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Abstract: The study solves a system of finite difference
equations for flexible shallow concrete shells while tak-
ing into account the nonlinear deformations. All stiffness
properties of the shell are taken as variables, i.e., stiffness
surface and through-thickness stiffness. Differential equa-
tions under consideration were evaluated in the form of
algebraic equations with the finite element method. For a
reinforced shell, a system of 98 equations on a 8×8 grid
was established, which was next solved with the approxi-
mationmethod from the nonlinear plasticity theory. A test
case involved computing a 1×1 shallow shell taking into
account the nonlinear properties of concrete. With nonlin-
ear equations for the concrete creep taken as constitutive,
equations for the quasi-static shell motion under constant
load were derived. The resultant equations were written
in a differential form and the problem of solving these dif-
ferential equations was then reduced to the solving of the
Cauchy problem. The numerical solution to this problem
allows describing the stress-strain state of the shell at each
point of the shell grid within a specified time interval.

Keywords: concrete shell; differential equations; nonlin-
ear deformations; finite difference; concrete creep; Cauchy
problem

1 Introduction
Various classes of materials and structures working un-
der creep conditions are widely used in modern engineer-
ing. Depending on the type of load and creep characteris-
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tics, these materials exhibit different behavior under var-
ious types of deformation (tension, compression, torsion)
[1]. The use of these materials in technological aspects re-
quires the development of appropriate deformation mod-
els (defining creep equations) and the study of creep be-
havior of structural elements [2]. The problems of evalu-
ating shallow shells when taking into account their creep
properties represent a separate class of problems in the
theory of structures. There two major challenges associ-
ated with the evaluation process are the choice of physical
equations to describe the creep properties of the shell ma-
terial and the nonlinear character of these equations. The
creep problems of layered cylinders and cylindrical shells
were solved in the study [3]. However, under the chosen
conditions it is impossible to obtain an exact analytical so-
lution that satisfies all the boundary conditions.

In general, solutions to linearly elastic problems [4, 5]
were obtained taking into account nonlinear factors, for ex-
ample, nonlinear elasticity or plastic deformation, shells
made of metal or composite materials [6]. The nonlinear
task was formulated for composite elliptical cylindrical
shells with an aperture to study the stress-strain state un-
der the action of axial tensile forces [7] based on the re-
fined theory of shallow shells of the Timoshenko type [8].
An analysis of the obtained solutions of the system of in-
tegral equations showed the influence of the mechanical
and geometric parameters of the shell under the action of
the axial tensile force on the distribution of stresses and
strains near the circular aperture.

In [9], the example of a cylindrical shell under internal
pressure was used to analyze the applicability of various
shell models to determine the creep and damage of single-
layer cylindrical shells. Shell solutions of different thick-
nesses based on the Kirchhoff – Lovemodel are consistent
with solving the spatial problem for an axisymmetrically
loaded cylinder. A semi-analytical solution of nonlinear
equations was adopted using the Galerkin method [10] for
a nonlinear stability analysis of biconcave multilayer com-
posite shallow shells. Such a solution has yielded nonlin-
ear dependences of the load distribution of the four radii
of curvature of curved shells, which are compared and
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verified using numerical solutions of finite elements. The
use of nonlinear analysis in solving nonlinear equations is
shown in [11–16] for various types of shells and loads.

A comparative analysis of the solutions of nonlinear
and linear equations is also applicable to creep tasks [17].
In [18], a methodology was developed for solving a system
of differential equations taking into account the nonlinear
creep of three-layer plates and shallow shells with a light
filler, using finite difference methods in combination with
the Euler method. It was shown in the work that the use
of the linear Maxwell-Thomson equation and the nonlin-
ear Maxwell-Gurevich equation does not significantly af-
fect the discrepancy between the results. Similar results
were obtained in studies [19, 20].

To analyze the time dependences of the mechanical
behavior of creep for various types of shells [21, 22], it is
also necessary to solve nonlinear differential equations us-
ing a creep model based on the Norton law.

Theworks [23–25] use equations of quasistatic motion
of a smooth shallow concrete shell as well as nonlinear
equations of the theory of shallow shells [26], and equa-
tions of nonlinear concrete creep in differential form [27].
The solution of the problem was based on the Bubnov-
Galerkin method. However, all the above methods of solu-
tionhave a rather complicated structure,which limits their
use for assessing the creep of structural elements in rein-
forced concrete structures. Finding a more elegant way of
solving is an urgent task in this area. Therefore, the aim
of this work is to solve the problem of quasistatic motion
of a smooth shallow concrete shell by the nonlinear equa-
tions of the theory of shallow shells based on the numeri-
cal method of finite differences (grids).

2 Research method
The authors of [28] presented the resolving equations of
smooth shallow concrete shells, taking into account the
physical and geometric nonlinearity as follows:
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Where, Di, Bi – stiffness properties, which have complex
structure and are described in details [28]. To solve these
equations (1), the authors use the finite difference tech-
nique [29], also called the grid method.

A rectangular shallow shell (Figure 1)with dimensions
2a×2b is considered in plan, on which a uniform vertical
load of intensity q (kN/m2) acts over the entire surface.
The support conditions along the contour of the shell are
movable hinged. The surface of the shell is divided into
a grid with a cell of 8×8 (Figure 2). As can be seen from
equations (1), not only the principal unknown functions F
and W, but also the stiffness characteristics Di, Bi are the
variable parameters over the shell surface (x, y). The value
and complexity of the proposed equations (1) lies in the
fact that all parameters are subjected to finite-difference
approximation: F, W, Di, and Bi.

In the proposed problem, the central difference opera-
tors [29] are used from the 1st to the 4th orders, including
those of the mixed type:
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For the center point of the shell surface - O (i, j) (Figure 2),
the derivatives of any function S (x, y) are written by the
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Figure 1: A rectangular shallow shell with dimensions 2a×2b , on
which a uniform vertical load of intensity q (kN/m2) acts over the
entire surface

Figure 2: The surface of the shell is divided into a grid with a cell of
8×8

following difference operators:
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where: ∆x = a/4; ∆y = b/4.
We obtain a system of 2 nonlinear algebraic equations

applying the difference operators (2-13) to equations (1) for
the central point O (i, j):
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Here, the coefficients c, e contains the stiffness and geo-
metrical parameters of the shell.

Equations similar to system (14, 15) are written for all
49 grid points (Figure 2). Thus, a system of 98 algebraic
equations for the functions F andW is obtained. The val-
ues of these functions at the contour and boundary points
are determined from the support conditions for the shell
edges:

W = 0; d
2F
dx2 = 0; d

2F
dy2 = 0; d

2W
dx2 = 0; d

2W
dy2 = 0 (16)

The values of the stiffness parameters Di, Bi at the contour
and boundary points of the grid are set to zero.
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Figure 3: Shell deflections (cm): a) according to a linear scheme; b) according to a nonlinear scheme

Like any physically nonlinear theory of plasticity prob-
lem, this problem has no direct solution. To solve it, the
method of variable elasticity parameters is used [30], with
recalculation at each step of the approximation of the stiff-
ness characteristics Di, Bi and a solution to the system of
98 algebraic equations.

The proposed algorithm for solving the bending of a
shallow concrete shell is as follows.

1. In the linear formulation, a systemof algebraic equa-
tions of the 98th order is solved and the values of
the functions F and W are determined for each grid
point. Using the stiffness coefficients of the elastic
shell, the values of deformations, stresses and their
intensities σi, ϵi at each given point in thickness and
surface of the shell are calculated.

2. According to the known diagram of instantaneous
deformation of concrete σi ∼ ϵi, the values of the ob-
tained variables of σi, the secantmodulus Ec are cor-
rected and the stiffness coefficients Di, Bi are calcu-
lated from these new values of deformation parame-
ters.

3. Thus obtaining a new field of stiffness, the system
of 98 equations is again solved and, due to obtained
values of F andW, the processmoves to the next step.
The iterative process continues until a given point is
achieved (by deflection, load, or other parameters).

Figure 3 shows the calculation results of a shallow con-
crete shell with the following data: a = 100 cm; b = 100 cm;
k1 = k2 = 0.00055 1

cm , h = 1.33cm, q = 0.13 kN
cm2 .

To describe the quasistatic motion of a shallow con-
crete shell under load, let us differentiate the well-known
resolving equations of flexible shallow shells [30] in the

mixed mode according to the time parameter - t:
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The equations of the nonlinear creep of aging theory have
beenwritten for a biaxial stress state and are taken as phys-
ical ones:
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ϕ(t) = ϕ∞ · (1 − B1 · e
−𝛾1·t − B2 · e−𝛾2·t) (25)

where: B1, B2, 𝛾1, 𝛾2 are the parameters chosen from the
experimental creep curves of concrete.

Let us introduce into consideration the function of the
velocity of forces F (t, x, y):

Ṅ1(t) =
d2Ḟ
dx2 (26)

Ṅ2(t) =
d2Ḟ
dy2 (27)

Ṫ(t) = − d
2Ḟ

dxdy (28)

Using classical techniques and transformations [30], let us
express formula of moments in equations (17, 18) through
the function of displacement velocity - Ẇ, and force
speeds (22-24) – through Ḟ. After complex transformations,
we arrive at a system of 2 equations for the speeds of the
functions - ẆH Ḟ:

d1 · Ẇ(i−2) + d2 · Ẇ (i−1) + d3 · Ẇi + d4·Ẇ(i+1) (29)

+ d5 · Ẇ(i+2) + d6 · Ẇ(i−1) · F(i−1) + d6 ·W(i−1) · Ḟ(i−1)
+ d7 · ẆiF(i−1) + d7 ·WiḞ(i−1) + d8 ·Ẇ(i+1) F(i−1)
+ d8 ·W(i+1)Ḟ(i−1) + d9Ẇ(i−1) · Fi + d9W(i−1) · Ḟi
+ d10 · ẆiFi + d10 ·WiḞi + d11 ·Ẇ(i+1) Fi + d11 · W(i+1)Ḟi

+ d12 · Ẇ(i−1) · F(i+1) + d12 ·W(i−1) · Ḟ(i+1) + d13 · ẆiF(i+1)
+ d13 ·WiḞ(i+1) + d14Ẇ(i+1)F(i+1) + d14 · W(i+1)Ḟ(i+1)

= G1(x, y, t,W , F, . . . .)

g1 · Ḟ(i−2) + g2 · Ḟ(i−1) + g3 · Ḟi + g4·Ḟ(i+1) (30)

+ g5 · Ḟ(i+2) + 2 · g6 ·W(i−1) · Ẇ(i−1) + g7 · Ẇi ·W(i−1)

+ g7 ·Wi · Ẇ(i−1) + g8 ·Ẇ(i+1) W(i−1) + g8 · W(i+1)Ẇ(i−1)

+ g9 · Ẇ(i−1) ·Wi + g9 ·W(i−1) · Ẇi + 2 · g10 ·Wi · Ẇi

+ g11 ·W(i+1)Ẇi + g11 ·Ẇ(i+1) Wi + g12 · Ẇ(i−1) ·W(i+1)

+ g12 ·W(i−1) · Ẇ(i+1) + g13 · Ẇi ·W(i+1) + g13 ·WiẆ(i+1)

+ 2 · g14 ·W(i+1)Ẇ(i+1) = G2(x, y, t,W , F, . . . .)

Here, the coefficients d, g has a structure similar to the co-
efficients c, e - in equations (14, 15).

3 Results
Solving the obtained system - (25) as a system of algebraic
equations for the derivatives Ẇi and ḞI , we arrive at a sys-
tem of first-order differential equations of the following

form:

Ẏ1 = L1[wi(x, y), fi(x, y), dk , gk];
Ẏ = L2[wi(x, y), fi(x, y), dk , gk];

Ẏ = Ln = Ln[wi(x, y), fi(x, y), dk,gk];

⎫⎪⎪⎬⎪⎪⎭ (31)

Thus, the problem of determining the parameters of the
quasistatic motion of a shallow concrete shell is come
down to solving theCauchyproblem - (19-21),which canbe
implemented by the Runge – Kutta numerical method [30].

The initial conditions of theproblem (at t =0) are deter-
mined by solving the system (14, 15) by the above method.
At each step of integration over time — tk, we will obtain
new values of W (t) and F (t) at each grid point.

To test this technique, the test problem of long-term
deformation of the shell, discussed earlier (Figure 3), was
solved.

The parameters of creep and nonlinearity have the fol-
lowing meanings:

φ∞ = 0, 52; B1 = 1; B2 = 0; 𝛾1 = 0, 04

The following Figures show the results of the calculation
of the deformation of a given concrete shell.

4 Discussion
The obtained results indicate the effectiveness of the se-
lected finite difference method (grids). From the above fig-
ures, it is seen that the breakdown of the shell into the grid
allows one to determine the dynamics of concrete shell’s
deformationover time. In addition, analyzing the obtained
results, the authors conclude that the points with the high-
est values of deflections deform faster with time (Figure 6).
The above methodology for solving the problem of qua-
sistaticmotion of a smooth and sloping shell is unique, ap-
plied to a concrete shell.

Similar approaches to the development ofmethods for
solving creep problems were carried out in various works,
studying shallow shells of arbitrary shape for metal al-
loys. The creep of isotropic shallow shells and plates of
arbitrary shape from AK4-1T aluminum alloy [31] at vari-
ous loads was studied. The study showed that the prob-
lemwas solvedwhen the nonlinear initial-boundary value
problem was formulated using the R-function, Ritz, and
Runge – Kutta – Mersonmethods. According to the results
of studying the influence of the direction of the external
load, it was found that the values of the deformation pa-
rameters depended on the sign of the external transverse
load. For example, under the influence of external pres-
sure, tensile stresses decrease, and under the influence of
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Figure 4: The growth of deflection (cm) in sections of the shell in the calculated time intervals

Figure 5: Calculated cross section of the shell when calculating the
long-term load

internal pressure, compressive stresses increase first and
then decrease. The use of Runge – Kutta – Mersonmethod
for solving two-layer shells with different ratios of layer
thicknesses [32, 33], axisymmetrically loaded hollow cylin-
ders, for predicting the creep time during failure showed
its high accuracy. Thus, its application to the tasks of shal-
low shells is very effective.

In [34], a similar method was used — radial point in-
terpolation, in which the damage algorithm with inverse
mapping allows one to obtain the necessary internal vari-
able fields and the displacement field. The developed algo-
rithmwas tested on concrete blocks under the influence of
uniaxial and biaxial pressure and on three-point bending.
In [34], a similarmethodwasused— radial point interpola-
tion, inwhich the damage algorithmwith inversemapping
allows one to obtain the necessary internal variable fields
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Figure 6: The growth of deflection (cm) in the calculated cross sections of the shell in time

and the displacement field. The developed algorithm was
tested on concrete blocks under the influence of uniaxial
and biaxial pressure and on three-point bending.

5 Conclusion
Thus, according to the experimental results, a compara-
tive analysis of such studies in the discussion, the follow-
ing conclusion is made. The proposed numerical method
of finite differences for solving the problem of quasistatic
motion of a smooth shallow concrete shell, using the the-
ory of nonlinear equations, is effective and allows one to
get a clear and connected picture of the change in the pa-
rameters of the stress-strain state over time. Thedeveloped
calculation algorithm allows solving long-term deforma-
tion problems of shallow shells in more complex and rel-
evant formats: determination of long-term critical loads,
prediction of buckling time, which allows evaluating the
behavior of concrete structures throughout the entire life
cycle. In addition, this method takes into account the pre-
dicted calculations when the load changes, which is rel-
evant when assessing the mechanical capabilities of con-
crete structures.
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