order to pick the first one. 

Such approach explicitly takes into account the fact that 
first arrival time fields usually contain discontinuities of the 
time gradient (e.g., caustics) so that they may not be seen, 
from a mathematical viewpoint, as regular solutions of the 
eikonal equation. The solution adopted here does not 
involve the mathematical conjecture proposed by Van Trier 
& Symes (1991) according to which the generalized 
(viscosity) solution of the eikonal equation picked by plain 
finite differences is the first arrival time field. With our 
approach, any discontinuity of the time gradient explicitly 
results from the intersection of several regular solutions 
(i.e., several independent wavefronts). 

Physical representation of the slowmess model 

In order to understand properly the physics of propagation 
in the model, it is necessary to adopt a physical 
representation of the discrete model on which computations 
rake place. In opposition with Vidale’s description, we shall 
consider the discretization of the slowness model as a 
physical approximation: the real model is replaced by a 
virtual model in which space is paved by constant velocity 
materials. Computation takes place on this approximate 
model, so that problems of propagation are non-trivial only 
at mesh boundaries. 

The accuracy of this initial approximation essentially 
depends on mesh spacing. Because, in practice, this method 
will be applied to band-limited signals, mesh spacing should 
be chosen according to the actual wavelength of the real 
signal, which, in turn, constrains the accuracy of ray 
approximation in a given model, or, conversely, the 
acceptable spatial resolution of model description. As an 
initial rule, mesh spacing should be at least one order of 
magnitude smaller than signal wavelength which, in turn, 
should be smaller than characteristic dimensions of slowness 
anomalies considered. 

On the basis of this physical representation, the problem 
to be solved may now be formulated unambiguously: 
consider a model consisting of cubic meshes (or square 
meshes in 2-D) in which the slowness s is constant. Let h be 
the mesh spacing. A source located anywhere in the model 
emits an impulse at time t = 0 .  At what time does each 
grid-point receive the first signal? This formulation implies 
that for n,n,n, meshes, (n, + l)(n, + l)(n, + 1) times are to 
be computed. 

Two steps are required in order to build the 
corresponding computational scheme. The use of finite 
differences implies that computations are to be thought of as 
local: the arrival time at a given grid-point only depends on 
arrival times at its neighbours and the local values of 
slowness. In the first step, this local computation must be 
designed. The second step will address the order in which 
arrival times are computed, i.e., how do we propagate 
computations? Vidale only defined conventional marching 
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procedures: we shall show that different strategies are 
available. 

h a 1  computation of arrival times 

Huygens ’principle and plane wavefront approximation 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 shows the data structures attached to a point in 2-D 
(eight neighbours, four values of slowness) and 3-D (26 
neighbours, eight values of slowness). The local problem 
may be formulated as follows: considering that first arrival 
times are known at every neighbour, how do we estimate 
first arrival time at the current grid-point by finite 
differences? This question is to be solved on a purely local 
basis, without any reference to global wavefront propaga- 
tion. In particular, the position of the source with respect to 
the current point needs not be known, even approximately. 

This local problem may be solved by the means of 
Huygens’ principle. As shown in Fig. 1, we shall consider 
that the current point is surrounded by a continuous set of 
secondary sources. The loci of these sources define a square 
in 2-D, a cubic box in 3-D. Huygens’ principle states that 
every point on these boundaries acts as a secondary source 
emitting an impulse at the moment it is reached by the first 
arrival. The principle of local computation thus consists of 
timing all arrivals at the current point from this local set of 
Huygens’ sources, and picking the first one. 

For this purpose, one more approximation is needed 
because only very few of these secondary sources are 
actually timed, i.e., the current point’s neighbours, whereas 
all of them should be propertly timed in order to apply 
Huygens’ principle. In 2-D, we timed sources between two 
neighbour grid-points by linear interpolation between their 
allocated times. In 3-D, we used the same approach, but 
then, several interpolations are possible because interpola- 
tion is overdetermined by the knowledge of arrival times at 
the four corners of each interface. This overdetermination 
could be avoided by the choice of a more complex 
interpolation (e.g., polynomial), but this choice would imply 

Figure 1. Data structures used in 2-D and 3-D. First arrival time is 
computed at the central grid-point (current point). Boundaries of 
the surrounding box are considered as a continuous set of Huygens’ 
sources. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 
F i r e  2. Sketch of wavelets emitted by an interface in 2-D. The 
corresponding wavefront is built as their envelope. When 
intermediate secondary sources are timed by linear interpolation, 
this wavefront is partly plane (‘illuminated’ zone), partly cylindrical 
(single wavelet emitted by an extremity of the interface). 

some sort of smoothing of the local time field. As none of 
these interpolations appears physically better, we adopted 
the most simple (and computationally economic) solution: at 
any point on an interface, several linear interpolations 
between times at three corners were estimated and the 
lowest one was picked. Another advantage of this solution is 
its very simple interpretation in terms of a physical 
approximation. Linear interpolation between grid-points 
may be seen as a local plane wavefront approximation. Fig. 
2 shows in what sense these approximations are linked. 

For this reason, and for a matter of clarity, we shall now 
abandon Huygens’ principle as an explanating tool of the 
local computational scheme and rather describe it in terms 
of propagation of locally plane wavefronts. These two 
explanations are equivalent, but the following one appeals 
to more classical views in terms of propagation in the ray 
approximation. In particular, it will illustrate how this 
approach explicitly deals with different propagation modes, 
i.e., body waves, head waves, diffraction by point 
diffractors. 

Clearly, the local plane wavefront approximation fails at 
the vicinity of the source, but this imprecision will only be 
discussed later, when initialization procedures are con- 
sidered. In the following paragraphs, the source is implicitly 
considered to be far from the current point. 

Transmission stencils in 1-D, 2-D and 3-D 

In the discrete model, transmission through interfaces is by 
far the most frequent process by which energy travels from a 
mesh to its neighbours. For the sake of clarity, we shall first 
examine the situation in 2-D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2-0 transmission. In 2-D, the time difference between two 
neighbour grid-points M and N refers to the transmission of 
a locally plane wavefront through interface MN. As shown 
in Fig. 3, the knowledge of this time difference leaves an 
ambiguity on the direction of propagation. If s is the value 
of slowness in one of the adjacent meshes, two estimates of 
the time gradient satisfylng the eikonal equation in this 
mesh may be computed: 

_-  -- 

The missing information is the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAatlay, which 
entirely defines whether the wavefront is transmitted to the 
current mesh, or on the contrary, to its neighbour. When 
this information is known, an estimate of arrival time at 
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Fig.= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Transmission in 2-D. When only points M and N are 
timed, the direction of propagation is not entirely defined, 
Moreover, if point P is illuminated by the transmitted plane 
wavefront, slowness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs‘ in mesh NPQR may be so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlow as to imply 
the generation of a head wave from N to P. 

point P (see Fig. 3) may be computed if point P is reached 
by this wavefront, i.e. if 

(i) o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtM) 5 h ~ / ~ ,  
(ii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAatlay 2 0, then 

tp = t N  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(hs)’ - ( f N  - tM)2. 

This fundamental 2-D transmission stencil is conditional: 
an ‘illumination condition’ must be verified in order to 
assess transmission from the interface to the current point. 
This condition tests whether (i) a ray connects interface MN 
to point P, and (ii) actual propagation (i.e., slowness vector) 
is oriented from MN to P. When put in terms of Huygens’ 
principle, the only condition which appears strictly necessary 
is the first one. This is a very important simplification, which 
may also be interpreted as a consequence of Fermat’s 
principle. An error on the sign of dtldy is harmless because, 
in such case, the estimated arrival time in P results from 
integration of slowness along a path which violates the 
eikonal equation. Fermat’s principle then states that this 
arrival time is certainly superior or equal to the first arrival 
time at point P. For this reason, and under the condition 
that all relevant estimates of arrival times at point P are 
exhaustively computed, the condition on the sign of atlay 
may be abandoned. As a consequence, the transmission 
stencil in 2-D is entirely defined by the knowledge of a 
single time difference. 

In the 2-D data structure defined in Fig. 1, eight different 
estimates of arrival time at the current point are potentially 
to be computed on the basis of 2-D transmission. 

1-D transmission: generation and propagation of head waves 
in 2-D. Suppose, as in Fig. 3, that arrival time t at point P 
was estimated by 2-D transmission through interface MN. 
Clearly, t does not depend on the value s ’  of slowness in the 
adjacent mesh NPQR. In particular, s ’  may be such that: 

fp - 1, > h’. 

Such a relation simply means that the incidence of the 
transmitted wavefront on interface NP exceeds the critical 
angle. In this case, a head wave travelling along interface 
NP with slowness s‘ must be generated (or transmitted). As 
a consequence, point P is reached by an earlier arrival at 
time 

tp = t ,  + hs‘. 

This relation defines a 1-D transmission stencil which 
physically deals with generation and transmission of 
interface waves in 2-D. A precaution must thus be added in 
order to prevent artifacts due to spurious head wave 
generation at the frontiers of the model: slowness is treated 
as infinite at the model’s boundaries (analogous to an 
absorbing boundary condition). With this precaution, the 
I-D transmission stencil is defined as follows: suppose that 
arrival time is known at point N, and let P be a first 
neighbour of N, s and s’ the values of slowness in the two 
adjacent meshes, then the 1-D transmission estimate of 
arrival time at point P is 

t ,  = t, + h min (s, s’). 

This stencil is unconditional because, as explained earlier, 
Fermat’s principle states that if no head wave actually 
propagates from N to P, then this time estimate is certainly 
superior to the first arrival time we are seeking. 

In the 2-D data structure, four independent 1-D estimates 
must thus be computed as potential first arrival times at the 
current point. 

Transmission in 3-0.  In 3-D, in order to stick to the plane 
wavefront approximation, several independent plane wave- 
fronts are considered to be transmitted through each 
interface. Fig. 4 shows that four stencils based on three 
different topologies are applicable for estimation of arrival 
time at point R by 3-D transmission through interface 
MNPQ. Each stencil implicitly deals with the transmission 
of a locally plane wavefront through one half of the 
interface. Each plane wavefront is defined by arrival times 
at three comers of the transmitting interface. As in 2-D, 
these stencils are conditional, the condition being that a ray 
path actually links the current point R to the half interface 
considered. Thanks to Fermat’s principle, the sign of aria2 
is not tested so that each stencil only depends on three 
arrival times. 

The four stencils are: 

MNP- R: if 

P P 

N N 

P 

N 

Figure 4. Transmission in 3-D. Four locally plane wavefronts are 
considered to be transmitted through interface MNPQ. Each 
wavefront involves arrival times at three corners of the interface. 
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then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tR  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= tN + fp  - tM  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(h)’ - (tN - tM)’ - (tp - tM)‘; 

QNP+R: if 

s . t Q ,  tp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 tQ, 

(tQ - I,)’ + (tQ - tP)2 + (tQ - tN)(tQ - IP) ( h ) 2 / 2 ~  

then 

1, = tQ + V(h)’ - (to - tN)’ - ( f Q  - tp)’; 

NMQ-, R: if 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (IN - tM) 5 (fQ - fN)r 

2(t, - tN)’ + (tN - tM)2 (hS)*, 
then 

t, = tQ + V(h)2  - (lQ - !N)’ - (fN - tM)’; 

PMQ+ R: if 
0 _c (tN - tM) 5 (to - tN), 

2(tQ - tN)’ + (fN - tM)’ 5 (h)’, 

then 

rR = ro + V(h)* - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IQ - rpl2 - (tp - tMl2. 

In the 3-D data structure, 24 interfaces are considered, so 
that up to 96 independent transmission stencils provide 
potential first arrival times at the current point. 

Head wave generation and propagation in 3-0. Head wave 
generation and propagation in 3-D is practically identical to 
the 2-D problem embedded in 3-D. As in 2-D, any potential 
arrival at the arrival may be accurately picked. As a 
consequence, 2-D and 1-D transmission stencils defined 
earlier are also applicable to the 3-D case. According to 
their physical interpretation, the 24 2-D transmission stencils 
in 3-D use the lower value of slowness in the two adjacent 
meshes. In the same way, the six 1-D transmission stencils 
use the lowest value of slowness in the four meshes 
concerned. 

Diffracted wavefronts 

Figure 5 shows a 2-D wavefront pattern in which point P is 
located in a local shadow zone. Two wavefronts are actually 
transmitted to the current mesh, but none of them reaches 
point P. In the sense of finite differences, the physical 
interpretation of this pattern is immediate: point M as a 
point diffractor. P receives a diffracted wavefront emitted by 
this secondary source, so that the corresponding arrival time 
is 

tp = 1, + h*. 
This relation defines the 2-D diffraction stencil. Once 

more, it can be computed systematically because its result is 
superior or equal to the first arrival time at the current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P 

aIzl H N 

-re 5. Local shadow zone in 2-D. Comer M acts as a secondary 
source. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Finite difference computation of traveltimes 275 

Fire 6. Diffracted body waves and diffracted head wave in 3-D. 

point. This 2-D stencil must also be used in the 3-D case, in 
order to complete all aspects of wave propagation along 
interfaces (head waves). In this case (Fig. 6), the lower 
value of slowness in the two meshes adjacent to the 
interface considered is used. 

The 3-D diffraction stencil (Fig. 6) consists in direct 
arrival to the current point from any of the eight corners of 
the 3-D data structure. It must be systematically computed 
in order to complete the examination of all possible arrivals 
at the current point. With the notations defined in Fig. 4: 

t ,  = t M  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh s f i .  

Edge diffraction must also be taken into account in 3-D. 
24 diffracting edges are thus considered in the 3-D data 
structure. As an example, edge MN in Fig. 4 must be 
considered as a set of diffracting secondary sources when 
point R is timed. The corresponding stencil picks the earliest 
arrival from this set. The associated condition simply 
ensures that the picked arrival comes from a point located 
within edge limits: if 

Summary: local computation in 2-0 and 3-0 

The local computational scheme may now be summarized as 
follows. 

In 2-D, when arrival times are known at each of the eight 
neighbours, 16 independent stencils are used: four 1-D 
transmitted arrivals (head waves), eight 2-D transmitted 
plane wavefronts (conditional), and four 2-D diffracted 
arrivals. 

In 3-D, on the basis of 26 known arrival times at current 
point’s neighbours, up to 170 stencils are applicable: six 1-D 
transmitted arrivals, 24 2-D transmitted arrivals (condi- 
tional), 12 2-D diffracted arrivals (1-D and 2-D stencils deal 
with head waves), 96 3-D transmitted plane wavefronts 
(conditional), and 32 3-D diffracted arrivals. 

The local computation simply consists of computing all 
these time estimates and returning the lowest one. Apart 
from 2-D and 3-D transmission stencils, all other time 
estimates may be seen as direct arrivals from each 
neighbour. Their computation is immediate so that 
computational cost is mostly due to transmission stencils 
(square root extraction). In practice, however, most 
illumination conditions are usually not verified, so that only 
a few transmitted estimates are actually computed at each 
point. 
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b 

Figure 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWavefront patterns in 2-D. A plane wavefront 
propagating from the upper left region of the model is incident on a 
square slowness anomaly. Three examples illustrate how arrival 
time is evaluated at the lower right corner. When the anomaly is 
fast (a and b), 2-D transmission or diffraction stencils are involved 
according to angle of incidence. In (c), the anomaly is slow, so that 
a head wave is generated along the right side of the anomaly. 

Figure 7 shows a few typical 2-D patterns which are 
commonly encountered in a mesh during local computation. 
This figure summarizes the role and physical interpretation 
of the different stencils used. In Figs 7(a) and (b), a plane 
wavefront is incident on a fast anomaly. According to the 
angle of incidence, the first arrival time at the lower right 
corner of the anomaly results from transmission through an 
interface (Fig. 7a) or di&action by a corner (Fig. 7b). In 
Fig. 7(c), the anomaly is slow so that the first arrival time at 
the same point results from a head wave travelling-along an 
interface with the velocity of the fast medium. 

Propagation of computations 

As built precedently, the local computational scheme may 
straightfonvardly be implemented on a massively parallel 
computer. The principle is then extremely simple and 
efficient. Nevertheless, for practical reasons, implementa- 
tion on conventional sequential computers is also discussed. 

In fact, most of the problems have already been solved by 
Vidale (1988, 1990), although on the basis of a radically 
different local computational scheme. In this section, for 
simplicity, the source will be considered located at a 
grid-point. Some generalizations are presented later, 
together with discussion of accuracy and initialization 
procedures. 

Massively parallel implementation 

On a massively parallel computer, computation of first 
arrival times may be seen as a mere relaxation process. 
Initially, times are infinite everywhere, zero at the source 
point. Every grid-point is associated with a processor, so 
that during an elementary iteration, all grid-points 
simultaneously compute their arrival time according to the 
state of their nearest neighbours. This process is repeated 
until no further update is possible: all allocated times are 
then minimum. The number of iterations needed is of the 
same order as the maximum distance (in h units) from 
source to model boundaries. The only precaution to be 
added to the local scheme is a test excluding the use of any 
difference between undefined (i.e., infinite) times during 
computations. This process was implemented in CM- 
FORTRAN on a Thinking Machines CM2 computer with 32k 
processors. Performances critically depend on optimization 
of data transfer between processors allocated to neighbour 
grid-points. On these grounds, standard CM-FORTRAN 
commands should be replaced by more efficient specialized 
procedures. 

A similar process may easily be simulated on a sequential 
computer. Although this simulation is very inefficient, it 
demonstrates the feasibility of parallel implementation. In 
this simulation, computations are treated as asynchronous. 
During an elementary iteration, grid-points are examined in 
random order until one arrival time is changed (i.e., 
lowered). Computation ends when no arrival time was 
changed at the end of an iteration. Fig. 8 shows an example 
of random propagation of computations on a very 
contrasted velocity model. Figs 8(a), (b) and (c) show three 
successive steps of computations. Grid-points are plotted as 
soon as their allocated time becomes finite. Most grid-points 
are updated several times before first arrival is actually 
obtained. The shape of the computed zone roughly 
resembles wavefront shapes as finally obtained (Fig. 8d). 

Sequential implementation 

Sequential implementation is based upon the procedures 
defined by Vidale (1988, 1990). Local computation is 
propagated according to a scheme which roughly follows the 
geometry of actual wavefront propagation in the model. 
This process tends to minimize the number of calls to the 
local computation function. In turn, this function is much 
shorter because the direction of propagation is known in 
advance, so that only three neighbours of the current point 
and three values of slowness are considered in 2-D, seven 
neighbours and four values of slowness in 3-D. Fig. 9 shows 
the simplified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ data structures used in the sequential 
implementation. A significant change with respect to 
Vidale’s algorithm comes from the fact that computations 
are allowed to propagate towards the source region in 
certain circumstances. 
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Flguc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThree steps (a, b, c) of computations with the simulated parallel implementation. Points actually reached (h i te  arrival time) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
indicated. Resulting time field (d) shows that order of computations roughly mimics propagating wavefronts. 

1 

Figue 9. Simplified 2-D and 3-D data structures used in the 
sequential implementation. A hollow circle indicates the current 
point, black dots, its relevant neighburs. Values of slowness in the 
adjacert meshes are used for proper head wave generation along 
the current mesh boundaries. 

3 

Figue 10. 2-D sequential implementation. (a) Sides of the current 
box are succesrivelv timed (note that comers are not treated Two main conditions constrain this implementation: 

(i) causality (as introduced by Vidale 1988) must be 
respected: times must be computed in increasing order, 
because all stencils actually propagate wavefronts from past 
to future; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

(ii) no potential arrival time estimate may be ignored, so 
that an accurate first arrival is properly picked: every 
propagation mode (transmitted and di&acted body waves, 
head waves) must be examined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 2-0. In 2-D, computations normally 
proceed on square rings of increasing radius centred on the 
source. More complicated procedures designed to mimic 
wavefront geometry (Qin et al. 1990) are unnecessary and 
computationally costly. Each side of the current ring is 
successively examined (Fig. 1Oa). Amval times are first 
computed in front of local time minima on the 
corresponding side of the previous ring. These points are 

separately, as in Vibale’s algorithm). (b) Order of computations 
along a side. M and m indicate local time maxima and minima on 
the last computed parallel side. (c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALocal wavefront pattern in front 
of a local time minimum. The current point is in a local shadow 
woe. (d) Time estimation at ordinary grid-points. At most five time 
estimates are evaluated (two transmissions submitted to illumina- 
tion conditions. one diffraction, two interface waves). 

those where the earliest wavefronts emerge from the 
previously computed zone. No particular stencil is necessary 
to deal with these points, as was the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase in Vidale’s 
method. On a local viewpoint, they systematically appear to 
be in a local shadow zone (diverging plane wavefronts, Fig. 
lOc), so that the point behind them (local time minimum) 
acts as a secondary source. As a consequence, arrival times 
at these points are simply computed by 1-D transmission. 

Computations are then propagated from local time 
minima to local time maxima until all arrival times are 
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computed on the current side (Fig. lob). All acceptable 
transmission and difiaction stencils are systematically 
computed. In particular, correct head wave generation 
involves the values of slowness in several meshes 
surrounding each grid-point. This local computation is 
explained in Fig. 10(d). 

Nevertheless, two remaining problems must be faced 
when a head wave is generated along the computed side, 
which, in turn, may happen if this side contains an interface 
from a slow medium to a fast medium. First, this head wave 
may provide a first arrival at other points of the current side 
regardless of the timefield pattern on the previous side, 
whereas the order of computations defined earlier is actually 
based on this pattern. For this reason, when such a head 
wave is generated (i.e., the corresponding time estimate was 
found to be minimum), it must immediately be propagated 
from the current point to the extremity of the current side, 
so that this particular arrival is certainly timed at all relevant 
grid points. Finally, once the side has been entirely timed, it 
may be necessary to update times by propagating head 
waves into the computed zone, i.e., in the reverse direction. 
For this purpose, normal propagation has to be interrupted 
when the current side computation is completed. Reverse 
propagation then begins (Fig. 11): computations proceed on 
rows parallel to the last computed side, towards the 
computed zone, until it reaches a row where no arrival time 
is lowered. Normal (outwards) propagation is then resumed. 

Reverse and normal propagations use exactly the same 
computational scheme because in zones where no head wave 
actually propagates, previously computed times will 
certainly not be lowered. 

In some cases, reverse propagation itself is not sufficient 
to come to an end: back-propagated waves may in their turn 
generate interface waves so that twice reversed propagation 
must be allowed. In principle, this process should be seen as 
recursive. Reverse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n times) propagation may provoke 
reverse (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 times) propagation. In practice, however, 
cases where n > 2  may only be encountered in extreme 
situations in which the relevance of the slowness model 
should be questioned. Anyhow, the use of a programmation 
language allowing recursivity (e.g., C language) may deal 
with this problem in a very simple way. 

This procedure avoids one of the main drawbacks in 
Vidale’s algorithm where only outwards propagation was 
considered. As confirmation of this sequential implementa- 
tion, tests showed that its results on a given model (for 
instance, the model used in Fig. 8) are bitwise identical to 
results obtained with the simulated parallel implementation. 

Implementation in 3-0.  In 3-D, computations proceed on 
cubic boxes. Principles defined in 2-D may easily be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 11. Reverse propagation. When head waves are generated 
along a side of the current box, arrival times may be updated (i.e., 
lowered) in the already computed zone. Reverse propagation 
proceeds on successive rows towards the source, until necessary. 

translated to 3-D. However, the order of computations on 
each square side of the current box appears less simple than 
in 2-D, because times computed on the preceding side may 
define a complicated topology, with hills and valleys. 
Causality implies that computations must always proceed 
‘uphill’. Although it is simple, Vidale’s (1990) solution may 
still be made more straightforward. Causality is respected 
when points on the current side are computed in order of 
increasing times allocated to points behind them. The 
simplification arises from the fact that, as in 2-D (Fig. IOa), 
edges and comers of the current box need not be treated 
separately as in Vidale’s algorithm. 

As in 2-D, head wave generation along a side provokes, 
when its computation is completed, a shift from normal 
(outwards) propagation to reverse propagation from side to 
side towards the computed zone. As in 2-D, the process of 
reverse propagation is identical to normal propagation. 

Performance enhancements. Performances of the sequen- 
tial implementation depend on the structure of the slowness 
model. For instance, computational cost may be strongly 
penalized when many reverse propagation processes are 
generated. On these grounds, the case of a simple model 
with a strong vertical velocity gradient provides a perfect 
example. In such a model, first-order reverse propagation 
may be invoked so often that many points are updated up to 
hundreds of times before the actual first arrival is obtained. 
Performances may then be dramatically improved if 
computations proceed on rectangular boxes, so that the 
potential back-propagating sides (i.e., sides perpendicular to 
velocity gradient) are as short as possible. No general rule 
may easily be defined, as the algorithm may be applied to 
any velocity structure, but in some cases, very simple rules 
of thumb may provide spectacular performance 
enhancements. 

Initialization procedures 

As local computations are based on a plane wavefront 
approximation, time estimates are quite imprecise at the 
vicinity of the source. Although in principle initialization 
might simply consist of setting zero amval time at the source 
(or computing first arrivals at the closest grid-points by ray 
tracing), an appreciable gain in precision may be obtained at 
the expense of slightly more complicated initialization 
procedures. 

When the source is surrounded with a constant velocity 
zone, direct arrivals should be computed exactly during 
initialization. A simple procedure may for instance 
determine the radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr of the largest box in which slowness is 
constant and compute direct arrivals up to box r - 1 
(because box r may contain back-propagating interfaces, it 
should be timed by finite differences). In practice, when 
r > 10h, most of the imprecision generated by the plane 
wavefront approximation is avoided. 

When the source is in heterogeneous zone, the finite 
difference scheme may be applied to a small zone around 
the source (e.g., up to radius 10h) with a smaller mesh 
spacing (e.g., h / 2 ) .  This process might even be used 
recursively. Imprecision is then concentrated into a smaller 
zone and its relative weight is strongly decreased. 

The algorithm may also be modified in order to simulate 
other kinds of sources. For instance an incident plane 
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acceptable for any practical purpose. Maximal absolute 
error represents less than 20 per cent, of the mean discrete 
time step (h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s)) associated with model discretization. 

The second model shows a smooth velocity variation. It 
provides, in addition to the question of initialization, an 
insight into the role of discretization of the slowness model. 
Fig. 13(a) shows wavefronts obtained in a model where 
velocity increases linearly with depth. The velocity ratio 
between top and bottom is 1:3. In Figs 13(b) and (c), 
relative errors on results are mapped for computations 
proceeding on 40x40 meshes and 200x200 meshes. In 
both cases, exact initialization was achieved up to radius 10h 
from the source, so that differences in precision only depend 
on the choice of mesh spacing. Fig. 13(b) shows that even a 
quite coarse grid (velocity contrasts up to 5 per cent from 
mesh to mesh) provides acceptable results. 

Another method to assess the accuracy of first arrival 
times consists of a comparison with synthetic seismograms 
computed by a full wave finite difference algorithm. We 
chose the classical model of a corner embedded in a 
homogeneous medium studied by numerous authors (e.g., 
Kelly et al. 1976; Virieux 1986). Synthetic seismograms were 
computed with a second-order acoustic method with a 
complete heterogeneous formulation so that variations of 
velocities were correctly taken into account. Fig. 14 shows 
results in the case of a fast comer. First arrival times 
computed by the proposed algorithm were superimposed on 
seismograms chosen in order to record different kinds of 
waves (transmitted, refracted and diffracted). All seismo- 
grams show very good agreement with first traveltimes 
computed by FD. 

wavefront is easily simulated by computing conventional 
traveltimes on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo borders of the model, according to the 
angle of incidence. This possibility was used for instance to 
obtain Fig. 7. As proposed by Moser (1989) other source 
configurations (e.g., the exploding reflector case) may also 
easily be implemented. 

Accuracy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtests 

The role of initialization is clearly demonstrated by accuracy 
tests. 

Rather than comparing results obtained with the proposed 
algorithm with those provided by ray tracing techniques on 
complex heterogeneous models, we tested the accuracy of 
this scheme, in a first stage, against exact solutions on 
simple models. In a second stage, comparison with first 
arrival times picked on synthetic seismograms computed by 
full wave finite differences i s  presented. 

The first model tested consists of a homogeneous layer 
lying on a homogeneous half-space with a velocity which is 
twice the velocity of the layer. Fig. 12(a) shows the 
wavefront pattern obtained by the FD computation, where 
transmitted and refracted waves are clearly identifiable. Fig. 
12(b) is a plot of relative errors in per cent with respect to 
the exact solution obtained when initialization is restrained 
to setting zero arrival time at the source. Errors far from the 
source (inherited from initial wavefront curvature) are up to 
0.5 per cent, whereas, close to the source, they reach several 
per cent. When direct amvals are computed exactly in the 
initial homogeneous zone (Fig. 12c), maximal error on the 
same model drops down to only 0.15 per cent, which is 

m ABOVE 3.5 
3.0- 3.5 
2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 3.0 
2.0 - 2.5 
1.5 ~ 2.0 
1.0- 1.5 
0.5- 1.0 

BELOW 0.5 b 

m ABOVE 0.125 

0.075- 0.100 
0.100 - 0.125 

0.050 - 0.075 
0.025 - 0.050 

C BELOW 0.025 

Figure l2. Comparison with exact solution. Velocity in the lower medium is twice as high as in the upper part. Model dimensions are 200 X 100 
meshes. (a) Wavefronts. (b) Map of relative errors (in per cent) when initialization is restricted to the source point. (c) Errors obtained when 
exact direct amvals are computed in the largest square homogeneous region surrounding the source. 
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Fiyc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison with exact solution. In this model, velocity 
increases linearly with depth by a factor 3. (a) Wavefronts. (b). (c) 
Maps of relative errors (in per cent) obtained when times are 
computed on 40 x 40 meshes (b) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 x 200 meshes (c). In both 
cases, exact initialization was achieved on 10 x 10 meshes. 

Clearly, however, the plane wavefront approximation 
does not fail only at the vicinity of the source, but also at the 
vicinity of point diffractors (secondary sources) diagnosed 
during computations. However, an exhaustive discussion of 
accuracy would involve many independent factors (local 
imprecision due to wavefront curvature, azimuthal disper- 
sion due to grid pattern, error propagation controlled by 
both local imprecision and integration path length). For this 
reason, general accuracy rules may not easily be defined, in 
order to securely propose good compromises between 
computational efficiency (memory requirements) and preci- 
sion. On a purely heuristic basis, it appears that accuracy 
critically depends on the ratio between mesh spacing and 
mean distance between (primary or secondary) sources 
involved by computations. As a consequence, accuracy is 
definitely bad when mesh spacing is of the same order as 
dimensions of slowness ahomalies in the model. In a sense, 
the rule is analogous with classical rules adopted in finite 
difference methods: mesh spacing should be small enough to 
avoid undersampling of the smallest spatial wavelengths of 
the slowness model. In principle, a systematic local 
rediscretization of the problem at the vicinity of diagnosed 
secondary sources might be included in the algorithm, but 
the computational cost of such a complication appears 
unnecessary. 

A POSTERIORI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARAY TRACING 

As proposed by Vidale (1988) and Moser (1989), rays may 
be ‘backtracked‘ from any grid-point (receiver) to the 

Flgmre 14. Comparison with MI wave finite difference computa- 
tions. Velocity in the upper right anomaly is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 per cent higher than 
in the surrounding medium. Three synthetic seismic sections are 
plotted with superimposed ticks indicating computed first arrivals. 

source, with the use of the time field obtained by finite 
difference. Shooting rays from the source would be rather 
unpractical and, moreover, numerically unstable with 
respect to the initial ray parameter. 

The ray connecting a given receiver to the source is the 
steepest path that may be found in the time field between 
these two points. Starting from the receiver, the ray is 
iteratively traced with increments opposite to the time 
gradient. For any point reached by the ray, the local time 
gradient is evaluated by a simple finite difference scheme at 
the closest grid-point or, if closer, at the centre of the mesh. 
The increment length is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh f i ,  so that the ray ‘ends’ at a 
maximum distance h from the source. 

This possibility extends the uses of the first traveltime 
computation. For instance, in tomographic inversion 
procedures, ray trajectories are needed in order to convert 
time residuals into a localized update of the slowness model. 
A posteriori ray tracing may also be used as an accurate 
visual control of the relevance of first amval time field. 
Even in the case of small errors on traveltime evaluation, 
irrelevant ray trajectories may be obtained, whereas 
wavefront patterns are much more robust with respect to 
small locations aberrations. 
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Figure 15. Rays traced in the model used in Fig. 12. 

Figure 15 shows rays ‘backtracked’ from the borders of 
the grid, for the model used in Fig. 12. Rays refracted or 
transmitted according to Snell’s law are easily identified. 
This figure shows moreover that these rays bear no 
information on a large part of the model in which the 
presence of any slow anomaly would not be detected with 
the exclusive use of first arrivals at this set of receivers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PERFORMANCE, EXTENSIONS, 
GEOPHYSICAL APPLICATIONS 

In this section, we briefly discuss different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuses and 
extensions of the proposed method. In particular, we stress 
questions which, when conveniently solved, could allow us 
to use a similar approach in order to compute signal 
amplitudes along with traveltimes. We also show that this 
method can be used to obtain reflected arrivals, so that it is 
not strictly limited to computation of first traveltimes. 

Performance in very contrasted models 

Figure 16 illustrates how the proposed algorithm correctly 
takes into account very sharp first-order discontinuities in 
slowness, even in the case of complex topologies. The 
chosen model shows, in the upper region, a homogeneous 
disc embedded in a homogeneous medium in which the 
velocity is three times faster. An oblique interface separates 
this region from a still much faster medium. A source is 
located at the upper left corner of the model and wavefronts 
are plotted. Outside the disc, the effect of this slow anomaly 
is clearly shown by the appearance of diffracted wavefronts 
in the shadow zone. Inside the disc, the slowness contrast is 
such as to provoke a closure of wavefronts because rays 
travelling around the disc and refracted backwards are faster 
than any ray traced through the slow region. Head waves 
are also properly generated along the lower interface, 
although i t  is oblique with respect to coordinate axes. All 
interfaces are simply modelled as unsmoothed broken lines, 
in agreement with the discontinuous slowness model 
representation. The imprecision associated with this 

Velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 ’0 

3.0 

120 

-re 16. First arrival time field in a model with interfaces oblique 
with respect to coordinate axes. The grid size is 128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 128. 

b 

Figure 17. Computations in the PREM earth model, discretized 
over a Cartesian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA560 x 560 grid (mesh spacing is 25 km). Slowness 
in the atmosphere was given a realistic value. (a) Wavefronts are 
plotted every 40s. (b) Rays traced (I posteriori from surface 
stations. 

representation only depends on a reasonable choice of mesh 
spacing, i.e., of spatial resolution. 

Although it is geologically irrelevant, this example shows 
that even very severe first-order contrasts raise no 
computational problem with the proposed method. This is 
also demonstrated in Fig. 17(a), where wavefronts are 
traced in the PREM earth model (Dziewonski & Anderson 
1981). In this case, slowness in the atmosphere has been 
given a realistic value, so that very sharp contrasts occur 
both at the Earth’s surface and at the core-mantle 
boundary. 

Evaluation of amplitudes: basic questions 

Figure 17(b) shows rays traced in the earth model. Most of 
the rays are refracted at the core-mantle boundary. In 
terms of the classical ray approximation (i.e., at infinite 
frequency), such rays carry rigorously no energy. In the 
same way, comparison with synthetic seismograms in Fig. 14 
shows that first arrivals may have such low amplitudes as to 
remain undetected in the presence of noise. For this reason, 
an evaluation of first arrival amplitudes would be helpful. 

Vidale & Houston (1990) proposed a computation of 
amplitudes but they acknowledged their method does not 
correctly deal with sharp velocity contrasts. They geometri- 
cally estimate local wavefront curvature using differences 
between arrival times at a grid-point from four virtual 
sources (in the 2-D case) surrounding the actual source 
point. These differences are then converted to differences in 
take-off angle for neighbour grid-points. As in Vidale’s 
algorithm, this approach does not take explicitly into 
account the presence of discontinuities of the time gradient, 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
5
/1

/2
7
1
/6

7
1
3
7
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



282 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Podvin and I .  Lecomte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that mathematical errors may be encountered in these 
regions. 

The underlying physical description of the problem may 
be summarized by a ‘transport equation’ implicitly dealing 
with P-waves (see, for instance, Jobert 1973): 

V(pA2Vt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x )  is the density and A the amplitude of 
displacement. This equation may be seen as a conservation 
of energy along a ray tube of infinitely small radius. In 
principle, computation of amplitudes needs some more 
information (density field), but may then be treated as an 
ordinary differential problem. On this basis, a sensible 
improvement should be obtained if amplitudes are 
computed either along with arrival times, or afterwards, by 
finite differences. 

This possibility is still under investigation, because the 
transport equation is an acceptable approximation only in 
regions where wavefront curvature is reasonable (Aki & 
Richards 1980; Ben Menahem & Beydoun 1985). In 
particular, this equation generates either zero or infinite 
amplitudes in regions where the time gradient is 
discontinuous. Those are the regions where Vidale & 
Houston’s method also fails. Under these circumstances, the 
classical ray approximation must be abandoned and replaced 
by the generalized ray approximation involved by the 
geometrical theory of diffraction (Keller 1965; Felsen 1984). 
Once more, changing the mathematical approach of the 
problem does not reduce the underlying physical difficulties: 
computation of amplitudes with the ray tracing philosophy 
encounters exactly the same problems. With the finite 
difference approach, the most serious problem which 
remains to be solved concerns a realistic finite difference 
evaluation of amplitudes of head waves. 

Computation of reflected arrivals 

Van Trier & Symes (1991) claim that solutions of the 
eikonal equation picked by finite differences are generalized 
(viscosity) solutions which appear systematically to be first 
arrival time fields. Although they present this statement as 
an unproved mathematical conjecture, we should already 
consider i t  as a fundamental limitation to the finite 
difference approach. In fact, it is the main reason why the 
proposed method should certainly not be considered as a 
substitute to ray tracing. 

Nevertheless, this conjecture does not state that finite 
difference computations may only provide first arrival times 
on a given model. We show here that, at the expense of 
some a priori information, several arrivals may be computed 
in some cases. 

Figure 18(a) shows a schematic model in which the 
presence of a reflector is obvious. Nevertheless, this 
statement is definitely some supplementary information, 
because the finite difference scheme simply ignores 
reflection: reflected arrivals may never be first. The principle 
for computing reflected arrivals was explained by William- 
son (1990), and also used by Aldridge & Oldenburg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1990) 
and Mtsuoka & Esaka (1990). In the sense of Huygens’ 
principle, the picked reflector may be considered as a set a 
secondary sources. The reflected field is built as the result of 
the interference of wavelets emitted by this set of secondary 
sources. This is usually assumed as a conceptual basis for 

I I 

I I 

a 

b 

C 
velocity 

m 4.8 -5.2 

m 4.1 -4.4 

[=I 2.2 -2.5 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1.8-2.2 

rn 4.4 -4.8 

2.5 - 2.8 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18. Computation of reflected arrivals. The model contains a 
(discretized) sine-shaped reflector. Both upper and lower regions 
show a vertical velocity gradient complicated by smooth 
perturbations (exponential noise). Mean velocity contrast at the 
reflector is 1 : 1.6. Grid size is 256 X 128. (a) First arrival time field 
obtained. (b), (c) Direct arrivals from source and receiver 
computed with an infinite slowness mask replacing the lower 
medium. Refracted wavefronts are avoided. (d) Rays traced after 
application of Fermat’s principle (stationary arrival times). 

migration. The reciprocity principle applied to traveltimes 
implies that source and receiver play a symmetrical part 
(this would not be true if amplitudes were to be computed). 
For a given source-receiver pair, arrival times from the 
source and from the receiver to any point of the reflector are 
then first computed. These arrival times are added at each 
point of the reflector, indicating when individual wavelets 
are recorded at the receiver. Actual reflecting points (i.e., 
points where constructive interference patterns are ob- 
tained) are finally provided by Fermat’s principle, which 
states that actual ray paths are those for which the 
traveltime from source to receiver is stationary. 

Although this process is simple, some more precautions 
must be taken, because, as shown in Fig. 18(a), first arrivals 
from source to some part of the reflector may in fact be 
interface waves travelling along its surface with the velocity 
of the underlying medium. This may be the case whenever 
this underlying medium is faster than the upper one. 
Clearly, the associated upgoing head wave is irrelevant to 
the reflection problem, which should only involve the 
slowness in the upper part of the model. In other terms, we 
must compute direct arrivals from source (and receiver) to 
reflector, although some of them may not be first amvals. 
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fact that, with the help of the recriprocity principle, arrival 
times at a given set of receivers may be very quickly 
translated, for a given velocity model, into a global cost 
function map which may be interpreted as a test of model 
accuracy: imprecision on source localization is due both to 
noise (imprecision on picked times) and model misfits. The 
associated ray fields may then be used to update the model 
iteratively. 

This is very simply achieved by computing first arrivals in a 
different model in which the underlying medium is replaced 
by a zero velocity medium. This infinite slowness mask 
prevents the generation of interface waves along the 
reflector and ensures that computed times only depend on 
the overlying slowness model. Figs lS(b) and (c) show 
wavefronts obtained with this masked computation. The 
three reflected Fermat rays obtained are represented in Fig. 
18(d) for visualization of the result, but no ray tracing is 
actually involved in this method. 

In this particular case, up to five different arrivals may 
thus be computed at the receiver: refracted (first), direct 
and three reflected events. It should be noted that nothing 
implies that these are the five first events recorded at the 
receiver, because, for example, some other non-negligible 
reflector may have been overlooked in the upper region of 
the model. 

For a set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn sources and receivers this method involves n 
first traveltimes computations (which may easily be achieved 
in parallel), so that the computational cost is reasonable. It 
allows computation of reflected arrival times in very 
complex slowness models containing virtually any reflector 
morphology. Moreover, with the use of infinite slowness 
masks, the same approach might be used in order to obtain 
a series of refracted and reflected arrivals in models 
consisting of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa stack of layers. No constraint would then be 
imposed on the complexity of the slowness model adopted 
between two successive reflectors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Geophysical applications 

In his first paper, Vidale (1988) already pointed out most of 
the various potential applications of a very fast first 
traveltime computation method. The combination of FD 
traveltime computation and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa posteriori ray tracing makes 
the proposed method of potential tool for many geophysical 
applications, some of them poorly managed with standard 
ray tracing techniques. 

For instance, topographic corrections for the effect of 
sea-floor or Earth’s surface topography remain a largely 
open question with the ray tracing approach, although 
numerous authors proposed various correction procedures 
(e.g., Purdy 1982, for marine data). The robustness of the 
FD algorithm with respect to sharp arbitrarily shaped 
velocity contrasts makes it possible to introduce actual 
topographic data in the model used and straightforwardly 
adopt the velocity of sound in sea-water for marine studies, 
or in air for land studies. It should be repeated here, 
however, that precise computations demand that mesh 
spacing be smaller than the smallest spatial wavelengths of 
the topographic data used. 

In the same way, this method might provide new insights 
on first traveltime inversion, allowing inversion schemes to 
use both global information (wavefront patterns) and 
localized data (ray paths). Moreover, thanks to computa- 
tional speed, inversion with non-linear techniques such as 
simulated annealing might be investigated on a realistic 
basis. 

Up to now, Vidale’s approach was only applied to 
earthquake location (Vidale 1988; Ammon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Vidale 1989; 
Nelson & Vidale 1990). A significant improvement with 
respect to conventional localization methods comes from the 

CONCLUSION 

Some other applications already proposed by Vidale (1988), 
such as migration in arbitrary velocity models, should also 
be investigated. Clearly, although finite difference computa- 
tion of first arrival times is not intended to rule out the ray 
tracing approach, a large spectrum of applications is already 
well identified, and some more might appear in the near 
future. Two main improvements are provided by the 
proposed method, in comparison with previous algorithms, 
i.e., robustness with respect to very sharp velocity contrasts 
is warranted, and an extremely fast massively parallel 
implementation is defined. Moreover, introduction of 
carefully designed infinite slowness masks offers ways to 
compute several arrival times with the same scheme. 
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