
Finite Difference Methods Fengshui: Alignment
through a Mathematics of Arrays

Benjamin Chetioui
University of Bergen

Department of Informatics

Bergen, Hordaland, Norway

benjamin.chetioui@uib.no

Lenore Mullin
College of Engineering and Applied

Sciences

University at Albany, SUNY

Albany, NY, USA

lmullin@albany.edu

Ole Abusdal
University of Bergen

Department of Informatics

Bergen, Hordaland, Norway

ole.abusdal@student.uib.no

Magne Haveraaen
University of Bergen

Department of Informatics

Bergen, Hordaland, Norway

https://www.ii.uib.no/~magne/

Jaakko Järvi
University of Bergen

Department of Informatics

Bergen, Hordaland, Norway

jaakko.jarvi@uib.no

Sandra Macià
Barcelona Supercomputing Center

(BSC - CNS)

Barcelona, Spain

sandra.macia@bsc.es

Abstract

Numerous scientific-computational domains make use of

array data. The core computing of the numerical methods

and the algorithms involved is related to multi-dimensional

array manipulation. Memory layout and the access patterns

of that data are crucial to the optimal performance of the

array-based computations. As we move towards exascale

computing, writing portable code for efficient data parallel

computations is increasingly requiring an abstract produc-

tive working environment. To that end, we present the de-

sign of a framework for optimizing scientific array-based

computations, building a case study for a Partial Differential

Equations solver. By embedding the Mathematics of Arrays

formalism in the Magnolia programming language, we as-

semble a software stack capable of abstracting the continuous

high-level application layer from the discrete formulation of

the collective array-based numerical methods and algorithms

and the final detailed low-level code. The case study lays the

groundwork for achieving optimized memory layout and

efficient computations while preserving a stable abstraction

layer independent of underlying algorithms and changes in

the architecture.

CCS Concepts · Software and its engineering → Soft-

ware design engineering;

Keywords Mathematics of Arrays, Finite Difference Meth-

ods, Partial Differential Equations, Psi calculus, Magnolia

1 Introduction

Given an address space, the data layout and the pattern of

accessing that data are fundamental for the efficient exploita-

tion of the underlying computer architecture. The access

pattern is determined by a numerical algorithm, which may

have been tuned to produce a particular pattern. The data

layout may have to be adjusted explicitly to a given pattern

and the computer hardware architecture. At the same time,

high-performance environments are evolving rapidly and

are subject to many changes. Moreover, numerical methods

and algorithms are traditionally embedded in the application,

forcing rewrites at every change. Thus the efficiency and

portability of applications are becoming problematic. Under

this scenario, software or hardware modifications usually

lead to a tedious work of rewriting and tuning throughout

which one must ensure correctness and efficiency. To face

this scenario, the scientific community suggests a separation

of concerns through high-level abstraction layers.

Burrows et al. identified a Multiarray API for Finite Differ-

ence Method (FDM) solvers [8]. We investigate the fragment

of the Mathematics of Arrays (MoA) formalism [22, 23] that

corresponds to this API. MoA gives us the ψ -calculus for

optimizing such solvers. We present a full system approach

from high level coordinate-free Partial Differential Equa-

tions (PDEs) to preparing for the layout of data and code

optimization, using the MoA as an intermediate layer and

the Magnolia programming language [5] to explore the spec-

ifications. In this framework, a clean and natural separation

occurs between application code, the optimization algorithm

and the underlying hardware architecture, while providing

verifiable components. We fully work out a specific test case

that demonstrates an automatable way to optimize the data

layout and access patterns for a given architecture in the case

of FDM solvers for PDE systems. We then proceed to show

that our chosen fragment of the rewriting system defined by

the ψ -calculus makes up a canonical rewriting subsystem,

i.e. one that is both strongly normalizing and confluent.

In the proposed system, algorithms are written against a

stable abstraction layer, independent of the underlying nu-

merical methods and changes in the architecture. Tuning for

performance is still necessary for the efficient exploitation

of different computer architectures, but it takes place be-

low this abstraction layer without disturbing the high-level

implementation of the algorithms.

© 2019IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works

This paper is structured as follows. Section 2 presents the

related work, and a concise literature review of the state

of the art. Section 3 introduces the general software stack

composition and design used for our purposes. Section 4

details the optimizations and transformation rules. The PDE

solver test case showcasing the framework is presented in

Section 5. Finally, conclusions are given in Section 6.

2 Related work

Whole-array operations were introduced by Ken Iverson [18]

in the APL programming language, an implementation of his

notation to model an idealized programming language with

a universal algebra. Ten years later, shapes were introduced

to index these operations by Abrams [1]. Attempts to com-

pile and verify APL proved unsuccessful due to numerous

anomalies in the algebra [34]. Specifically, ισ was equivalent

to ι⟨ σ ⟩, where σ is a scalar and ⟨ σ ⟩ is a one element vector.

Moreover, there was no indexing function nor the ability to

obtain all indices from an array’s shape. This caused Perlis to

conclude the idealized algebra should be a Functional Array

Calculator based on the λ-calculus [34]. Even with this, no

calculus of indexing was formulated until the introduction

of MoA [22]. MoA can serve as a foundation for array/tensor

operations and their optimization.

Numerous languages emerged with monolithic or whole-

array operations. Some were interpreted (e.g. Matlab and

Python), some were compiled (e.g. Fortran90 and TACO [19])

and some were Object Oriented with pre-processing capa-

bilities (e.g. C++ with expression templates [9, 32]). Current

tensor (array) frameworks in contemporary languages, such

as Tensorflow [33] and Tensor Toolbox [4] provide powerful

environments to model tensor computations. None of these

frameworks are based on theψ -calculus.

Existing compilers have various optimizations that can be

formulated in theψ -calculus, e.g. loop fusion (equivalent to

distributing indexing of scalar operations in MoA) and loop

unrolling (equivalent to collapsing indexing based on the

properties ofψ and theψ -correspondence Theorem (PCT) in

MoA [23]). Many of the languages mentioned above imple-

ment concepts somewhat corresponding to MoA’s concept

of shape and its indexing mechanism. It is, however, the

properties of theψ -calculus and its ability to obtain a Deno-

tational Normal Form (DNF) for any computation that make

it particularly well-suited for optimization.

Hagedorn et al. [13] pursued the goal of optimizing stencil

computations using rewriting rules in LIFT.

3 Background, design and technologies

We present the design of our library-based approach struc-

tured by layers. Figure 1 illustrates this abstract generic en-

vironment. At the domain abstraction layer, code is written

in the integrated specification and programming language

Figure 1. Layer abstraction design; generic environment

approach.

Magnolia, a language designed to support a high level of ab-

straction, ease of reasoning, and robustness. At the interme-

diate level, the MoA formalism describes multi-dimensional

arrays. Finally, through theψ -correspondence theorem, the

array abstraction layer is mapped to the final low-level code.

3.1 Magnolia

Magnolia is a programming language geared towards the

exploration of algebraic specifications. It is being designed at

the Bergen Language Design Laboratory [5]; it is a work in

progress and is used to teach the Program Specification class

at the University of Bergen, Norway. Magnolia’s strength

relies in its straightforward way of working with abstract

constructs.

Magnolia relies primarily on the concept module, which

is a list of type and function declarations (commonly called

a signature) constrained by axioms. In Magnolia, an axiom

defines properties that are assumed to hold; it however dif-

fers from the usual axioms in mathematics in that an axiom

in Magnolia may define derived properties. Functions and

axioms may be given a guard, which defines a precondition.

The satisfaction module serves to augment our knowledge

with properties that can be deduced from the premises, typ-

ically formatted to indicate that a concept models another

one.

Magnolia is unusual as a programming language in that it

does not have any built-in type or operation, requiring that

everything be defined explicitly. Magnolia is transpiled to

other languages, and thus, the actual types the programmer

intends to use when running their program must be defined

in the target language.

3.2 Mathematics of Arrays

MoA [22, 23] is an algebra for representing and describing

operations on arrays. Themain feature of theMoA formalism

is the distinction between the DNF, which describes an array

by its shape together with a function that defines the value at

every index, and the Operational Normal Form (ONF), which

describes it on the level of memory layout. The MoA’s ψ -

calculus [23] provides a formalism for index manipulation

within an array, as well as techniques to reduce expressions

of array operations to the DNF and then transform them to

ONF.

Theψ -calculus is based on a generalized array indexing

function,ψ , which selects a partition of an array by a multi-

dimensional index. Because all the array operations in the

MoA algebra are defined using shapes, represented as a list

of sizes, andψ , the reduction semantics ofψ -calculus allow

us to reduce complex array computations to basic index-

ing/selection operations, which reduces the need for any

intermediate values.

By the ψ -correspondence theorem [23], we are able to

transform an expression in DNF to its equivalent ONF, which

describes the result in terms of loops and controls, starts,

strides and lengths dependent on the chosen linear arrange-

ment of the items, e.g. based on hardware requirements.

3.2.1 Motivation behind DNF and ONF

The goal behind the DNF and theONF is to create an idealized

foundation to define most Ð if not all Ð domains that use

tensors (arrays). Using MoA, all of the transformations to

the DNF can be derived from the definition of theψ function

and shapes.

This view has a long history [1] and, when augmented by

the λ-calculus [6], provides an idealized semantic core for

all arrays [26, 27]. Array computations are very prevalent.

A recent Dagstuhl workshop [2, 3] reported the pervasive-

ness of tensors in the Internet of things, Machine Learning,

and Artificial Intelligence (e.g. Kronecker [24]) and Matrix

Products [11]. Moreover, they dominate science [12, 21] in

general, especially signal processing [25, 28, 30, 31] and com-

munications [29].

3.3 PDE solver framework

Figure 2 illustrates the design structured by layers for the

PDE solver framework we describe. The first abstraction

layer defines the problem through the domain’s concepts. At

this level, PDEs are expressed using collective and continu-

ous operations to relate the physical fields involved. Through

the functions encapsulating the numerical methods, the high-

level continuous abstraction is mapped to a discrete array-

based layer. A Magnolia specification of the array algebra

defined by the MoA formalism and theψ -calculus has been

developed at this level. This algebra for arithmetic operations

and permutations over multi-dimensional arrays defines the

problem through collective array operations in a layout inde-

pendent manner. At this point, array manipulation functions

and operations may be defined in the MoA formalism and

reduced according to theψ -reduction process. This process

simplifies an expression through transformational and com-

positional reduction properties: the rewriting rules. From the

user’s array-abstracted expression we obtain an equivalent

Figure 2. Layer abstraction design; detailed environment

designed for a PDE solver.

optimal and minimal semantic form. Finally, the indexing

algebra of theψ -calculus relates the monolithic operations

to elemental operations, defining the code on processors

and memory hierarchies through loops and controls. The

ψ -correspondence theorem is the theorem defining the map-

ping from the high-level abstracted array expressions to the

operational expressions, i.e. from a form involving Carte-

sian coordinates into one involving linear arranged memory

accesses.

4 MoA transformation rules

4.1 ψ -calculus and reduction to DNF

Multiarrays, or multidimensional arrays, have a shape given

by a list of sizes ⟨s0 . . . sn−1⟩. For example, a 6 by 8 matrix

A has the shape ⟨6 8⟩. The index for a multiarray is given

by a multi-index ⟨i0 . . . in−1⟩. For position j of the multi-

index, the index i j is in the range 0 ≤ i j < sj . This sets the

vocabulary for talking about multiarrays. In the following

Magnolia code and in the rest of the paper, we will assume

that the following types are declared:

• type MA, for Multiarrays;

• type MS, for Multishapes;

• type MI, for Multi-indexes;

• type Int, for Integers.

All these types will have (mapped) arithmetic operators. Im-

portant functions on a multiarray are:

• the shape function ρ, which returns the shape of a

multiarray, e.g. ρA = ⟨6 8⟩;
• theψ function, which takes a submulti-index and re-

turns a submultiarray, e.g. ⟨⟩ψA = A and ρ(⟨3⟩ψA) =
⟨8⟩ is the subarray at position 3;

• the rotate function θ , which rotates the multiarray:

p θx A denotes the rotation of A by offset p along axis

x (rotate does not change the shape: ρ(p θx A) = ρA).

With respect toψ , rotate works as:

⟨ i0 . . . ix ⟩ ψ (p θ0 A) = ⟨ (i0 + p) mod s0 . . . ix ⟩ψ A

The rotate operation can be used to calculate, for each el-

ement, the sum of the elements in the adjacent columns,

(1 θ0 A) + ((−1) θ0 A), which is a multiarray with the same

shape asA. Applyingψ to the expression gives the following

reduction:

⟨i0⟩ ψ ((1 θ0 A) + ((−1) θ0 A)) = ⟨(i0 + 1) mod s0⟩ ψ A +

⟨(i0 − 1) mod s0⟩ ψ A

These above MOA functions can be declared in Magnolia,

with axioms stating their properties.

/∗ ∗ Extract the shape of an array . ∗/

function rho(a:MA) : MS;

/∗ ∗ Extract subarray of an array . ∗/

function psi(a:MA, mi:MI) : MA;

/∗ ∗ Rotate distance p along axis . ∗/

function rotate(a:MA, axis:Int, p:Int) : MA ;

axiom rotateShape(a:MA, ax:Int, p:Int) {

var ra = rotate(a,ax,p);

assert rho(ra) == rho(a);

}

axiom rotatePsi(a:MA, ax:Int, p:Int, mi:MI) {

var ra = rotate(a,ax,p);

var ij = pmod(get(mi,ax)+p,get(rho(a),ax));

var mj = change(mi,ax,ij);

assert psi(ra,mi) == psi(a,mj);

}

axiom plusPsi(a:MA, b:MA, mi:MI)

guard rho(a) == rho(b) {

assert rho(a+b) == rho(a);

assert psi(a+b,mi) == psi(a,mi) + psi(b,mi);

}

Note how we are using ρ andψ to define operations on mul-

tiarrays. The ρ operator keeps track of the resulting shape.

Theψ operator takes a partial multi-index and explains the

effect of the operation on the subarrays. In this way the ψ

operator moves inward in the expression, pushing the com-

putation outwards towards subarrays and eventually to the

element level. The concatenation property forψ -indexing is

important for this,

⟨ j ⟩ ψ (⟨ i ⟩ ψ A) ≡ ⟨ i j ⟩ ψ A.

axiom psiConcatenation(ma:MA, q:MI, r:MI) {

var psiComp = psi(psi(ma,q), r);

var psiCat = psi(ma, cat(q,r));

assert psiComp == psiCat;

}

The rules above, for rotation and arithmetic, show how ψ

moves inwards towards the multiarray variables. When this

process stops, we have reached the DNF. All other multiarray

functions have then been removed and replaced by their

ψ definitions. What is left to figure out and what we will

tentatively in this paper is how to build the DNF.

Burrows et al [8] made the case that the operations defined

above augmented with mapped arithmetic constitute a suf-

ficient basis to work with any FDM solver of PDE systems.

It does not matter what language the original expression

comes from (Python, Matlab, Fortran, C, etc). With the syn-

tax removed and the tokens expressed as an AST, the DNF

denotes the reduced semantic tree and could be returned to

the syntax of the originating language, with interpretation

or compilation proceeding as usual.

4.2 Transformation rules

The MoA defines many rewriting rules in order to reduce an

expression to its DNF.Working with those, we got the insight

that the goal of the reduction is to move the call toψ inwards

to apply it as early as possible in order to save computations,

and that there are enough rules to allow us to moveψ across

any type of operation (Multiarray on Multiarray, scalar on

Multiarray).

For the sake of this particular example, we limited our-

selves to a subset of the transformation rules in the MoA.

We show that this constitutes a rewriting system that is

canonical.

Let us first introduce the rules we are using. In the rules,

themetavariables indexi ,ui and sci respectively denotemulti-

indexes, multiarrays and scalars. The metavariable op is used

for mappable binary operations such as ×, + and −, that
take either a scalar and a multiarray or two multiarrays as

parameters and return a multiarray.

index ψ (ui op uj)
R1

(index ψ ui) op (index ψ uj)

index ψ (sc op u)
R2

sc op (index ψ u)

k ≥ i =⇒ ⟨ sc0 . . . sci . . . sck ⟩ ψ (sc θi u)
R3

⟨ sc0 . . . ((sci + sc)mod (ρ u)[i]) . . . sck ⟩ ψ u

Proving that a rewriting system is canonical requires prov-

ing two properties [20]:

1. the rewriting system must be confluent;

2. the rewriting system must be strongly normalizing

(reducible in a finite number of steps).

For a rewriting system, being confluent is the same as hav-

ing the Church-Rosser property [20], i.e. in the case when

reduction rules overlap so that a term can be rewritten in

more than one way, the result of applying any of the over-

lapping rules can be further reduced to the same result. If

i ψ

op

ui uj

op

i ψ

uj

i ψ

uj

Figure 3. Rule 1 and its application.

i ψ

op

sc u

op

sc i ψ

u

Figure 4. Rule 2 and its application.

a term can be derived into two different terms, the pair of

the two derived terms is called a critical pair. Proving that a

rewriting system is confluent is equivalent to proving that

every critical pair of the system yields the same result for

both of its terms.

Our rules above of the rewriting system can not generate

any critical pair; the system is thus trivially confluent.

Now, we must prove that the rewriting system is strongly

normalizing: the system must yield an irreducible expression

in a finite number of steps for any expression. To that end,

we assign a weight w ∈ N to the expression such that w

represents the "weight" of the expression tree. We define the

weight of the tree as the sum of the weight of each (index ψ)

node. The weight of each one of these nodes is equal to 3h ,

where h is the height of the node.

Since N is bounded below by 0, we simply need to prove

that the application of each rule results inw strictly decreas-

ing to prove that our rewriting system is strongly normaliz-

ing.

For each one of our three rules, we draw a pair of trees

representing the corresponding starting expression on the

left and the resulting expression from applying the rule on

the right. Then, we verify thatw strictly decreases from the

tree on the left to the tree on the right. We callwl the weight

of the left tree andwr the weight of the right tree. Figures 3, 4

and 5 illustrate these trees.

In the three figures, we assume that the tree rooted in the

iψ node has height h′. Since the iψ node has a parameter, it

is never a leaf and we have h′ > 0.

i ψ

θ j

sc u

i ′ψ

u

Figure 5. Rule 3 and its application.

In Figure 3, the starting expression has the weightwl = 3h
′
.

The resulting expression from applying R1, however, has the

weight wr = 2 × 3h
′−1
=

2
3wl , which is less than wl . In

Figure 4, the starting expression has the weight wl = 3h
′
.

The resulting expression from applying R2, however, has

the weight wr = 3h
′−1
=

1
3wl , which is less than wl . In

Figure 5, the starting expression has the weight wl = 3h
′
.

The resulting expression from applying R3, however, has the

weightwr = 3h
′−1
=

1
3wl , which is less thanwl .

Sincew strictly decreases with every rewrite, the system

is strongly normalizing. Since it is also confluent, it is canon-

ical.

4.3 Adapting to hardware architecture using ONF

Once we have reduced an expression to its DNF, if we know

about the layout of the data it uses, we can build its ONF.

Assuming a row major layout, let us turn

⟨ i ⟩ ψ ((1 θ0 A) + ((−1) θ0 A)) into its ONF.

To proceed further, we need to define three functions: γ ,

ι and rav .

• rav is short for Ravel, which denotes the flattening

operation, both in APL and in MoA. It takes a multi-

array and reshapes it into a vector. We therefore use

rav to deal with the representation of the array in the

memory of the computer.

• γ takes an index and a shape and returns the corre-

sponding index in the flattened representation of the

array1. γ is not computable unless a specific memory

layout is assumed, which is why this decision has to

be taken before building the ONF.

One can note that rav and γ are tightly connected

in defining flattened array accesses as γ encodes the

layout while rav is defined in terms of γ . For FDM, it

is important therefore to figure out the right memory

layout such that rotations are completed in an efficient

fashion.

• ι is a unary function, which takes a natural number n

as its parameter and returns a 1-D array containing

1Here, only γ on rows is considered, but other γ functions exist

the range of natural numbers from 0 to n excluded. It

is used to build strides of indexes needed by the ONF.

With these operations defined, we can proceed. We first

apply theψ -correspondence theorem followed by applying

γ .

∀i s .t . 0 ≤ i < 6

⟨ i ⟩ ψ ((1 θ0 A) + ((−1) θ0 A))

≡ (rav A)[γ (⟨ (i + 1)mod 6 ⟩ ; ⟨ 6 ⟩) × 8 + ι8] +

(rav A)[γ (⟨ (i − 1)mod 6 ⟩ ; ⟨ 6 ⟩) × 8 + ι8]

≡ (rav A)[((i + 1)mod 6) × 8 + ι8] +

(rav A)[((i − 1)mod 6) × 8 + ι8]

Secondly, we apply rav and turn ι into a loop to reach the

following generic program:

∀j s .t . 0 ≤ j < 8

A[((i + 1)mod 6) × 8 + j] +

A[((i − 1)mod 6) × 8 + j]

The ONF is concerned with performance, and is where

cost analysis and dimension lifting begins.

Regarding pure cost analysis, at this point, it is still possi-

ble to optimize this program: unfolding the loops gives us

the insight that the modulo operation is only ever useful on

the 0th and 5th row. Thus, by splitting the cases into those

that require the modulo operation to be run and those that

do not, we may achieve better performance.

Now imagine breaking the problem over 2 processors.

Conceptually, the dimension is lifted. It is important to note

that the lifting may happen on any axis, especially in the

current case where we are dealing with rotations on a given

axis. If we happen to apply dimension lifting on the axis on

which we are rotating, we may not be able to split the mem-

ory perfectly between the different computing sites. This

could require inter-process communication, or duplication

of memory.

In this case, since we are rotating on the 0th axis, we pick

axis 1 as the candidate to be lifted. The loop on j is then split

into 2 loops because we now view the 2-D resultant array as

a 3-D array A′ with shape ⟨ 6 2 8/2 ⟩ = ⟨ 6 2 4 ⟩ in which

axis 1 corresponds to the number of processors. Therefore,

we get:

∀i, j s .t . 0 ≤ i < 6, 0 ≤ j < 2

⟨ i j ⟩ ψ ((1 θ0 A
′) + ((−1) θ0 A

′))

≡ (rav A′)[γ (⟨ ((i + 1)mod 6) j ⟩ ; ⟨ 6 2 ⟩) × 4 + ι4] +

(rav A′)[γ (⟨ ((i − 1)mod 6) j ⟩ ; ⟨ 6 2 ⟩) × 4 + ι4]

≡ (rav A′)[(((i + 1)mod 6) × 2 + j) × 4 + ι4] +

(rav A′)[(((i − 1)mod 6) × 2 + j) × 4 + ι4]

This reduces to the following generic program:

∀k s .t . 0 ≤ k < 4

A′[((i + 1)mod 6) × 4 × 2 + j × 4 + k] +

A′[((i − 1)mod 6) × 4 × 2 + j × 4 + k]

As discussed above, there are other ways to achieve split-

ting of the problem across several computing sites. In general,

the size of the array and the cost of accessing different archi-

tectural components drive the decision to break the problem

up over processors, GPUs, threads, etc. [16, 17].

If a decision was made to break up the operations over

different calculation units, the loop would be the same but

the cost of performing the operation would be different. This

decision is therefore completely cost-driven.

Continuing with dimension lifting, a choice might be made

to use vector registers. This is, once again, a cost-driven

decision, which may however be decided upon statically,

prior to execution.

If we were to break our problem up over several processors

and using vector registers, it would conceptually go from

2 dimensional to 4 dimensional, using indexing to access

each resource. The same process can be applied to hardware

components [11], e.g. pipelines, memories, buffers, etc., to

achieve optimal throughput.

5 PDE solver test-case

Coordinate-free numerics [10, 14] is a high-level approach

to writing solvers for PDEs. Solvers are written using high-

level operators on abstract tensors. Take for instance Burgers’

equation [7],
∂®u

∂t
+ ®u · ∇®u = ν∇2®u,

where vector ®u denotes a time and space varying velocity

vector, t is time, and the scalar ν is a viscosity coefficient.

Burgers’ equation is a PDE involving temporal (∂

∂t
) and spa-

tial (∇) derivative operations. Applying an explicit second

order Runge-Kutta time-integration method, the coordinate-

free time-integrated equation can be coded in Magnolia as

follows.

procedure burgersTimestep

(upd u:Tensor1V, obs dt:R, obs nu:R) = {

var u_t = nu * laplacian(u))

- dot(u,gradient(u));

var u_substep = u + dt/2 * u_t;

u_t = nu * laplacian(u_substep)

- dot(u_substep,gradient(u_substep));

u = u + dt * u_t;

};

Note how close this code follows the mathematical high-level

formulation (5). We can lower the abstraction level of this

code by linking it with a library for 3D cartesian coordinates

based on continuous ringfields [15]. Next it can be linked

with a library for finite difference methods choosing, e.g.,

stencils ⟨− 1
2 , 0,

1
2 ⟩ and ⟨1,−2, 1⟩ for first and second order

partial derivatives, respectively. This takes us to a code at

the MoA level, consisting of rotate and maps of arithmetic

operations [8]. With some reorganisation, we end up with

the solver code below, expressed using MoA. The code calls

the snippet six times forming one full time integration step,

one call for each of the three dimensions of the problem

times two due to the half-step in the time-integration. The

variables dt,nu,dx are scalar (floating point). The first two

come from the code above, while dx was introducd by the

finite difference method. The variables u0,u1,u2 are mul-

tiarrays (3D each), for each of the components of the 3D

velocity vectorfield. These variables will be updated dur-

ing the computation. The variables c0,c1,c2,c3 and c4 are

numeric constants. Three temporary multiarray variables

v0,v1,v2 are computed in the first three snippet calls, due

to the half-step. They are then used in the last three snippet

calls to update u0,u1,u2.

procedure step

(upd u0:MA, upd u1:MA, upd u2:MA,

obs nu:Float, obs dx:Float, obs dt:Float) {

var c0 = 0.5/dx;

var c1 = 1/dx/dx;

var c2 = 2/dx/dx;

var c3 = nu;

var c4 = dt/2;

var v0 = u0;

var v1 = u1;

var v2 = u2;

call snippet(v0,u0,u0,u1,u2,c0,c1,c2,c3,c4);

call snippet(v1,u1,u0,u1,u2,c0,c1,c2,c3,c4);

call snippet(v2,u2,u0,u1,u2,c0,c1,c2,c3,c4);

call snippet(u0,v0,v0,v1,v2,c0,c1,c2,c3,c4);

call snippet(u1,v1,v0,v1,v2,c0,c1,c2,c3,c4);

call snippet(u2,v2,v0,v1,v2,c0,c1,c2,c3,c4);

};

In the actual snippet code, d1a,d2a,d1b,d2b,d1c,d2c

and shift_v are temporary multiarray variables. The shift

function takes as first argument the multiarray being shifted,

then the direction of the shift, and lastly the distance for the

rotational shift.

procedure snippet

(upd u:MA, obs v:MA,

obs u0:MA, obs u1:MA, obs u2:MA,

obs c0:Float, obs c1:Float, obs c2:Float,

obs c3:Float, obs c4:Float) {

var shift_v = shift (v, 0, -1);

var d1a = -c0 * shift_v;

var d2a = c1 * shift_v - c2 * u0;

shift_v = shift (v, 0, 1);

d1a = d1a + c0 * shift_v;

d2a = d2a + c1 * shift_v;

shift_v = shift (v, 1, -1);

var d1b = -c0 * shift_v;

var d2b = c1 * shift_v - c2 * u0;

shift_v = shift (v, 1, 1);

d1b = d1b + c0 * shift_v;

d2b = d2b + c1 * shift_v;

shift_v = shift (v, 2, -1);

var d1c = -c0 * shift_v;

var d2c = c1 * shift_v - c2 * u0;

shift_v = shift (v, 2, 1);

d1c = d1c + c0 * shift_v;

d2c = d2c + c1 * shift_v;

d1a = u0 * d1a + u1 * d1b + u2 * d1c;

d2a = d2a + d2b + d2c;

u = u + c4 * (c3 * d2a - d1a);

};

In essence, snippet is computing 1/3 of the half-step of the

PDE, using common calls to rotate to compute one first and

one second order partial derivative.

5.1 Reduction using MoA

Using the reduction rules defined in the ψ -calculus, and

turning our snippet code into an expression, we can reduce

the code to a DNF representation. In the following, we spell

out some of the transformation steps. The equation

snippet = u + c4 ×

(c3 × (c1 × (((−1) θ0 v) + (1 θ0 v) + ((−1) θ1 v) +

(1 θ1 v) + ((−1) θ2 v) + (1 θ2 v)) − 3c2u0) − c0 ×

(((1 θ0 v) − ((−1) θ0 v)) u0 +

((1 θ1 v) − ((−1) θ1 v)) u1 +

((1 θ2 v) − ((−1) θ2 v)) u2))

is a transcription of the snippet code above.

We use the notation θx to denote a rotation around the

x th axis, represented in Magnolia by calls to

shift(multiarray, axis, offset).

The Magnolia implementation of the snippet makes heavy

use of the multiarrays d1x and d2x, where x denotes the axis

around which the multiarray is rotated in lexicographical

order (a corresponds to the 0th axis, b to the 1st and so on).

For the sake of easing into it, let us start by building a generic

DNF representation for d2x. All the steps will be detailed

explicitly in order to gain insights on what is needed and

what is possible.

⟨ i j k ⟩ ψ d2x = ⟨ i j k ⟩ ψ (c1 × ((−1) θx v) + c1 ×

(1 θx v) − c2 × u0)

(distribute ψ over +/-)

= ⟨ i j k ⟩ ψ (c1 × ((−1) θx v)) + ⟨ i j k ⟩ ψ

(c1 × (1 θx v)) − ⟨ i j k ⟩ ψ (c2 × u0)

(extract constant factors)

= c1 × (⟨ i j k ⟩ ψ ((−1) θx v)) + c1 ×

(⟨ i j k ⟩ ψ (1 θx v)) − c2 × (⟨ i j k ⟩ ψ u0)

(factorize by c1)

= c1 × (⟨ i j k ⟩ ψ ((−1) θx v) + ⟨ i j k ⟩ ψ

(1 θx v)) − c2 × (⟨ i j k ⟩ ψ u0)

Using the MoA’s concatenation of index property, we can

now define ⟨ i ⟩ ψ d2x . However, this is only reducible if

x = 0. The reason is that to reduce an expression using a

rotation on the x th axis further, one needs to applyψ with

an index of at least x + 1 elements. Therefore, to reduce d21,

we need an index vector with at least 2 elements, while we

need a total index containing 3 elements to reduce d22. With

that in mind, we can try to reduce d21:

⟨ i j ⟩ ψ d21 = c1 × (⟨ i j ⟩ ψ ((−1) θ1 v) + ⟨ i j ⟩ ψ

(1 θ1 v)) − c2 × (⟨ i j ⟩ ψ u0)

(reducing rotation)

= c1 × (⟨ i ((j − 1)mod s1) ⟩ ψ v +

⟨ i ((j + 1)mod s1) ⟩ ψ v) −

c2 × (⟨ i j ⟩ ψ u0)

For x = 2, we apply the same process with a total index:

⟨ i j k ⟩ ψ d22 = c1 × (⟨ i j k ⟩ ψ ((−1) θ2 v) +

⟨ i j k ⟩ ψ (1 θ2 v)) − c2 × (⟨ i j k ⟩ ψ u0)

(reducing rotation)

= c1 × (⟨ i j ((k − 1)mod s2) ⟩ ψ v +

⟨ i j ((k + 1)mod s2) ⟩ ψ v) − c2 ×

(⟨ i j k ⟩ ψ u0)

Now we can define the ONF of the expression, which is

the form we will use in our actual code. Let’s define it for

d21:

(rav d21)[γ (⟨ i j ⟩ ; ⟨ s0 s1 ⟩) × s2 + ιs2] = c1 ×

((rav v)[γ (⟨ i ((j − 1)mod s1) ⟩ ; ⟨ s0 s1 ⟩) × s2 + ιs2] +

(rav v)[γ (⟨ i ((j + 1)mod s1) ⟩ ; ⟨ s0 s1 ⟩) × s2 + ιs2]) −

c2 × (rav u0)[γ (⟨ i j ⟩ ; ⟨ s0 s1 ⟩) × s2 + ιs2]

(apply γ on both sides)

(rav d21)[(i × s1 × s2 + j × s2 + ιs2] = c1 ×

((rav v)[i × s1 × s2 + ((j − 1)mod s1) × s2 + ιs2] +

(rav v)[i × s1 × s2 + ((j + 1)mod s1) × s2 + ιs2]) −

c2 × (rav u0)[i × s1 × s2 + j × s2 + ιs2]

The optimization can be done similarly for d22. The fact

that d22 can only be reduced using a total index means that

snippet too can only be fully reduced using a total index.

⟨ i j k ⟩ ψ snippet

= ⟨ i j k ⟩ ψ (u + c4 × (c3 × (c1×

(((−1) θ0 v) + (1 θ0 v) + ((−1) θ1 v) +

(1 θ1 v) + ((−1) θ2 v) + (1 θ2 v)) −

3c2u0) − c0(((1 θ0 v) − ((−1) θ0 v)) u0 +

((1 θ1 v) − ((−1) θ1 v)) u1 + ((1 θ2 v) +

((−1) θ2 v)) u2)))

(distribute ψ over + and -)

= ⟨ i j k ⟩ ψ u + (⟨ i j k ⟩ ψ c4 × (c3 ×

(c1 × (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) + ((−1) θ2 v) +

(1 θ2 v)) − 3c2u0))) − ⟨ i j k ⟩ ψ

(c0 × (((1 θ0 v) − ((−1) θ0 v)) u0+

((1 θ1 v) − ((−1) θ1 v)) u1 +

((1 θ2 v) − ((−1) θ2 v)) u2)))

(extract constant c4, c3, and c0)

= ⟨ i j k ⟩ ψ u + c4 × (c3 × (⟨ i j k ⟩ ψ

(c1 × (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) +

((−1) θ2 v) + (1 θ2 v)) − 3c2u0)) −

c0 × (⟨ i j k ⟩ ψ

(((1 θ0 v) − ((−1) θ0 v)) u0 +

((1 θ1 v) − ((−1) θ1 v)) u1 +

((1 θ2 v) − ((−1) θ2 v)) u2)))

(distribute ψ over +, ×, and -)

= ⟨ i j k ⟩ ψ u + c4 × (c3 × (⟨ i j k ⟩ ψ

(c1 × (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) +

((−1) θ2 v) + (1 θ2 v))) −

⟨ i j k ⟩ ψ (3c2u0)) − c0×

(⟨ i j k ⟩ ψ ((1 θ0 v) − ((−1) θ0 v)) ×

⟨ i j k ⟩ ψ u0 +

⟨ i j k ⟩ ψ ((1 θ1 v) − ((−1) θ1 v)) ×

⟨ i j k ⟩ ψ u1 +

⟨ i j k ⟩ ψ ((1 θ2 v) − ((−1) θ2 v)) ×

⟨ i j k ⟩ ψ u2))

(extract constant factors c1 and 3 × c2)

= ⟨ i j k ⟩ ψ u + c4 × (c3 × (c1 ×

(⟨ i j k ⟩ ψ (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) + ((−1) θ2 v) +

(1 θ2 v))) − 3c2(⟨ i j k ⟩ ψ u0)) − c0 ×

(⟨ i j k ⟩ ψ ((1 θ0 v) − ((−1) θ0 v)) ×

⟨ i j k ⟩ ψ u0 +

⟨ i j k ⟩ ψ ((1 θ1 v) − ((−1) θ1 v)) ×

⟨ i j k ⟩ ψ u1 +

⟨ i j k ⟩ ψ ((1 θ2 v) − ((−1) θ2 v)) ×

⟨ i j k ⟩ ψ u2))

(distribute ψ over + and -)

= ⟨ i j k ⟩ ψ u + c4 × (c3 × (c1 ×

(⟨ i j k ⟩ ψ ((−1) θ0 v) +

⟨ i j k ⟩ ψ (1 θ0 v) +

⟨ i j k ⟩ ψ ((−1) θ1 v) +

⟨ i j k ⟩ ψ (1 θ1 v) +

⟨ i j k ⟩ ψ ((−1) θ2 v) +

⟨ i j k ⟩ ψ (1 θ2 v)) − 3c2

(⟨ i j k ⟩ ψ u0)) − c0 ×

((⟨ i j k ⟩ ψ (1 θ0 v) −

⟨ i j k ⟩ ψ ((−1) θ0 v)) ×

⟨ i j k ⟩ ψ u0 +

(⟨ i j k ⟩ ψ (1 θ1 v) −

⟨ i j k ⟩ ψ ((−1) θ1 v)) ×

⟨ i j k ⟩ ψ u1 +

(⟨ i j k ⟩ ψ (1 θ2 v) −

⟨ i j k ⟩ ψ ((−1) θ2 v)) ×

⟨ i j k ⟩ ψ u2))

(translate rotations into indexing)

= ⟨ i j k ⟩ ψ u + c4 × (c3 × (c1 ×

(⟨ ((i − 1)mod s0) j k ⟩ ψ v +

⟨ ((i + 1)mod s0) j k ⟩ ψ v +

⟨ i ((j − 1)mod s1) k ⟩ ψ v +

⟨ i ((j + 1)mod s1) k ⟩ ψ v +

⟨ i j ((k − 1)mod s2) ⟩ ψ v +

⟨ i j ((k + 1)mod s2) ⟩ ψ v) −

3c2(⟨ i j k ⟩ ψ u0)) − c0 ×

((⟨ ((i + 1)mod s0) j k ⟩ ψ v −

⟨ ((i − 1)mod s0) j k ⟩ ψ v) ×

⟨ i j k ⟩ ψ u0 +

(⟨ i ((j + 1)mod s1) k ⟩ ψ v −

⟨ i ((j − 1)mod s1) k ⟩ ψ v) ×

⟨ i j k ⟩ ψ u1+

(⟨ i j ((k + 1)mod s2) ⟩ ψ v −

⟨ i j ((k − 1)mod s2) ⟩ ψ v) ×

⟨ i j k ⟩ ψ u2))

In Magnolia, the DNF can be captured as such:

procedure snippetDNF(

upd u:MA, obs v:MA,

obs u0:MA, obs u1:MA, obs u2:MA,

obs c0:Float, obs c1:Float,

obs c2:Float, obs c3:Float, obs c4:Float,

obs mi:MI) {

var s0 = shape0(v);

var s1 = shape1(v);

var s2 = shape2(v);

u =

psi(mi,u) + c4*(c3*(c1*(

psi(mod0(mi-d0,s0),v) +

psi(mod0(mi+d0,s0),v) +

psi(mod1(mi-d1,s1),v) +

psi(mod1(mi+d1,s1),v) +

psi(mod2(mi-d2,s2),v) +

psi(mod2(mi+d2,s2))) - 3*c2* psi(mi,u0)) -

c0 * ((psi(mod0(mi+d0,s0),v) -

psi(mod0(mi-d0,s0),v)) * psi(mi,u0) + (

psi(mod1(mi+d1,s1),v) -

psi(mod1(mi-d1,s1),v)) * psi(mi,u1) + (

psi(mod2(mi+d2,s2),v) -

psi(mod2(mi-d2,s2),v)) * psi(mi,u2)));

}

Now, we can transform snippet into its ONF form:

(rav snippet)[γ (⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] =

(rav u)[γ (⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] + c4 × (c3 × (c1 ×

(rav v)[γ (⟨ ((i − 1)mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

(rav v)[γ (⟨ ((i + 1)mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

(rav v)[γ (⟨ i ((j − 1)mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

(rav v)[γ (⟨ i ((j + 1)mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

(rav v)[γ (⟨ i j ((k − 1)mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)] +

(rav v)[γ (⟨ i j ((k + 1)mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)]) −

3c2(rav u)[γ (⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] − c0 ×

(((rav v)[γ (⟨ ((i + 1)mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)] −

(rav v)[γ (⟨ ((i − 1)mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)]) ×

(rav u0)[γ (⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

((rav v)[γ (⟨ i ((j + 1)mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)] −

(rav v)[γ (⟨ i ((j + 1)mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)]) ×

(rav u1)[γ (⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

((rav v)[γ (⟨ i j ((k + 1)mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)] −

(rav v)[γ (⟨ i j ((k − 1)mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)]) ×

(rav u2)[γ (⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)]))

This is how far we can go without specific information

about the layout of the data in the memory and the architec-

ture. The current form is still fully generic, with γ and rav

parameterized over the layout. The Magnolia implementa-

tion of this generic form is as follows:

procedure moaONF (

upd u:MA,

obs v:MA,

obs u0:MA, obs u1:MA, obs u2:MA,

obs c0:Float, obs c1:Float,

obs c2:Float, obs c3:Float, obs c4:Float,

obs mi:MI){

var s0 = shape0(v);

var s1 = shape1(v);

var s2 = shape2(v);

var newu =

get(rav(u),gamma(mi,s)) + c4*(c3*(c_1*

get(rav(v),gamma(mod0(mi-d0,s0),s)) +

get(rav(v),gamma(mod0(mi+d0,s0),s)) +

get(rav(v),gamma(mod1(mi-d1,s1),s)) +

get(rav(v),gamma(mod1(mi+d1,s1),s)) +

get(rav(v),gamma(mod2(mi-d2,s2),s)) +

get(rav(v),gamma(mod2(mi+d2,s2),s))) -

3 * c_2 get(rav(u),gamma(mi,s)) - c_0 *

((get(rav(v),gamma(mod0(mi+d0,s0),s)) -

get(rav(v),gamma(mod0(mi-d0,s0),s))) *

get(rav(u_0),gamma(mi,s)) +

(get(rav(v),gamma(mod1(mi+d1,s1),s)) -

get(rav(v),gamma(mod1(mi+d1,s1),s))) *

get(rav(u_1),gamma(mi,s)) +

(get(rav(v),gamma(mod2(mi+d2,s2),s)) -

get(rav(v),gamma(mod2(mi-d2,s2),s))) *

get(rav(u_2),gamma(mi,s))));

set(rav(u),gamma(mi,s),newu);

}

In Section 4.3, we defined the layout of the data as row-

major. Thus we can optimize the expression further by ex-

panding the calls to γ :

(rav snippet)[i × s1 × s2 + j × s2 + k] =

(rav u)[i × s1 × s2 + j × s2 + k] + c4 × (c3 × (c1 ×

(rav v)[((i − 1)mod s0) × s1 × s2 + j × s2 + k] +

(rav v)[((i + 1)mod s0) × s1 × s2 + j × s2 + k] +

(rav v)[i × s1 × s2 + ((j − 1)mod s1) × s2 + k] +

(rav v)[i × s1 × s2 + ((j + 1)mod s1) × s2 + k] +

(rav v)[i × s1 × s2 + j × s2 + ((k − 1)mod s2)] +

(rav v)[i × s1 × s2 + j × s2 + ((k + 1)mod s2)]) −

3c2(rav u)[i × s1 × s2 + j × s2 + k] − c0 ×

(((rav v)[((i + 1)mod s0) × s1 × s2 + j × s2 + k] −

(rav v)[((i − 1)mod s0) × s1 × s2 + j × s2 + k]) ×

(rav u0)[i × s1 × s2 + j × s2 + k] +

((rav v)[i × s1 × s2 + ((j + 1)mod s1) × s2 + k] −

(rav v)[i × s1 × s2 + ((j + 1)mod s1) × s2 + k]) ×

(rav u1)[i × s1 × s2 + j × s2 + k] +

((rav v)[i × s1 × s2 + j × s2 + ((k + 1)mod s2)] −

(rav v)[i × s1 × s2 + j × s2 + ((k − 1)mod s2)]) ×

(rav u2)[i × s1 × s2 + j × s2 + k]))

At this point, as indicated in section 4.3, we can convert our

expression into several subexpressions in order to distinguish

the general case from anomalies (i.e cases that require the

modulo operation to be applied on any axis). This general

case is in ONF and we can use it for code generation or to

perform additional transformations, specifically dimension

lifting.

6 Conclusion

Through the full analysis of an FDM solver of a PDE, we

were able to extract a rewriting subsystem most relevant

to our specific problem out of the rewriting rules provided

by theψ -calculus. Then, we proved that this particular set

of rewriting rules constitutes a canonical rewriting system,

getting one step closer to fully automating the optimization

of array computations using the MoA formalism.

We are now working on the implementation of our op-

timizations to measure their impact on the performance of

the solver for different architectures, and can report results

in the near future.

By working out an approach from high level coordinate-

free PDEs down to preparing for data layout and code opti-

mization using MoA as an intermediate layer through the

full exploration of a relevant example, we pave the way for

building similar systems for any problem of the same cate-

gory. High-efficiency code can thus easily be explored and

generated from a unique high-level abstraction and poten-

tially different implementation algorithms, layouts of data

or hardware architectures.

Because tensors dominate a significant portion of science,

futureworkmay focus on figuring out what properties can be

deduced from the completeψ -calculus rewriting systemwith

a goal to extend this currently problem-oriented approach to-

wards a fully automated problem-independent optimization

tool based on MoA.

Given the scale of the ecosystem impacted by this kind of

work, such prospects are very attractive.

References
[1] Philip Samuel Abrams. 1970. An APL machine. Ph.D. Dissertation.

Stanford University, Stanford, CA, USA.

[2] Evrim Acar, Animashree Anandkumar, Lenore Mullin, Sebnem

Rusitschka, and Volker Tresp. 2016. Tensor Computing for Internet of

Things (Dagstuhl Perspectives Workshop 16152). Dagstuhl Reports 6,

4 (2016), 57ś79. https://doi.org/10.4230/DagRep.6.4.57

[3] Evrim Acar, Animashree Anandkumar, Lenore Mullin, Sebnem

Rusitschka, and Volker Tresp. 2018. Tensor Computing for Internet of

Things (Dagstuhl Perspectives Workshop 16152). Dagstuhl Manifestos

7, 1 (2018), 52ś68. https://doi.org/10.4230/DagMan.7.1.52

[4] Brett W. Bader, Tamara G. Kolda, et al. 2015. MATLAB Tensor Tool-

box Version 2.6. Available online. http://www.sandia.gov/~tgkolda/

TensorToolbox/

[5] Anya Helene Bagge. 2009. Constructs & Concepts: Language Design

for Flexibility and Reliability. Ph.D. Dissertation. Research School in

Information and Communication Technology, Department of Infor-

matics, University of Bergen, Norway, PB 7803, 5020 Bergen, Norway.

http://www.ii.uib.no/~anya/phd/

[6] Klaus Berkling. 1990. Arrays and the Lambda Calculus. Technical

Report 93. Electrical Engineering and Computer Science Technical

Reports.

[7] Johannes Martinus Burgers. 1948. A mathematical model illustrating

the theory of turbulence. In Advances in applied mechanics. Vol. 1.

Elsevier, 171ś199.

[8] Eva Burrows, Helmer André Friis, and Magne Haveraaen. 2018. An

Array API for Finite Difference Methods. In Proceedings of the 5th

ACM SIGPLAN International Workshop on Libraries, Languages, and

Compilers for Array Programming (ARRAY 2018). ACM, New York, NY,

USA, 59ś66. https://doi.org/10.1145/3219753.3219761

[9] J. A. Crotinger et al. 2000. Generic Programming in POOMA and PETE.

Lecture Notes in Computer Science 1766 (2000).

[10] Philip W. Grant, Magne Haveraaen, and Michael F. Webster. 2000. Co-

ordinate free programming of computational fluid dynamics problems.

Scientific Programming 8, 4 (2000), 211ś230. https://doi.org/10.1155/

2000/419840

[11] Ian Grout and Lenore Mullin. 2018. Hardware Considerations for

Tensor Implementation and Analysis Using the Field Programmable

Gate Array. Electronics 7, 11 (2018). https://doi.org/10.3390/

electronics7110320

[12] John L. Gustafson and Lenore M. Mullin. 2017. Tensors Come of Age:

Why the AI Revolution will help HPC. CoRR abs/1709.09108 (2017).

arXiv:1709.09108 http://arxiv.org/abs/1709.09108

[13] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High Performance Stencil Code Gener-

ation with Lift. In Proceedings of the 2018 International Symposium on

Code Generation and Optimization (CGO 2018). ACM, New York, NY,

USA, 100ś112. https://doi.org/10.1145/3168824

[14] Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen. 1999.

Formal Software Engineering for Computational Modelling. Nord. J.

Comput. 6, 3 (1999), 241ś270.

[15] Magne Haveraaen, Helmer André Friis, and Hans Munthe-Kaas. 2005.

Computable Scalar Fields: a basis for PDE software. Journal of Logic

and Algebraic Programming 65, 1 (September-October 2005), 36ś49.

https://doi.org/10.1016/j.jlap.2004.12.001

[16] H. B. Hunt III, L. Mullin, and D. J. Rosenkrantz. 1998. Experimental

Design and Development of a Polyalgorithm for the FFT. Technical

Report 98ś5. University at Albany, Department of Computer Science.

[17] Harry B. Hunt III, Lenore R. Mullin, Daniel J. Rosenkrantz, and James E.

Raynolds. 2008. A TransformationśBased Approach for the Design of

Parallel/Distributed Scientific Software: the FFT. CoRR abs/0811.2535

(2008). arXiv:0811.2535 http://arxiv.org/abs/0811.2535

[18] K. Iverson. 1962. A Programming Language. John Wiley and Sons, Inc.

New York.

[19] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. 2017. The Tensor Algebra Compiler. Proc. ACM

Program. Lang. 1, Article 77 (Oct. 2017), 29 pages. https://doi.org/10.

1145/3133901

[20] J. W. Klop, Marc Bezem, and R. C. De Vrijer (Eds.). 2001. Term Rewriting

Systems. Cambridge University Press, New York, NY, USA.

[21] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions

and Applications. SIAM Rev. 51, 3 (September 2009), 455ś500. https:

//doi.org/10.1137/07070111X

[22] Lenore Mullin. 1988. A Mathematics of Arrays. Ph.D. Dissertation.

[23] Lenore Mullin and Michael Jenkins. 1996. Effective Data Parallel

Computation Using the Psi-Calculus. Concurrency Journal (1996).

[24] L Mullin and J Raynolds. 2014. Scalable, Portable, Verifiable Kronecker

Products on Multi-scale Computers. Constraint Programming and Deci-

sion Making. Studies in Computational Intelligence, Vol. 539. Springer,

Cham.

[25] L. Mullin, E. Rutledge, and R. Bond. 2002. Monolithic Compiler Exper-

iments using C++ Expression Templates. In Proceedings of the High

Performance Embedded ComputingWorkshop (HPEC 2002). MIT Lincoln

Lab, Lexington, MA.

[26] Lenore M. Restifo Mullin, Ashok Krishnamurthi, and Deepa Iyengar.

1988. The DesignAndDevelopment of a Basis, alphaL, for Formal Func-

tional Programming Languages with Arrays Based on a Mathematics

of Arrays. In Proceedings of the International Conference on Parallel

Processing, ICPP ’88, The Pennsylvania State University, University Park,

PA, USA, August 1988. Volume 2: Software.

[27] L.M. R. Mullin. 1991. Psi, the Indexing Function: A Basis for FFP with

Arrays. In Arrays, Functional Languages, and Parallel Systems. Kluwer

Academic Publishers.

[28] Lenore R. Mullin. 2005. A uniform way of reasoning about array-based

computation in radar: Algebraically connecting the hardware/software

boundary. Digital Signal Processing 15, 5 (2005), 466ś520.

[29] L. R. Mullin, D. Dooling, E. Sandberg, and S. Thibault. 1993. Formal

Methods for Scheduling, Routing and Communication Protoc ol. In

Proceedings of the Second International Symposium on High Performance

Distributed Computing (HPDC-2). IEEE Computer Society.

[30] L. R. Mullin, D. J. Rosenkrantz, H. B. Hunt III, and X. Luo. 2003. Efficient

Radar Processing Via Array and Index Algebras. In Proceedings First

Workshop on Optimizations for DSP and Embedded Systems (ODES). San

Francisco, CA, 1ś12.

https://doi.org/10.4230/DagRep.6.4.57
https://doi.org/10.4230/DagMan.7.1.52
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.ii.uib.no/~anya/phd/
https://doi.org/10.1145/3219753.3219761
https://doi.org/10.1155/2000/419840
https://doi.org/10.1155/2000/419840
https://doi.org/10.3390/electronics7110320
https://doi.org/10.3390/electronics7110320
http://arxiv.org/abs/1709.09108
http://arxiv.org/abs/1709.09108
https://doi.org/10.1145/3168824
https://doi.org/10.1016/j.jlap.2004.12.001
http://arxiv.org/abs/0811.2535
http://arxiv.org/abs/0811.2535
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X

[31] Paul Chang and Lenore R. Mullin. 2002. An Optimized QR Fac-

torization Algorithm based on a Calculus of Indexing. DOI:

10.13140/2.1.4938.2722.

[32] Jeremy G. Siek and Andrew Lumsdaine. 1998. The Matrix Template

Library: A Generic Programming Approach to High Performance

Numerical Linear Algebra. In Proceedings of the Second International

Symposium on Computing in Object-Oriented Parallel Environments.

Springer-Verlag, London, UK, UK. http://dl.acm.org/citation.cfm?id=

646894.709706

[33] Google Brain Team. 2015. https://www.tensorflow.org/.

[34] Hai-Chen Tu and Alan J. Perlis. 1986. FAC: A Functional APL Language.

IEEE Software 3, 1 (Jan. 1986), 36ś45.

http://dl.acm.org/citation.cfm?id=646894.709706
http://dl.acm.org/citation.cfm?id=646894.709706

	Abstract
	1 Introduction
	2 Related work
	3 Background, design and technologies
	3.1 Magnolia
	3.2 Mathematics of Arrays
	3.3 PDE solver framework

	4 MoA transformation rules
	4.1 -calculus and reduction to DNF
	4.2 Transformation rules
	4.3 Adapting to hardware architecture using ONF

	5 PDE solver test-case
	5.1 Reduction using MoA

	6 Conclusion
	References

