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ABSTRACT

A 2D finite-difference, frequency-domain method was devel-

oped for modeling viscoacoustic seismic waves in transversely

isotropic media with a tilted symmetry axis. The medium is pa-

rameterized by the P-wave velocity on the symmetry axis, the

density, the attenuation factor, Thomsen’s anisotropic parame-

ters � and � , and the tilt angle. The finite-difference discretiza-

tion relies on a parsimonious mixed-grid approach that designs

accurate yet spatially compact stencils. The system of linear

equations resulting from discretizing the time-harmonic wave

equation is solved with a parallel direct solver that computes

monochromatic wavefields efficiently for many sources. Disper-

sion analysis shows that four grid points per P-wavelength pro-

vide sufficiently accurate solutions in homogeneous media. The

absorbing boundary conditions are perfectly matched layers

�PMLs�. The kinematic and dynamic accuracy of the method was

assessed with several synthetic examples which illustrate the

propagation of S-waves excited at the source or at seismic dis-

continuities when � � � . In frequency-domain modeling with

absorbing boundary conditions, the unstable S-wave mode is not

excited when � � � , allowing stable simulations of the P-wave

mode for such anisotropic media. Some S-wave instabilities are

seen in the PMLs when the symmetry axis is tilted and � � � .

These instabilities are consistent with previous theoretical

analyses of PMLs in anisotropic media; they are removed if the

grid interval is matched to the P-wavelength that leads to disper-

sive S-waves. Comparisons between seismograms computed

with the frequency-domain acoustic TTI method and a finite-

difference, time-domain method for the vertical transversely

isotropic elastic equation show good agreement for weak to

moderate anisotropy. This suggests the method can be used as

a forward problem for viscoacoustic anisotropic full-waveform

inversion.

INTRODUCTION

It is well acknowledged that accounting for anisotropy in depth

seismic imaging can improve reservoir delineation in oil and gas ex-

ploration. Anisotropic seismic imaging generally relies on the as-

sumption of vertical transverse isotropy �VTI�, which can provide a

good representation of intrinsic anisotropy of shales in sedimentary

basins �Tsvankin, 2001�. More complex tectonic environments in-

volving dipping structures such as foothills and overthrust areas

need to account for a tilted symmetry axis in transversely isotropic

�TTI� media �Boudou et al., 2007; Charles et al., 2008�. Deep crustal

exploration using long-offset acquisition surveying is another con-

text where anisotropy can significantly influence the seismic data as

waves recorded by this acquisition design travel with a broad range

of incidence angles �Jones et al., 1999; Okaya and McEvelly, 2003�.

We present a 2D finite-difference, frequency-domain �FDFD�

method to model seismic wave propagation in viscoacoustic trans-

versely isotropic media with arbitrary tilted symmetry axis. Our mo-

tivation behind this modeling method is to introduce anisotropy into

the frequency-domain viscoacoustic full-waveform inversion

�FWI� of wide-aperture seismic data.

Over the last decade, frequency-domain FWI has been acknowl-

edged as a promising approach to build high-resolution velocity

models in complex environments �Pratt and Shipp, 1999; Ravaut et

al., 2004; Brenders and Pratt, 2007b�. Frequency-domain FWI is

based on the full �two-way� wave equation that needs to be solved

for many sources at each inversion iteration. Therefore, a computa-

tionally efficient modeling tool is a central ingredient for 2D and 3D

FWIs that are tractable on distributed-memory platforms.
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Multiscale frequency-domain FWI generally is performed by suc-

cessive inversions of a limited subset of frequencies, proceeding

from low frequencies to higher ones �Sirgue and Pratt, 2004; Bren-

ders and Pratt, 2007a�. In two dimensions, these few frequencies can

be modeled efficiently in the frequency domain. Frequency-domain

wave modeling reduces to the resolution of a large, sparse system of

linear equations, the solution for which is a monochromatic wave-

field with the right-hand-side term as the source. The most efficient

computational approach to solve this system for a large number of

right-hand-side terms is to perform one LU factorization of the im-

pedance matrix with a direct solver, followed by forward/backward

substitutions for each right-hand-side term �see Marfurt �1984� and

Nihei and Li �2007� for a comparison between time and memory

complexities of time-domain and frequency-domain modeling ap-

proaches�. Parallel frequency-domain modeling is performed by us-

ing a massively parallel direct solver that reduces the computing cost

of the factorization by over an order of magnitude �Operto et al.,

2007b; Sourbier et al., 2009a, 2009b�.

Compact mixed-grid, finite-difference stencils with antilumped

mass have been developed specifically for 2D and 3D frequency-do-

main modeling based on a direct solver to minimize the memory re-

quirement of LU factorization �Jo et al., 1996; Stekl and Pratt, 1998;

Hustedt et al., 2004; Operto et al., 2007b�. Massively parallel FWI

algorithms based on this forward-modeling approach are presented

in Sourbier et al. �2009a, 2009b� and Ben Hadj Ali et al. �2008�. The

frequency domain also allows the implementation of attenuation ef-

fects of arbitrary complexity without extra computational effort by

using complex velocities �Toksöz and Johnston, 1981�.

We extend the viscoacoustic isotropic modeling method of Hust-

edt et al. �2004� to a viscoacoustic TTI wave equation. A fourth-or-

der acoustic wave equation for VTI media was originated by

Alkhalifah �2000�. The wave equation is derived from the exact ex-

pression of the phase velocity within which the S-wave velocity on

the symmetry axis is set to zero. Alkhalifah �2000� shows that his

acoustic VTI wave equation is accurate kinematically for P-wave

propagation. Zhang et al. �2005� extend his equation to consider

acoustic TTI media. They illustrate the effects of the tilt of the sym-

metry axis on the kinematics of the arrivals by comparing VTI and

TTI seismograms with an explicit high-order, finite-difference time-

domain �FDTD� method. Zhou et al. �2006� extend Alkhalifah’s

equation to the TTI case and recast the resulting fourth-order equa-

tion into a coupled system of second-order partial differential equa-

tions; these are more suitable for numerical implementation and are

easier to interpret from a physical viewpoint. This system of equa-

tions is implemented with a classic FDTD method, and some simula-

tions in homogeneous media are presented.

Several limitations of the acoustic anisotropic wave equation of

Alkhalifah �2000� can be identified. His wave equation does not de-

scribe any physically realizable phenomenon because acoustic me-

dia intrinsically are isotropic. Rather, Alkhalifah’s �2000� equation

is derived by setting the S-wave velocity on the symmetry axis VS
0
to

zero in the expression of the phase velocity for VTI media. This con-

dition does not prevent the propagation of S-waves out of the sym-

metry axis �Grechka et al., 2004; Zhang et al., 2005�, and these

S-waves must be regarded as artifacts in the framework of acoustic

modeling. The fact that shear waves are propagated means that his

equation cannot be considered as acoustic in the strict sense of the

word.

During numerical modeling, S-waves are excited at seismic

sources located in a VTI or TTI layer or can be converted from the P-

mode at interfaces. These shear waves are not excited in elliptical an-

isotropic media. Furthermore, acoustic VTI media characterized by

� � � do not satisfy the stability condition for hexagonal symmetry

given by C33C11�C13
2 � 0 when � � � and Cij are the elastic modu-

li �Helbig, 1994; p. 191�. The analytical solutions of the VTI equa-

tion show that one mode is unstable when � � � �Alkhalifah, 2000;

his equations 20–21 and his Figure 1�; the phase velocity of the

S-wave mode, which becomes imaginary when � � � , strongly

suggests that the unstable mode is the undesired S-wave mode �Gre-

chka et al., 2004; their equations 1 and 5�. Therefore, time-domain

anisotropic acoustic modeling based on the full solution of the wave

equation has been limited to acoustic VTI media characterized by �

� � .

Of note, the undesired S-wavefield can be separated from the

P-wavefield in the phase-shift extrapolation method because the P-

and S-wave solutions lie in a different part of the wavenumber spec-

trum �Bale, 2007�. The unstable S-wave mode can be cancelled out

when � � � by choosing the sign of the phase-shift operator that

guarantees evanescent decay of the S-waves. Thus, numerically sta-

ble simulation of the P-wavefield can be performed with a phase-

shift extrapolation method when � � � �Bale, 2007�.

Whereas the acoustic anisotropic wave equation is sufficiently ki-

nematically accurate to perform prestack depth and reverse-time mi-

gration in anisotropic media �see Duveneck et al. �2008� for a recent

example�, amplitude modeling appears to be inaccurate, although to

our knowledge no numerical studies quantify this level of inaccura-

cy.

In this paper, we implement the equation of Zhou et al. �2006� in

the frequency domain rather than in the time domain for efficient

multisource modeling of monochromatic wavefields. In a first at-

tempt to incorporate anisotropy in FWI, we consider a viscoacoustic

TTI wave equation rather than an elastic one with more general rep-

resentation of anisotropy �Carcione et al., 1992; Komatitsch et al.,

2000; Saenger and Bohlen, 2004�. The first obvious reason is that

elastic modeling is more demanding than acoustic, among others,

because the elastic wave equation is discretized according to the

minimum S-wavelength, leading to a finer grid interval than in the

acoustic case. The second motivation is to deal with a more limited

number of parameter classes in FWI to manage the ill-posedness of

the inverse problem. In this paper, the viscoacoustic anisotropic me-

dium is parameterized by the P-wave velocity on the symmetry axis,

the density, the attenuation factor, the anisotropic parameters � and

� , and the tilt angle, which is not supposed constant in the medium.

Elliptic anisotropy can be considered easily by setting � �� , further

decreasing the number of independent parameters if necessary.

In the next section, we review the TTI acoustic wave equation of

Zhou et al. �2006� and extend it to incorporate heterogeneous densi-

ty. Following that, we discretize the TTI acoustic wave equation

with the FDFD method. Perfectly matched layers �PMLs� are used

as absorbing boundary conditions �Berenger, 1994�. Some instabili-

ties of the PMLs in the TTI case are highlighted. The source imple-

mentation is then discussed to find a way to attenuate the excitation

of the S-waves. In the fourth section, we present a dispersion analy-

sis in homogeneous media, which shows that four grid points per
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P-wavelength provide sufficiently accurate simulations in homoge-

nous media. In the fifth section, the numerical simulations provide

insight into the kinematic and dynamic accuracy of the acoustic TTI

wave equation in comparison with the elastic wave equation. We

conclude with a discussion of the reliability of the anisotropic acous-

tic wave equation for performing anisotropic FWI.

THE TTI ACOUSTIC WAVE EQUATION

We start from a modification of the 2D acoustic wave equation of

Zhou et al. �2006� for TTI anisotropic media:

�
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�0

� 2p
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where p is the pressure wavefield, q is an auxiliary wavefield intro-

duced by Zhou et al. �2006� to recast the fourth-order equation of

Alkhalifah �1998� into the system of second-order equations 1, �0 is

the bulk modulus along the symmetry axis, and b is buoyancy, the in-

verse of density. The values � and � are Thomsen’s dimensionless

anisotropic parameters �Thomsen, 1986�, and � 0 is the angle of the

symmetry axis with respect to the z-axis. Compared to the original

equation of Zhou et al. �2006�, we introduce heterogeneous buoyan-

cy in operators H and H0, taking advantage of the analogy of equa-

tions 1 and 2 with the isotropic wave equation.

The second equation in the system of equation 1 vanishes in the

case of elliptical anisotropy �� �� �. If � �� �� �0, then equa-

tion 1 reduces to the second-order acoustic isotropic wave equation,

the solution of which is the pressure wavefield. Also of note is that

the tilt of the anisotropy introduces some cross-derivative terms in

operators H and H0. The source term of the first expression of equa-

tion 1 depends on the q-wavefield, the amplitude of which is con-

trolled by the amount of anellipticity, as revealed by the coefficient

�� �� � in the source term of the second expression of equation 1.

We can transform the previous system of second-order equations

into a hyperbolic system of first-order equations by introducing aux-

iliary wavefields px, pz, qx, and qz:
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�3�

where the coefficients

Ax�1�2� cos2�� �, Bx��� sin�2� �,

Cx� �1�2� �cos2�� �, Dx���1�2� �
sin�2� �

2
,

Az�Bx, Bz�1�2� sin2�� �,

Cz�Dx, Dz� �1�2� �sin2�� �,

Ex�2�� �� �cos2�� �, Fx���� �� �sin�2� �,

Gx�Ex, Hx�Fx,

and

Ez�Fx,Fz�2�� �� �sin2�� �, Gz�Fx,Hz�Fz �4�

can be introduced for compactness. By analogy with the velocity-

stress formulation of the isotropic acoustic wave equation �Hustedt

et al., 2004�, px, pz, qx, and qz represent particle velocity wavefields.

We take the Fourier transform with respect to time and introduce

1D damping functions � x�x� and � z�z� for convolutional �C� PML

absorbing boundary conditions, e.g. �Drossaert and Giannopoulos,

2007; Komatitsch and Martin, 2007�,
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The C-PML function � x has the form � x�	 x� �dx / �
x� i���,
where dx, 
x, and 	 x are damping functions, discussed in Komatitsch

and Martin �2007� and Drossaert and Giannopoulos �2007�. Attenu-

ation effects, including frequency-dependent attenuation, can be im-

plemented easily in equation 5 by making the velocity on the sym-

metry axis complex �Toksöz and Johnston, 1981�.

FDFD DISCRETIZATION

We have discretized equation 5 using the mixed-grid method orig-

inally introduced by Jo et al. �1996� and have recast it in the frame-

work of the parsimonious staggered-grid method of Hustedt et al.

�2004�. The parsimonious mixed-grid method is applied to the 2D

and 3D isotropic acoustic wave equations by Hustedt et al. �2004�

and Operto et al. �2007b�, respectively.

Parsimonious mixed-grid finite-difference method:
Principle

Spatial derivatives in the second-order wave equation �such as

equation 1� are discretized using O��x2� stencils on different rotated

coordinate systems �in two dimensions, the Cartesian axes x and z

and the 45° rotated axes�. The resulting stencils are combined linear-

ly to derive numerically isotropic stencils. This trick is complement-

ed by a mass-term distribution �an antilumped mass� that signifi-

cantly improves the accuracy of the mixed-grid stencil �Marfurt,

1984�. The linear combination of the stencils of low-order accuracy

and the mass distribution allow us to design accurate and spatially

compact stencils. This latter feature is crucial to minimize the nu-

merical bandwidth of the impedance matrix and hence its filling dur-

ing LU factorization.

The O��x2� stencils of the second-order wave equation are de-

signed using a parsimonious staggered-grid method developed for

the time-domain wave equation �Luo and Schuster, 1990�. In the par-

simonious approach, the wave equation is written as a first-order ve-

locity-stress hyperbolic system �such as equation 5� and discretized

using O��x2� staggered-grid stencils in the different coordinate sys-

tems �Virieux, 1984; Saenger et al., 2000�. After discretization, the

particle velocities �in the acoustic case� are eliminated from the ve-

locity-stress wave equation, leading to a parsimonious staggered-

grid wave equation on each coordinate system, the solution of which

is the pressure wavefield. Once discretization and elimination have

been applied in each coordinate system, the resulting discrete opera-

tors are combined linearly to end up with a single discrete wave

equation. A necessary condition for this combination is that the

wavefields kept after elimination are discretized in the same grid,

whatever the coordinate system selected.

Application to 2D TTI acoustic wave equation

We have applied this discretization strategy to equation 5. The

first-order partial derivatives in equation 5 are discretized along the

axis of the two coordinate systems �the classic Cartesian one and the

45° rotated one� using O��x2� staggered-grid stencils �Virieux,

1986; Saenger et al., 2000�. The resulting stencils are referred to as

Cartesian system �CS� and rotated system �RS�.After discretization,

the auxiliary wavefields px, pz, qx, and qz are eliminated from the

system to end up with a system of two second-order equations in

p and q.

The geometry of the staggered grids for the CS and RS stencils is

illustrated in Figure 1. The TTI equation is inconsistent with the ge-

ometry of the CS stencil. Indeed, the p- and q-wavefields need to be

defined at the four corners and in the middle of the cell because of the

cross-derivatives in H and H0 �Figure 1b�. Because we used the

O��x2� stencil, we performed bilinear interpolation to estimate the

value of p and q in the middle of the cell from their values at the four

corners. In contrast, no interpolation is required for the RS stencil

because the p- and q-wavefields and the auxiliary wavefields px, pz,

qx, and qz are defined in the same grid �Figure 1a�.

After discretization and linear combination of the two stencils, the

system of second-order wave equations can be written in matrix

form as

�Mp�w1Ar� �1�w1�Ac w1Br� �1�w1�Bc

w1Cr� �1�w1�Cc Mq�w1Dr� �1�w1�Dc

�
��p

q
���0

0
�, �6�

where Mp denotes the diagonal mass matrix of coefficients �2 /�0.

Blocks Ar, Br, Cr, Dr and Ac, Bc, Cc, Dc form the stiffness matrices for

the RS and CS stencils, respectively. The coefficient w1 controls the

respective weight of the two stencils; it is determined during disper-

sion analysis by minimizing the phase-velocity dispersion. The

mixed-grid stencil contains nine coefficients spanning over two grid

intervals �Figure 2; Appendices A and B�. This implies that each of

the four �nx�nz�2 blocks of the matrix in equation 6 has nine nonze-

ro coefficients per row. The symmetric band-diagonal pattern of

each submatrix is the same as that shown by Hustedt et al. �2004� for

the isotropic acoustic wave equation �Hustedt et al., 2004; their Fig-

ure 10a�. In the case of elliptic anisotropy, the q-wavefield is nil;

therefore, only the upper-left block remains in equation 8.
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The coefficients of submatrices Ar, Br, Cr, and Dr are given in Ap-

pendix A; those of submatrices Ac, Bc, Cc, and Dc are given inAppen-

dix B.

Antilumped mass

One can also introduce a mass term averaging over the nine grid

points of the mixed-grid stencil to improve stencil accuracy. The di-

agonal term of the mass matrices is replaced by its weight average

�Stekl and Pratt, 1998�:
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�, �7�

where we introduce two new mass coefficients wm1 and wm2, deter-

mined jointly with w1 during the dispersion analysis.

DISPERSION ANALYSIS

To assess the accuracy of the mixed-grid stencil, we perform a

classical harmonic dispersion analysis for infinite homogeneous me-

dia. This dispersion analysis is applied to the RS, CS, and mixed-grid

stencils.

We insert the following discrete plane wave in the discrete wave

equation for a homogeneous medium:

�p

q
���P

Q
�eikh�m cos �n sin � �8�

Here, k�� /cP
0
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Figure 1. Staggered-grid geometries. �a� RS staggered-grid stencils.
�b� CS staggered-grid stencils. The CS stencil requires estimating
the p- and q-wavefields in the middle of the cell �dash squares�.
These are estimated by bilinear interpolation using the values at the
four nodes of the cell.
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Figure 2. Normalized phase velocity as a function of the number of
grid points per wavelength for the �a� P-wave and �b� S-wave modes.
The dispersion curves are computed with the mixed-grid stencil for
propagation angles of 0°, 15°, 30°, 45°, 60°, and 75° and for Thoms-
en’s parameters � �0.1 and � �0.25. The inset in �a� shows the rel-
ative error in percentages of the P-wave phase velocity for G�5,
i.e., � ṽphase

P
�1��100 �see text for details�. The maximum error is

less than 0.2%.
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cidence angle of the plane wave, x�mh, and z�nh. This leads to a

system of equations in P and Q of the form

��
�

2

cP
0

2 0

0
�

2

cP
0

2
��� kG

2�

�2�a11 a12

a21 a22

�
M

��P

Q
���0

0
�,

�9�

where the expression of the coefficients a11, a12, a21, and a22 are given

in Appendix C for the RS and CS stencils; G denotes the number of

grid points per wavelength, G�2� /kh.

The two eigenvalues e���2 /cP
0

2 of the matrix M are provided

by the roots of the characteristic polynomial det�M�eI��0. We

can infer from their expressions the numerical phase velocities of the

two modes:

vph
P

��� cP0
G

2�
�

����
a11�a22

2
���a11�a22�

2

4
�a11a22�a12a21	,

vph
S

��� cP0
G

2�
�

����
a11�a22

2
���a11�a22�

2

4
�a11a22�a12a21	,

�10�

where vph
P corresponds to the P-wave mode and vph

S corresponds to

the S-wave mode.

For � � � , the term beneath the outer square root is negative for

vph
S , which implies that the S-wave will grow exponentially during

modeling, leading to numerical instabilities. This is consistent with

the analytical plane-wave analysis of the VTI acoustic wave equa-

tion of Alkhalifah �2000�, which shows that one set of complex-con-

jugate solutions is unstable when � � � �Alkhalifah, 2000; solution

a2 in his Figure 1�. The instability of the S-wave mode is also shown

by the expression of the S-wave phase velocity, which becomes

imaginary when � � � and VS
0
�0 �Grechka et al., 2004; their

equations 1 and 5�.

In spite of the intrinsic instability of the S-wave mode, we see later

that we can perform stable numerical simulations of the P-wave

mode when � � � using our frequency-domain method. In fact, we

show that no S-waves are excited during frequency-domain simula-

tion when � � � . We suggest that the excitation of the unstable

S-wave mode is cancelled out by the absorbing boundary conditions

implemented in the frequency-domain boundary value problem.

We apply the same dispersion analysis to the mixed-grid stencil.

To estimate the weighting coefficients w1, wm1, and wm3, we define

the following cost function:

C�w1,wm1,wm2��





G



�



�

�f�G,,� ,� ,� ��2, �11�

with the function f defined as f�G,,� ,� ,� ��1� ṽph
P . Here, ṽph

P is

the numerical phase velocity normalized by the exact P-wave veloc-

ity for VTI media. The exact P- and S-wave velocities for VTI media

are given in Tsvankin �2001; his equation 1.55�.

We minimize the cost function by considering simultaneously

four values of G �0.1, 0.15, 0.2, and 0.25�, four representative values

of the �� ,� � pairs taken from Thomsen �1986� ��0.148 0.091�,

��0.012 0.137�, �0.057 0.081�, and �0.1 0.225��, � �0, and six val-

ues of  ranging from 0° to 75°. The cost function is minimized with

a very fast simulated annealing algorithm �Sen and Stoffa, 1995�. We

obtain the coefficients wm1�0.6291844, wm2�0.3708126, and w1

�0.4258673 for a final rms of 1.4947164E-04 �Table 1�.

The normalized phase-velocity dispersion curves for the two

modes are shown in Figure 2 for  ranging from 0° to 75° and for �
�0.1 and � �0.2. These curves can be compared with those ob-

tained with the RS and CS stencils, respectively, to determine the ac-

curacy improvement provided by the mixed-grid and antilumped

mass strategies �see Operto et al., 2007a; their Figure 2a and b�.

The dispersion curves for the P-mode shown in Figure 2a suggest

that four grid points per wavelengths will provide sufficiently accu-

rate simulations of P-waves in homogeneous media. Indeed, the

maximum phase-velocity error is 0.4% for G�4, whereas the aver-

age error is on the order of 0.1% the value of I �Figure 2a�. The

phase-velocity dispersion curves of the second mode normalized by

the exact phase velocity of the SV-wave confirm that the second

mode of the TTI acoustic equation corresponds to an S-wave. This

curve is not shown for  �0 because the phase velocity of the

S-wave is nil on the symmetry axis, through construction of the

acoustic equation of Alkhalifah �2000�. We verified during disper-

sion analysis that this velocity remains nil after discretization.

SOURCE EXCITATION

It is well acknowledged that applying a pressure source in the

acoustic VTI/TTI equation leads to exciting an S-wave with a char-

acteristic diamond shape �Alkhalifah, 2000; Grechka et al., 2004;

Zhang et al., 2005�.

Anderson et al. �2008� propose to modify the pressure source to

cancel the shear strains and therefore the excitation of the S-waves in

acoustic anisotropic media. The moment tensor source equivalent to

a pressure source can be written as

dM11

dt
��s1P,

dM33

dt
��s3P . �12�

For an isotropic source, the weighting coefficientss1 and s3 equal

one. In anisotropic acoustic media, we use s1�2��C11�C13� /
�C11�C13�C13�C33�� and s3�2��C13�C33� / �C11�C13�C13

�C33��, where the Cij coefficients denote the elastic moduli.

Table 1. Optimal weighting coefficients for the anisotropic
mixed-grid stencil.

wm1 wm2 w1

0.6291844 0.3708126 0.4258673
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We first apply the isotropic and anisotropic moment tensor sourc-

es to the 2D VTI elastodynamic system for which the S-wave veloci-

ty on the symmetry axis is set to zero �this gives C44�0� to mimic

acoustic propagation �Anderson et al., 2008�:

�
�vx

� t
�b

�� xx

�x

�vz

� t
�b

�� zz

� z

�� xx

� t
�C11

�vx

�x
�C13

�vz

� z

�� zz

� t
�C13

�vx

�x
�C33

�vz

� z

� . �13�

Note that equation 13 is not equivalent to the acoustic equation con-

sidered in our study. The anisotropic moment tensor source can be

implemented in equation 13 by incrementing at each time step the

normal stresses � xx and � zz by �s1P and �s3P, respectively �Cou-

tant et al., 1995�.

We discretize equation 13 in the time domain using the RS stencil

�Saenger et al., 2000�. The source wavelet is a Ricker wavelet with a

4-Hz dominant frequency. The P-wave velocity on the symmetry

axis is 2 km /s, � �0.1, and � �0.2. The grid interval is 10 m. The

RS stencil requires that the spatial distribution of the point source

with a 2D Gaussian function is spread to guarantee an effective cou-

pling between the stress and the particle velocity staggered grids

�Hustedt et al., 2004�. Here, we use horizontal and vertical correla-

tion lengths of 40 m.

Snapshots for the isotropic �s1�s3�1� and anisotropic �s1

�2��C11�C13� / �C11�C13�C13�C33�� and s3�2��C13�C33� /

�C11�C13�C13�C33�� moment tensor sources are shown in Fig-

ure 3a and b. Use of the anisotropic source helps to attenuate the

S-wave efficiently. However, the spatial smoothing of the point

source is a second feature required to attenuate the S-wave. Indeed,

the S-wave has a higher wavenumber content than the P-wave �see

Bale, 2007; his Figure 1a�. Therefore, a spatial smoothing of the

source can be found such that it partially low-pass filters the S-wave

without affecting the P-wavefront.

We also performed a simulation with the CS stencil that does not

require smoothing the source �Hustedt et al., 2004�. Without

smoothing the point source, the attenuation of the S-wave was much

less efficient than in Figure 3b. This is not a result of the stencil ge-

ometry because we verified that the CS and the RS stencils led to the

same S-wave attenuation when the source was smoothed in the same

manner.

In a second step, we applied the isotropic and anisotropic moment

tensor sources to the acoustic VTI equation, recast as a first-order hy-

perbolic system �equation 3� in the time domain �Figure 3c and d�.

The RS stencil was used to discretize equation 3. The pressure

source was implemented with horizontal and vertical dipoles ap-

plied to the third and fourth equations of expression 3. Each dipole

was weighted by coefficients s1 and s2. The source was smoothed

with a 2D Gaussian function; horizontal and vertical correlation

lengths were 40 m. Although the S-wave was weakened, it was not

fully canceled when the anisotropic moment tensor source was used

�Figure 3d�. To remove the S-wave efficiently, a correlation length as

great as 80 m must be used, which leads to significant attenuation

and distortion of the P-wavefront �Figure 3e and f�.

So far, we have failed to remove the S-wave excitation efficiently

at the source in the case of the acoustic anisotropic equation when

the source is located in a medium with � � � . To avoid exciting the

S-wave, the source can be set in an isotropic layer or in an elliptically

anisotropic layer.

PML ABSORBING BOUNDARY CONDITION

PML absorbing boundary conditions provided a good absorption

of the waves on the edges of the model. However, we have observed

instabilities in the PML layers in the TTI case �i.e., when the symme-

try axis is tilted with respect to the vertical and horizontal PML-PML

interfaces�. These instabilities, which are seen only when the num-

ber of grid points per wavelength is significantly greater than four

and when � � � , are likely caused by the S-waves. When the grid in-

terval is set according to the rule of four grid points per P-wave-

length, the S-waves are affected strongly by numerical dispersion,

which may cancel out the instability �Hu, 2001�. When � � � , no S-

waves are excited during frequency-domain modeling and no insta-

bility is seen, whatever the discretization.

The instability of PMLs in anisotropic media is studied theoreti-

cally by Bécache et al. �2003�. They show in their Figure 13 that a

necessary condition to guarantee the stability of PMLs is that, along

the velocity curves, the slowness vector and the group velocity are

oriented in the same way with respect to the Cartesian axis �i.e., the

PML-PML interfaces�. We plot the velocity curves for the S-waves

in a homogeneous medium for a vertical symmetry axis and for a 45°

rotated axes �Figure 4�. When the symmetry axis is tilted, the group

velocity vector and the slowness vector do not satisfy the geometric

stability criterion of Bécache et al. �2003� �Figure 4b�, contrary to

the case where the symmetry axis is vertical �Figure 4a�. Further

study is required to remove this instability.

NUMERICAL EXAMPLES

In this section, we validate our method against analytical solu-

tions along the symmetry axis and numerical solutions computed in

2D VTI elastic media with a classic staggered-grid velocity-stress

FDTD method.

Simulation in homogeneous media

We first validate the method against an analytical solution along

the symmetry axis available for class IV TI media �Payton, 1983�.

Strong anisotropy: Zinc crystal

For the simulation, we consider a zinc crystal �Carcione et al.,

1988; Komatitsch et al., 2000�; properties are summarized in Table

2. The model measures 3300�3300 m with grid intervals for the

acoustic FDFD and elastic FDTD simulations of 15 and 5 m, respec-

tively. The source is in the middle of the grid. The source wavelet is a

Ricker wavelt with a dominant frequency of 17 Hz. A horizontal re-

ceiver line is located above the source at a distance of 1 km. The

symmetry axis is vertical.

2D acoustic wave modeling in TTI media T81
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Snapshots computed with the acoustic FDFD and elastic FDTD

methods are shown in Figure 5. The analytical velocity and wave-

front contours for the quasilongitudinal and quasitransverse modes

are superimposed in both snapshots �Carcione et al., 1988�. Good ki-

nematic agreement is obtained between the analytical P- and S-ve-

locity curves and the VTI elastic wavefronts �Figure 5b�, whereas

some mismatch is seen between the qP-wave analytical velocity

curve and the VTI acoustic wavefront for directions of propagation

midway between the symmetry axis and its perpendicular. Compari-

sons between the two snapshots of Figure 5 also suggest strongly

overestimated amplitudes in the acoustic solution perpendicular to

the symmetry axis.

Time-domain synthetic seismograms computed with the acoustic

FDFD and elastic FDTD methods are compared in Figures 6 and 7.

Good kinematic and dynamic agreement between the two solutions

is obtained only for propagation directions close to the symmetry

axis. This is further confirmed by a comparison of analytical seismo-

grams and VTI acoustic seismograms recorded along the symmetry

axis, which shows good agreement �Figure 7�.

For the zinc crystal, � �0.83 is significantly smaller than � �2.7

�Table 2�. This set of Thomsen’s parameters should lead to un-

stablesimulation of the S-waves with the VTI acoustic equation. In

contrast, we did not see any excitation of S-waves in our frequency-

domain simulation when � � � �Figure 5�, and simulation of the
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Figure 3. Source implementation. �a� Simulation
using the RS staggered-grid stencil and an isotropic
pressure source. The wave equation is the elastody-
namic system within which the S-wave velocity on
the symmetry axis is set to zero �equation 13�. �b�
As for �a�, except an anisotropic pressure source is
used �see text for details�. �c� As for �a�, except the
acoustic anisotropic equation considered in this
study is used for the simulation; an isotropic pres-
sure source is used. �d� As for �c�, except an aniso-
tropic pressure source is used; note the less efficient
attenuation of the S-wave than in �b�. �e–f� As for
�c�, except the horizontal and vertical correlation
lengths of the Gaussian function used to smooth the
point source are �e� 20 and �g� 80 m.
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P-waves remained stable. A possible reason is that the absorbing

conditions implemented in the boundary-value frequency-domain

problem cancel out this unstable mode. The ability to perform stable

frequency-domain simulation of P-waves without exciting undes-

ired S-waves when � � � is confirmed in the following section.

This numerical example confirms that the acoustic approximation

of wave propagation in VTI media does not lead to accurate solu-

tions in cases of strong anisotropy. However, a comparison between

numerical and analytical solutions along the symmetry axis provides

the first validation of the implementation of the VTI acoustic mixed-

grid stencil.

Weak anisotropy: Sediment

We repeat the numerical experiment on a material involving

weaker anisotropy with the medium properties summarized in Table

2, for this example, � � � . The grid dimensions, the source wavelet,

and the acquisition system are the same as in the previous case. The

symmetry axis is vertical.

Snapshots computed with the acoustic FDFD and the elastic

FDTD methods are compared in Figure 8a. The diamond-shaped

S-wave is seen in the acoustic snapshot because � � � . Good kine-

matic agreement is now seen between the acoustic snapshot and the

P-wavefront curve, whatever the direction of propagation. Acoustic

FDFD and elastic FDTD seismograms show good agreement from

kinematic and dynamic viewpoints �Figure 8b�. This numerical ex-

ample shows that the acoustic approximation of VTI wave propaga-

tion provides accurate simulation in homogeneous media in weak to

moderate anisotropy.

We next consider the same simulation but for a 45° tilted symme-

try axis. A snapshot computed with the acoustic FDFD method is

shown in Figure 9a. The receiver line is rotated by 45° to compare

the TTI acoustic seismograms with the VTI elastic ones computed

with the FDTD method. Good agreement is obtained between TTI

acoustic seismograms and VTI elastic seismograms �Figure 9b�. The

PMLs cause strong instabilities because the grid interval cannot be

matched to each frequency when computing time-domain seismo-

grams from a frequency-domain algorithm �Figure 9a�. For this sim-

ulation, the PMLinstability is mitigated by the C-PMLfunctions and

complex-valued frequencies, used to remove wraparound �Mallick

and Frazer, 1987�.

Simulation in anticline medium

We now consider a heterogeneous medium composed of two lay-

ers delineated by a bell-shaped interface �Figure 10a�. The proper-

ties of the two media are summarized in Table 3. The upper layer is

homogeneous, whereas the P-wave velocity in-

creases linearly with depth in the bottom layer to

generate turning waves of significant amplitudes

at long offset. The velocity gradient for the

P-wave velocity in the bottom layer is 0.2 s�1.

The other parameters are constant in the bottom

layer.

This example is designed to test the accuracy

of the numerical scheme when the dip of the

structures varies with respect to the symmetry

axis, which is vertical in this simulation. We set

Table 2. Properties of the zinc and sedimentary media for validation in
homogeneous media.

Medium
VP

�m/s�
VS

�m/s�
�

�kg /m3�
� � �

�°�

Zinc 2955.06 2361 7100 2.70968 0.830645 0

Sediments 4000 2309 2500 0.02 0.1 0
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Figure 4. Geometric interpretation of the PML instability. Phase
�red� and group �blue� velocity curves of the S-wave for the �a� VTI
and �b� TTI cases. In �b�, the tilt angle is 45°. The dashed arrows are
along the velocity group vector; the solid arrows are along the slow-
ness vectors, which are perpendicular to the wavefront. For the VTI
case, both vectors have the same orientation with respect to the Car-
tesian axis �PML-PMLinterfaces�; for the TTI case, they point in op-
posite directions.
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� � � in the upper medium, where the source is located, to avoid ex-

citing the undesired S-waves at the source. The S-wave velocity used

for the VTI elastic simulation is constant in the whole model and is

equal to 2.361 km /s. The explosive source is a Ricker wavelt with a

dominant frequency of 17 Hz. The model dimensions are 16,000

�5000 m, and the grid intervals are 10 and 4 m for the VTI acous-

ticFDFD and elastic FDTD simulations, respectively. The source is

at a distance of 3.5 km and a depth of 0.4 km.Aline of 171 receivers

positioned every 40 m is 100 m above the source.

An 11.7-Hz monochromatic wavefield computed with the acous-

tic FDFD method shows a spurious arrival transmitted below the an-

ticline �i.e., where the dip of the bell-shaped interface is not along or

perpendicular to the symmetry axis� and superimposed on the trans-

mitted P-wavefield �Figure 10b�. This event is not seen at the vertex

of the source where the interface is perpendicular to the symmetry

axis. The spurious event corresponds to the conversion from the

P-mode to the S-mode in the lower medium. The amplitudes of these

P-to-S converted waves increase with the contrast between � and �

at the interface.

We repeat the simulation after smoothing the � and � models with

a 2D Gaussian filter of horizontal and vertical correlation lengths of

60 m �Figure 10c�. In this case, the P-to-S converted waves are re-

moved �compare Figure 10b and c�. We also verify that no P-to-S

conversion occurs when � is lower than � in the two layers of the

model. The VTI acoustic and elastic seismograms computed in the

model of Figure 10a are compared in Figure 11. The acoustic seis-

mograms are computed in the models without smoothing the � and �

models. Reasonable agreement is obtained between the two sets of

seismograms, although there is some mismatch between the ampli-

tude-versus-offset behavior of the first arrival �illustrated by the

variation of the polarity of the residual seismograms with offset in

Figure 11c�.

To reveal the arrivals generated by the P-to-S conversion at inter-

faces more clearly, we performed a simulation in a model composed

of two homogeneous half-spaces separated by a dipping interface

�Figure 12�. The dip of the interface is 30°, whereas the symmetry

axis is vertical. The properties of the two half-spaces are given in Ta-

ble 3.A17-Hz monochromatic wavefields for the p- and q-wavefield

�Figure 12a and b� as well as a time-domain snapshot �Figure 12c�

show that the dominant spurious event is an interface wave, labeled I

in Figure 12c, that propagates along the interface with the P-wave

velocity of the upper medium in the direction of the interface. This is

first shown by the continuity between the direct P-wavefront in the

upper medium and the head wavefront at the interface �Figure 12c�.

The event is further confirmed by the seismograms of Figure 12d,

recorded by a line of receivers 500 m below the interface. The slope

of arrival I corresponds to the P-wave velocity in the upper medium

for an incidence angle along the interface. We also observe the head

wave labeled I�, which also propagates along the interface with the

P-wave velocity of the lower medium in the direction of the inter-

face.

The transmitted S-wavefront is rather difficult to interpret in Fig-

ure 12c. Interestingly, we performed one other simulation, where the

interface was horizontal and the symmetry axis was vertical �Figure

13�. In this case, the q-wavefield shows an evanescent wavefront

propagating along the interface, and no interface waves propagate in

the lower layer.

Simulation in the 2D anisotropic overthrust model

We now consider the simulation in a 2D section of the anisotropic

overthrust model �Figure 14�. The symmetry axis is vertical. The

model dimensions are 20�4.4 km. The Thomsen’s parameters �
and � range between �0.176602 and 0.06 and between 0 and 0.2, re-

spectively. The model embeds isotropic, elliptic anisotropic, and

VTI layers. For the VTI elastic simulation, we consider a homoge-

neous S-wave velocity of 1.3 km /s to minimize the footprint of the

S-waves. The explosive source is a Ricker wavelet of 6-Hz dominant

frequency. The source is at a distance of 4 km and depth of 0.4 km

with a line of 501 receivers spaced at 40-m intervals at 100 m depth.

The grid interval for the acoustic simulation is 20 m, providing a fi-
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Figure 5. Modeling for the zinc model — VTI �a� elastic and �b�
acoustic snapshots. The blue and red curves are the group and phase-
velocity curves, respectively. The white line is the receiver line. The
source is in the middle of the medium.
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nite-difference grid measuring 301�1081, including 800-m-thick

PMLs along the four edges of the model. The grid interval for the

elastic simulation is 10 m.

Acoustic and elastic snapshots can be compared in Figure 15. The

footprint of the converted S-waves described in the previous section

is seen clearly in the VTI layers of the acoustic snapshots. These

events did not affect the acoustic seismograms recorded in the vicin-

ity of the surface where the medium is isotropic because these

S-waves remain confined to the VTI layers. The acoustic and the

elastic seismograms compare well in Figure 16.

We now compare the computational efficiency of the FDFD and

the FDTD approaches to compute monochromatic wavefields for

multiple sources. These monochromatic wavefields typically repre-

sent the amount of data processed during one inversion iteration of

single-frequency, frequency-domain FWI �Sirgue and Pratt, 2004;

Brenders and Pratt, 2007a�. In FDTD modeling, monochromatic

wavefields can be computed by discrete Fourier transform in the

loop over time steps �Sirgue et al., 2008�.

The FDFD simulation in the overthrust model was performed us-

ing two nodes of a PC cluster, each node comprising two dual-core

2.4-GHz processors, providing 19.2 Gflops of peak performance per

node. Each node had 8 Gb of RAM. The interconnection network

between processors was Infiniband 4X. We used the massively par-

allel MUMPS direct solver to perform LU factorization and the for-

a) b)

c)

Figure 6. Modeling for the zinc model. �a�Acoustic
seismograms. �b� Elastic seismograms. �c� Direct
comparison between the acoustic �dashed gray�
and elastic �solid black line� seismograms.
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ward/backward substitutions in the FDFD modeling �Amestoy et al.,

2006; Sourbier et al., 2009a, 2009b�. The elapsed time for one paral-

lel factorization was 68 s. The elapsed time to compute solutions for

64 sources by forward/backward substitutions was 8 s, leading to an

elapsed time of 0.125 s per source. For elliptic anisotropy, the

elapsed times for the factorization and for the 64 forward/backward

substitutions decreased considerably to 3.5 s and 2 s, respectively,

because the number of unknowns in the system decreased by a factor

of two �the q-wavefield is nil�.

The sequential elastic FDTD simulations took 1606 and 173 s for

grid intervals of 10 and 20 m, respectively. The duration of the seis-

mograms was 6 s. A grid interval of 10 m corresponds to the dis-

cretization required by an elastic FDTD simulation involving mini-

mum S-wave velocities of 1 km /s and a maximum frequency of

20 Hz for an O��x4� accurate stencil. A grid interval of 20 m was

used for the FDFD simulation, corresponding to the discretization

required by an acoustic simulation for a maximum frequency of

20 Hz.

Considering a coarse-grained parallelism over shots for FDTD

simulation �which has an efficiency of one�, the elapsed times to per-

form the modeling for the 64 shots distributed over the 8 MPI pro-

cesses would be 1606�64 /8�12,848 s and 173�64 /8�1384 s

for the 10- and 20-m grid intervals, respectively. The elapsed time of

the acoustic and elastic FDTD simulations are significantly greater

than the elapsed time of the acoustic FDFD simulation, i.e., 68�8

�76 s. These differences would increase dramatically with the

number of sources. Thus, this numerical experiment confirms the

conclusions inferred from the theoretical complexities of 2D FDFD

and FDTD modeling �see Nihei and Li �2007� for a review� concern-

ing the superiority of the frequency domain to compute monochro-

matic wavefields for many sources.

DISCUSSION

Two features of the modeling method presented in this study are

the frequency-domain formulation and the acoustic approximation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

O�set = 700 m

O�set = 1600 m

Figure 7. Modeling for the zinc model, comparing the analytical
�solid line� and numerical acoustic seismograms on the symmetry
axis for two offsets �700 and 1600 m�. The difference is plotted with
the dashed lines.
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Figure 8. Modeling for the homogeneous sediment model — VTI �a�
acoustic and �b� elastic snapshots. Time is 0.3 s. Velocity �blue� and
wavefront �red� curves for the P- and S-modes are superimposed. �c�
Direct comparison between acoustic �dashed gray line� and elastic
�solid black line� seismograms. Difference is plotted with dashed
black seismograms. The strong residual at 0 km offset and 0.6–0.8 s
traveltimes is the result of the S-wave in the acoustic solution.
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to model seismic wavefields in anisotropic media. Our main motiva-

tion behind the frequency domain and the acoustic approximation is

to design a computationally efficient forward problem for imaging

TTI media by frequency-domain FWI. Our numerical stencil pro-

vides sufficiently accurate solutions of the acoustic TTI wave equa-

tion when four grid points per wavelength are used for discretiza-

tion. This discretization is suitable for FWI where the resolution lim-

it is a half-wavelength.

Although the viscoacoustic TTI wave equation requires modeling

two wavefields �the pressure wavefield plus the auxiliary wavefield

q� as the elastic wave equation �two particle velocity wavefields�,

acoustic modeling remains significantly less demanding computa-

tionally than elastic modeling, mainly because the elastic wave

equation is discretized according to the minimum S-wavelength. We

also verify numerically the superior computational efficiency of the

frequency-domain approach compared to time-domain approaches

for multisource modeling of monochromatic wavefields.

Our second motivation behind the acoustic approximation is to

mitigate the ill-posedness of FWI. Part of FWI ill-posedness results

from partial coupling between different classes of parameters.Apos-

sible way to mitigate the ill-posedness is to consider simplifying as-

sumptions in the physics of wave propagation — in other words, to

limit the number of parameter classes in the medium parameteriza-

tion. It is also worth noting that the footprint of anisotropy in

P-waves is less complex than that affecting S-waves because

P-waves are not split in two modes yet have a hyperbolic reflection

moveout in anisotropic media �Tsvankin, 2001�. The ill-posedness

of the FWI also results from the sensitivity of local optimization ap-

proaches for inaccuracies of the starting model. This sensitivity in-

creases in elastic FWI because S-waves have higher resolution pow-

er than P-waves as a result of their smaller wavelengths. The higher

resolution power of S-waves requires more accurate S-wave-veloci-

ty starting models or a lower starting frequency to make the inver-

sion converge toward acceptable velocity models �Brossier et al.,

2008�.
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a)

b)

Figure 9. �a� Snapshot computed for the TTI acoustic homogeneous
medium. The symmetry axis is rotated by 45° with respect to the ver-
tical. The white line denotes the position of the receivers. The arrow
points out spurious signals resulting from PML instability. �b� Direct
comparison between the TTI acoustic �dashed gray line� and VTI
elastic �solid black line� seismograms.

a)

b)

c)

Figure 10. �a� Anticline model. �b� Monochromatic wavefield. Note
the spurious event transmitted in the lower medium, where the dip of
the interface is significant with respect to the symmetry axis. �c� As
for �b�, except the � and � models are smoothed with a 2D Gaussian
filter of horizontal and vertical correlation lengths equal to six times
the grid interval. Smoothing the contrast between the Thomsen pa-
rameters removes the artifact.
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Indeed, the reliability of the acoustic anisotropic approximation in

the framework of FWI can be questioned because acoustic media are

intrinsically isotropic. The numerical experiments we present sug-

gest that the viscoacoustic TTI wave equation is sufficiently accurate

from a dynamic viewpoint for weak to moderate anisotropic media.

Regarding the footprint of the S-waves in viscoacoustic TTI mod-

eling, the excitation of S-waves can be cancelled at the source by set-

ting the source in an isotropic layer or in an elliptically anisotropic

layer. Excitation of S-waves at the source can be cancelled out prag-

matically by setting a small, smoothly tapered circular region with

Table 3. Properties of the anticline model. The P-wave velocity increases linearly with depth in the bottom layer with a gradient
of 0.2 s�1. The velocity on top of the layer is provided. The other parameters are constant.

Layer VP �m/s� VS �m/s� � �kg /m3� � � � �°�

Top 2955.06 2361.66 2200 0.143 �0.035 0

Bottom 4820.73 �on top� 2361.66 2500 0.06 0.11 0

a)

b)

c)

Figure 11. Anticline model simulation — �a� acoustic and �b� elastic
seismograms. The seismograms are plotted with a reduction velocity
of 5 km /s. Some artificial reflections are seen on the right end of the
model in the case of the elastic simulation. �c� Direct comparison be-
tween acoustic �dashed gray line� and elastic �solid black line� seis-
mograms. The differences are the thin dashed black line.
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� �� around the source �Duveneck et al., 2008�. The P-to-S-mode-

conversion at sharp interfaces cannot be removed efficiently without

slightly smoothing the � and � contrasts, which is a last resort in

FWI. However, our numerical experiments suggest that the P-to-S-

mode converted waves do not affect reverse-time-migrated images

significantly, possibly because of their small amplitudes �Duveneck

et al., 2008�.

A last issue concerns the extension to 3D modeling. The time and

memory complexities of the direct solvers as well as their limited in-

trinsic scalability prevent large-scale modeling in 3D viscoacoustic

TTI media with the approaches we develop �Operto et al., 2007b�.

Only elliptic anisotropy can be implemented in 3D FDFD approach-

es based on a direct solver because it does not introduce computa-

tional overhead compared to the isotropic case. For 3D large-scale

applications, the acoustic VTI and TTI wave equations can be imple-

mented easily in the time domain with explicit integration schemes

�Duveneck et al., 2008; Fletcher et al., 2008; Lesage et al., 2008�.

The alternative FDFD approaches developed so far for the acoustic

isotropic wave equation are based on hybrid direct/iterative solvers

�Sourbier et al., 2008� or iterative solvers �Erlangga and Herrmann,

2008�. These approaches also can be viewed for 3D viscoacoustic

a) c)

b) d)

Figure 12. Monochromatic �a� p- and �b� q-wave-
fields in the dipping-layer model. �c� Time-domain
snapshot. Nomenclature: D — direct P-wave; R —
reflected P-wave; T — transmitted P-wave; H — P
head wave; I and I� — head waves ensuring the
continuity between the transmitted P- and S-wave-
fronts I� and between the reflected and transmitted
S-wavefronts I; E — evanescent interface wave.
�d� Time-domain seismograms recorded by a re-
ceiver line 500 m below the interface.

a)

b)

Figure 13. Monochromatic �a� p- and �b� q-wavefields in the case of
two VTI half-spaces delineated by a flat interface. In this case, the in-
terface wave is evanescent and does not lead to a conic wave in the
lower medium.
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TTI modeling in the future. Although the approaches we present in

this study do not extend to 3D cases easily, efficient 2D algorithms

remain useful in assessing the potential and limits of unconventional

seismic imaging methods.

CONCLUSION

We have developed a computationally efficient FDFD method for

multisource seismic wave modeling in 2D viscoacoustic TTI media.

Comparisons between acoustic and elastic modeling in weak to

moderate anisotropic media suggest that the method is sufficiently

accurate for FWI from kinematic and dynamic viewpoints. The main

limitation of the method is the propagation of S-waves in acoustic

VTI and TTI media. Whereas S-wave excitation can be cancelled out

pragmatically at the source, the P-to-S mode conversions occur at

sharp contrasts between anisotropic parameters. The real footprint

of these P-to-S converted waves must be assessed during the sum-

mation of the redundant information underlying full-waveform in-

version. A last resort to avoid these mode conversions is to smooth

the contrast between the anisotropic parameters � and � slightly.

The S-wave mode is unstable in the acoustic anisotropic wave equa-

tion when � � � , but we observe that the S-waves are not excited

during frequency-domain modeling in such media. Therefore, we

performed stable simulations of the P-waves in the frequency do-

main unlike in the time domain. Future studies will involve interfac-

ing the viscoacoustic TTI modeling method into a frequency-do-

a)
km/s

ρ

δ

ε

Distance (km)

D
e
p
th
(k
m
)

D
e
p
th
(k
m
)

D
e
p
th
(k
m
)

D
e
p
th
(k
m
)

b)

c)

d)

Figure 14. VTI overthrust model. �a� P-wave velocity; �b� density;
�c� � ; �d� � .

a)

b)

Figure 15. Simulation in the overthrust model. Acoustic �top panel�
and elastic �bottom panel� snapshots for two propagation times: �a� 1
and �b� 3.8 s. The S-waves affect the acoustic wavefields in the VTI
layers of the overthrust model.
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Figure 16. Synthetic seismograms computed in the overthrust mod-
el: �a� VTI acoustic seismograms; �b� VTI elastic seismograms; �c�
direct comparison between acoustic �dashed gray line� and elastic
�solid black line� seismograms. The seismograms are plotted with a
reduction velocity of 6 km /s. The source is in an isotropic layer.
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main viscoacoustic full-waveform inversion code to assess the reli-

ability of full-waveform inversion for imaging anisotropic parame-

ters quantitatively.

ACKNOWLEDGMENTS

Access to the high-performance computing facilities of the Meso-

centre SIGAMM computer center provided the required computer

resources, and we gratefully acknowledge this facility and the sup-

port of its staff. This work was conducted within the framework of

the SEISCOPE consortium, sponsored by BP, CGGVeritas, Exxon-

Mobil, Shell, and TOTAL. This work was funded partly by the ANR

project �ANR-05-NT05-2-42427�. We thank Assistant Editor V.

Grechka, Associate Editor M. van der Baan, E. Saenger, and two

anonymous reviewers for their useful comments. We are especially

grateful to V. Grechka for his useful comments on stability con-

straints in acoustic anisotropic media. We would like to thank W. A.

Mulder �Shell International E&PBV� for providing us the anisotrop-

ic overthrust model �http://aniso.citg.tudelft.nl�.

APPENDIX A

RS PARSIMONIOUS STAGGERED-GRID STENCIL

In this appendix, we provide the expression of the parsimonious

RS staggered-grid stencil. The partial derivatives with respect to x

and z can be replaced by a linear combination of the partial deriva-

tives with respect to the rotated coordinates x� and z� in equation 5

�Figure 2�:
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The first-order differential operators with respect to x� and z� are dis-

cretized with the following stencils:
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We first discretize the first two equations of system 5 using dis-

crete scheme A-2. Then, we define the expression of wavefields px,

qx, pz, and qz at the grid positions required by the discrete form of the

first two equations of system 5 using discrete scheme A-2. Finally,

we inject the resulting expressions of px, qx, pz, and qz into the first

two equations to derive the second-order discrete equation in p and

q.

Gathering the terms with respect to the indices of the p-wavefield

gives nine coefficients of the RS stencil for the submatrix Ar of equa-

tion 6:
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where �i,j� denote the indices of a point in the 2D finite-difference

grid located on the diagonal of the submatrix Ar.

The coefficients of the submatrices Br, Cr, Dr in system 6 can be

inferred easily from those of submatrix Ar by substituting the coeffi-

cients Ar
ij
:

• �Ax by Cx, Ex, Gx for submatrices Br, Cr, Dr, respectively

• �Bx by Dx, Fx, Hx for submatrices Br, Cr, Dr, respectively

• �Az by Cz, Ez, Gz for submatrices Br, Cr, Dr, respectively

• �Bz by Dz, Fz, Hz for submatrices Br, Cr, Dr, respectively.

APPENDIX B

CS PARSIMONIOUS STAGGERED-GRID STENCIL

We now discretize system 5 with the following second-order ac-

curate staggered-grid stencils:
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We apply the same parsimonious strategy as for the RS stencil �Ap-

pendix A�. In the final expression of the discrete second-order wave

equation, the values of the p- and q-wavefields are required at five

positions on the reference grid along a cross stencil �dark gray

squares, Figure 2b� as well on the middle of the four adjacent cells

delineated by the cross stencil �dashed squares, Figure 2b�. These

four latter values are replaced by interpolated ones on the nine points

defined by the four adjacent cells �gray squares, Figure 2b� using a

bilinear interpolation:
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We end up with nine coefficients for matrix Ac:
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bi,j�1/2

� xi

,

Aci�1,j�1
�

1

4� xi
h2

Bxij

bi�1/2,j

� zj

�
1

4� zj
h2

Azij

bi,j�1/2

� xi

,

Aci�1,j�1
��

1

4� xi
h2

Bxij

bi�1/2,j

� zj

�
1

4� zj
h2

Azij

bi,j�1/2

� xi

,

�B-3�

The coefficients of submatrices Bc, Cc, and Dc in system 6 can be in-

ferred easily from those of submatrix Ac by substituting the coeffi-

cients Ac
ij
:

• �Ax by Cx, Ex, Gx for submatrices Bc, Cc, Dc, respectively

• �Bx by Dx, Fx, Hx for submatrices Bc, Cc, Dc, respectively

• �Az by Cz, Ez, Gz for submatrices Bc, Cc, Dc, respectively

• �Bz by Dz, Fz, Hz for submatrices Bc, Cc, Dc, respectively.

APPENDIX C

DISPERSION ANALYSIS

For the RS stencil, we obtain for a11, a12, a21, and a22

a11�
1

2
cos�2�

G
�cos  �sin ���Ax�Bx�Az�Bz�

�
1

2
cos�2�

G
�cos  �sin ���Ax�Bx�Az�Bz�

�cos�2�

G
cos ��Ax�Bz��cos�2�

G
sin ���Ax

�Bz�� �Ax�Bz�,

a12�
1

2
cos�2�

G
�cos  �sin ���Cx�Dx�Cz�Dz�

�
1

2
cos�2�

G
�cos  �sin ���Cx�Dx�Cz�Dz�

�cos�2�

G
cos ��Cx�Dz��cos�2�

G
sin �

� ��Cx�Dz�� �Cx�Dz�,

a21�
1

2
cos�2�

G
�cos  �sin ���Ex�Fx�Ez�Fz�

�
1

2
cos�2�

G
�cos  �sin ���Ex�Fx�Ez�Fz�

�cos�2�

G
cos ��Ex�Fz��cos�2�

G
sin ���Ex

�Fz�� �Ex�Fz�,

and

a22�
1

2
cos�2�

G
�cos  �sin ���Gx�Hx�Gz�Hz�

�
1

2
cos�2�

G
�cos  �sin ���Gx�Hx�Gz�Hz�

�cos�2�

G
cos ��Gx�Hz��cos�2�

G
sin �

���Gx�Hz�� �Gx�Hz� . �C-1�

For the CS stencil, we obtain

a11�2 cos�2�

G
cos �Ax�2 cos�2�

G
sin �Bz�2�Ax

�Bz��0.5 cos�2�

G
�cos  �sin ���Bx�Az�

�0.5 cos�2�

G
�cos  �sin ���Bx�Az�,

a22�2 cos�2�

G
cos �Cx�2 cos�2�

G
sin �Dz�2�Cx

�Dz��0.5 cos�2�

G
�cos  �sin ���Dx�Cz�

�0.5 cos�2�

G
�cos  �sin ���Dx�Cz�,

a12�2 cos�2�

G
cos �Ex�2 cos�2�

G
sin �Fz�2�Ex

�Fz��0.5 cos�2�

G
�cos  �sin ���Fx�Ez�
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�0.5 cos�2�

G
�cos  �sin ���Fx�Ez�,

and

a21�2 cos�2�

G
cos �Gx�2 cos�2�

G
sin �Hz�2�Gx

�Hz��0.5 cos�2�

G
�cos  �sin ���Hx�Gz�

�0.5 cos�2�

G
�cos  �sin ���Hx�Gz� . �C-2�
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