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In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the
numerical methods based on a �nite di�erence approximation for the generalized Black-Scholes equation. �e goal of the paper
is to incorporate the Wiener-Hopf factorization into �nite di�erence methods for pricing options in Lévy models with jumps. �e
method is applicable for pricing barrier and American options. �e pricing problem is reduced to the sequence of linear algebraic
systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic
interpretation based on the in�nitely divisible distributions theory to the Laurent operators in the correspondent factorization
identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal
matrix. However, ourmethod is more accurate.We support the advantage of the newmethod in terms of accuracy and convergence
by using numerical experiments.

1. Introduction

In recent years more and more attention has been given to
stochastic models of �nancial markets which depart from
the traditional Black-Scholes model. We concentrate on one-
factor non-Gaussian exponential Lévy models.�ese models
provide a better �t to empirical asset price distributions
that typically have fatter tails than Gaussian ones and can
reproduce volatility smile phenomena in option prices. For
an introduction to applications of these models applied to
�nance, we refer to [1, 2].

Option valuation under Lévy processes has been dealt
with by a host of researchers; therefore, an exhaustive list is
virtually impossible. However, the pricing of barrier options
in exponential Lévy models still remains a mathematical and
computational challenge (see, e.g., [3–6] for recent surveys of
the state of the art of exotic option pricing in Lévy models).

�e most general method to price barrier or Ameri-
can options deals with solving the corresponding partial

integrodi�erential equation (the generalized Black-Scholes
equation) with appropriate boundary conditions. Note that in
the case of American options free boundary problem arises.
�ere are four main numerical methods for solving the par-
tial integrodi�erential equation (PIDE): multinomial trees,
�nite di�erence schemes, Galerkin methods, and numerical
Wiener-Hopf factorization methods.

In [7], A family of Markov chain approximations of
jump-di�usion models is constructed. Multinomial trees can
be considered as special cases of explicit �nite di�erence
schemes. �e main advantage of the method is simplicity of
implementation; the drawbacks are inaccurate representation
of the jumps and slow convergence.

Galerkin methods are based on the variational formu-
lation of PIDE. While implementation of �nite di�erence
methods requires only a moderate programming knowledge,
Galerkinmethods use specialized toolboxes. Finite di�erence
schemes use less memory than Galerkinmethods, since there
is no overhead for managing grids, but a re�nement of the
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grid is more di�cult. A wavelet Galerkin method for pricing
American options under exponential Lévy processes is con-
structed in [8]. A general drawback of variational methods
is that, for processes of �nite variation, the convergence can
be proved in the ��-norm only, where � < 1/2; hence, the
convergence in �-norm is not guaranteed.

In a �nite di�erence scheme, derivatives are replaced by
�nite di�erences. In the presence of jumps, one needs to
discretize the integral term as well. Finite di�erence schemes
were applied to pricing of continuous barrier options in [9]
and to pricing of American options in [10–12].

A construction of any �nite di�erence scheme involves
discretization in space and time, truncation of large jumps,
and approximation of small jumps. Truncation of large jumps
is necessary because an in�nite sum cannot be calculated;
approximation of small jumps is needed when Lévy measure
diverges at zero. �e result is a linear system that needs to
be solved at each time step, starting from payo� function.
In the general case, solution of the system on each time step

by a linear solver requires �(�2) operations (� is a number
of space points), which is too time consuming. In [9–11], the
integral part is computed using the solution from the previous
time step, while the di�erential term is treated implicitly.�is
leads to the explicit-implicit scheme, with tridiagonal system
which can be solved in �(� ln�) operations. �e paper [12]
uses the implicit scheme and the iteration method at each
time step. �e methods in [10–12] are applicable to processes
of in�nite activity and�nite variation; the part of the in�nites-
imal generator corresponding to small jumps is approximated
by a di�erential operator of �rst order (additional dri�
component). �e paper [9] uses an approximation by a
di�erential operator of second order (additional di�usion
component).

It follows from the analysis of the above methods for
option pricing that in general case �nite di�erence schemes
seem to be the best choice. However, the essential disadvan-
tage of the existing methods is speed and/or accuracy.

In [5], the fast and accurate numerical method for pricing
barrier option in a wide class of Lévy processes was devel-
oped. �e fast Wiener-Hopf factorization method (FWHF
method) constructed in the paper is based on an e�cient
approximation of the Wiener-Hopf factors in the exact
formula for the solution and the fast Fourier transform
algorithm. In contrast to �nite di�erence methods where the
application entails an analysis of the underlying Lévy model,
the FWHF method deals with the characteristic exponent of
the process.

�e method in [5] uses the interpretation of the factors
as the expected present value operators (EPV operators)—
integral operators suggested in [13] which calculate the
(discounted) expected present values of streams of payo�s
under supremum and in�mum processes.�is interpretation
allows one to guess the optimal exercise boundary quite
naturally and give a simple proof of optimality; see details in
[14].

�e goal of the paper is to incorporate the Wiener-
Hopf factorization into �nite di�erence methods for pricing
options in Lévy models with jumps in terms of Laurent

and Toeplitz matrices. �e theory of Laurent and Toeplitz
operators allows for solving linear algebraic systems related
to the �nite di�erence schemes su�ciently fast and accurate.
Moreover, the correspondent matrix operators also admit
probabilistic interpretation as expectation operators and they
have similar properties to the ones of EPV-operators in [14].
It allows for developing e�ective methods for solving many
standard problems of option pricing.

�e method presented in the paper combines speed,
simplicity, and accuracy. As our numerical examples show
that it is rather faster than existing �nite di�erence schemes.
We generalize accurate �nite di�erence scheme developed
in [12] on processes of order more than 1 and describe the
outline of the solution to the standard problems of option
pricing.

�e rest of the paper is organized as follows. In Section 2,
we give necessary de�nitions of the theory of Lévy processes.
In Section 3we considermodel problems related to the option
pricing which can be reduced to solving Toeplitz systems.We
provide the formulas for Wiener-Hopf factorization in terms
of Laurent matrices and give the probabilistic interpretation
to the factors. Section 4 incorporates theWiener-Hopf factor-
ization of Toeplitz matrices into �nite di�erence methods for
pricing barrier and American options. In Section 5, we pro-
duce numerical examples and compare several methods for
pricing barrier and American options. Section 6 concludes
the paper.

2. Lévy Processes: General Definitions

A Lévy process is a stochastically continuous process with
stationary independent increments (for general de�nitions,
see, e.g., [15]). A Lévy process may have a Gaussian compo-
nent and/or pure jump component.�e latter is characterized
by the density of jumps, which is called the Lévy density.
We denote it by �(�	). A Lévy process can be completely
speci�ed by its characteristic exponent, 
, de�nable from the

equality �[����(�)] = �−��(�) (we con�ne ourselves to the one-
dimensional case).�e characteristic exponent is given by the
Lévy-Khintchine formula:


 (
) = �22 
2 − ��
 + ∫+∞

−∞
(1 − ���	 + �
	1|	|≤1) � (�	) ,

(1)

where �2 and � are the variance and dri� coe�cient of the
Gaussian component and �(�	) satis�es

∫
R\{0}

min {1, 	2} � (�	) < +∞. (2)

Assume that the riskless rate � is constant, and, under a
risk-neutral measure chosen by the market, the underlying

asset evolves as �� = �0��� , where �� is a Lévy process. �en

we must have �[���] < +∞, and, therefore, 
 must admit
the analytic continuation into the strip Im 
 ∈ (−1, 0) and
continuous continuation into the closed strip Im 
 ∈ [−1, 0].
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Further, the following condition (the EMM requirement)

must hold: �[���] = ���. Equivalently,� + 
 (−�) = 0, (3)

where � is instantaneous interest rate. �e latter condition
determines the dri� via the other parameters of the Lévy
process:� = � − �22 + ∫+∞

−∞
(1 − �	 + 	1|	|≤1) � (�	) . (4)

Hence, the characteristic exponent may be rewritten as
follows:
 (
) = �22 
2 − � (� − �22 ) 


+ ∫+∞

−∞
(1 − ���	 − �
 (1 − �	)) � (�	) . (5)

�en the in�nitesimal generator of � (denote it by) � is an
integrodi�erential operator which acts as follows:� (!) = �22  �� (!) + (� − �22 ) � (!)

+ ∫+∞

−∞
( (! + 	) −  (!) − (�	 − 1)  � (!)) � (�	) .

(6)

In empirical studies of �nancial markets, the following
classes of Lévy processes are popular: the Merton model [16],
double-exponential jump-di�usion model (DEJD) intro-
duced to �nance by Lipton [17] and Kou [18], generalization
of DEJD model constructed by Levendorskǐı [19] and labeled
later hyperexponential jump-di�usion model (HEJD), vari-
ance gamma processes (VGP) introduced to �nance by
Madan with coauthors (see, e.g., [20]), hyperbolic processes
constructed in [21, 22], normal inverse Gaussian processes
constructed by Barndor�-Nielsen [23] and generalized in
[24], and extended Koponen’s family introduced in [25, 26]
and labeled KoBoL model in [1]. Koponen [27] introduced a
symmetric version; Boyarchenko and Levendorskǐı [25, 26]
gave a nonsymmetric generalization; later, in [28], a subclass
of this model appeared under the name CGMYmodel.

Example 1. �e characteristic exponent of a pure jump
KoBoL process of order ] ∈ (0, 2), ] ̸= 1, is given by
 (
) = −��
 + #Γ (−]) [&]+ − (&+ + �
)]+(−&−)] − (−&− − �
)]] , (7)

where # > 0, � ∈ R, and &− < −1 < 0 < &+. Formula (7) is
derived in [1, 25] from the Lévy-Khintchine formula with the
Lévy densities of negative and positive jumps, �∓(�	), given
by �∓ (�	) = #��±	****	****−]−1�	. (8)

Example 2. In DEJD model, �∓(�	) are given by exponential
functions on negative and positive axis, respectively:�∓ (�	) = #± (±&±) ��±	, (9)

where � > 0, � ∈ R, #± > 0, and &− < −1 < 0 < &+. �en the
characteristic exponent is of the form
 (
) = �22 
2 − ��
 + �#+
&+ + �
 + �#−
&− + �
 . (10)

3. Wiener-Hopf Factorization for
Finite Difference Schemes

3.1. Wiener-Hopf Factorization for Finite Di	erence Schemes:
Problems with a Barrier. Notice that many option pricing
problems with a barrier can be reduced to the family of the
following problems:-−1 (- − �) 3 (!) = 4 (!) , ! > 0,3 (!) = 0, ! ≤ 0, (11)

where - > 0.
Choose a space step Δ!, and set !� = 7Δ!, 7 ∈ Z. Fix - > 0

and apply any �nite di�erence scheme to (11) (see, e.g., [9, 11,
12]), which may be reduced to approximate the in�nitesimal
generator � as follows (the example of the reduction can be
found in [12]):�3 (!�) = ∑

� ̸= 0
9�3 (!�+�) − ∑

� ̸= 0
9�3 (!�) , (12)

where ∑
� ̸= 0

9� < ∞, 9� > 0, 7 ̸= 0. (13)

�en we can approximate -−1(- − �) as follows:-−1 (- − �) 3 (!�) = ∑
�∈Z
:�3 (!�−�) , (14):� = −-−19−�, 7 ̸= 0, :0 = 1 + -−1∑

� ̸= 0
9�. (15)

�e sequence {:�}+∞�=−∞ generates doubly in�nite Laurent
matrix �(:) which is constant along the diagonals:

� (:) = (
(

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ :0 :−1 :−2 :−3 ⋅ ⋅ ⋅⋅ ⋅ ⋅ :1 :0 :−1 :−2 ⋅ ⋅ ⋅⋅ ⋅ ⋅ :2 :1 :0 :−1 ⋅ ⋅ ⋅⋅ ⋅ ⋅ :3 :2 :1 :0 ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
)
)

. (16)

A�er the discretization, the function3 ∈ �2(R) turns into
a piecewise constant function. �us, we may consider 3 =(. . . , 3(!−2), 3(!−1), 3(!0), 3(!1), 3(!2), . . .) as an element of72(Z). �en we may rewrite (14) as follows:-−1 (- − �) 3 (!�) = (� (:) 3)�, C ∈ Z. (17)

Let T stand for the complex unit circle. Since {:�} belongs
to 71(Z), we may introduce the function :(D) = ∑� :�D�,D ∈ T, which is known as the symbol of the Laurent matrix
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or of the Laurent operator �(:). Recall that the family of
all functions with absolutely converging Fourier series is the
Wiener algebra F := F(T) (see details in [29]), which is a
Banach algebra with respect to pointwise multiplication of
functions and the norm ‖:‖� = ∑� |:�|.

Further, the sequence {:�}+∞�=−∞ is the sequence of the
Fourier coe�cients of :(D)::� = 12I ∫2�

0
: (���) �−����J, C ∈ Z. (18)

Denote by � : �2(T) → 72(Z) the operator which maps
a function :(D) to the sequence of its Fourier coe�cients{:�}+∞�=−∞ (see (18)).

It is well known that the Laurent matrix �(:) is thematrix
representation of themultiplication by :(D) operator on�2(T)
with respect to the orthonormal basis {(1/√2I)����}. Hence,
we have � (:) = �:�−1. (19)

It follows from (19) that� (:1) � (:2) = � (:1:2) , ∀:1, :2 ∈ �∞ (T) . (20)

According to the Wiener theorem, (see, e.g., [29]) if : ∈F and :(D) ̸= 0, ∀D ∈ T, then :−1 = 1/: ∈ F. Let us denote
by 4F the set of all invertible elements of the algebra F.
It follows from (20) that if : ∈ 4F then the matrix �(:) is
invertible with the inverse �(:−1).

�e sequence {:�}+∞�=−∞ also generates the in�nite Toeplitz
matrix N(:):

N (:) = (:0 :−1 :−2 :−3 ⋅ ⋅ ⋅:1 :0 :−1 :−2 ⋅ ⋅ ⋅:2 :1 :0 :−1 ⋅ ⋅ ⋅:3 :2 :1 :0 ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅) . (21)

When a �nite di�erence approximation is applied (see
(14)), (11) may be rewritten as follows:(� (:) 3)� = 4�, C ∈ N,3� = 0, C ∈ Z, C ≤ 0, (22)

where 4� = 4(!�). Let Q denote the orthogonal projection of72(Z) onto 72(N): Q � = { �, C > 0,0, C ≤ 0. (23)

�en, taking into account thatN(:) = Q�(:)Q, we rewrite (22)
in terms of Toeplitz matrices:N (:) 3 = Q4, (24)

where 4 = (. . . , 4(!−2), 4(!−1), 4(!0), 4(!1), 4(!2), . . .) is
considered as an element of 72(Z).

�e standard theory of Toeplitz matrices (see details in
Section 1.5, [29]) leads us to the following theorem.

�eorem 3. Let a function : ∈ F be able to be represented in
the form : = exp (S) , S ∈ F. (25)


en the operator N(:) is invertible and there exist :+, :− ∈4F such that :+ (D) = ∑
�≥0

:+� D�, D ∈ T, (26):− (D) = ∑
�≤0

:−� D�, D ∈ T, (27): = :+:−, (28)N (:) = N (:−) N (:+) , (29)N(:)−1 = N (:−1+ ) N (:−1− ) . (30)

Notice that the identities (29) and (28) are called a
Wiener-Hopf factorization for Toeplitz matrices and Wiener
functions, respectively.

In the context of the �nite di�erence schemes under
consideration one can prove the following proposition.

Proposition 4. Let {:�}+∞�=−∞ de�ned by (13) and (15) be the
sequence of the Fourier coe�cients of a :(D). 
en :(D) satis�es
conditions of 
eorem 3.

Proof. Set :̃ (D) = 1 − : (D):0 , D ∈ T, (31)

then we have :̃ (D) = ∑
� ̸= 0

:̃�D�, :̃� = − :�:0 . (32)

According to (15) and (32), there exists a positive number �0 <1 such that ‖:̃ (D)‖� < �0, ∀D ∈ T. (33)

Hence, the Taylor series for ln(1 − :̃(D)) (ln(⋅) is the principal
branch of the logarithm),−∑

�>0

:̃(D)�U (34)

converges at every point D ∈ T.
Set S (D) = ln (1 − :̃ (D)) + ln (:0) , (35)V� (D) = − �∑

�=1

:̃(D)�U + ln (:0) , C ∈ N. (36)

Because :̃(D) ∈ F and the condition (33) is satis�ed,
we conclude that V�(D) is a fundamental sequence which is
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contained in the Wiener algebra F. In fact, for any W > 0,
there exists a natural number C such thatXXXXV�+� − V�XXXX� ≤ �+�∑

�=�+1

��0U ≤ ��+10(C + 1) (1 − �0) < W, ∀� ∈ N.
(37)

�us, we have proved that the function S(D) belongs to the
Wiener algebraF. Obviously, :(D) = exp(S(D)), ∀D ∈ T.

Let a function :(D) satisfy the conditions of Proposition 4.
Set Y (D) = (: (D))−1,Y+ (D) = (:+ (D))−1,Y− (D) = (:− (D))−1. (38)

From�eorem 3 and Proposition 4, we deduceY (D) = ∑
�∈Z
Y�D�, Y ∈ F, (39)

Y− (D) = �=0∑
�=−∞

Y−
� D�, Y− ∈ F, (40)

Y+ (D) = �=+∞∑
�=0

Y+
� D�, Y+ ∈ F. (41)

Further, we will describe an algorithm for �nding
coe�cients {Y�}, {Y±

� }, based on the theory from [29]. By
�eorem 3, � (Y) = �(:)−1,N (Y+) = N(:+)−1,N (Y−) = N(:−)−1. (42)

It follows that {Y�} is the sequence of the Fourier coe�cients

of :−1. We haveY� = 12I ∫�

−�
:(���)−1�−����J, C ∈ Z, (43)

due to (18).
Wiener-Hopf factorization formula (28) givesY (D) = Y+ (D) Y− (D) , ∀D ∈ T. (44)

�e factors Y± can be found as follows. From Proposition 4,
there exists a functionS (D) = +∞∑

�=−∞
S�D�, +∞∑

�=−∞

****S�**** < ∞, (45)

such that S (D) = ln : (D) , D ∈ T, (46)

where the sequence of the Fourier coe�cients of this function
is de�ned asS� = 12I ∫�

−�
ln : (���) �−����J, C ∈ Z. (47)

Notice that Y(D) = �−�(�), D ∈ T. Next we de�ne S± asS− (D) = �=−1∑
�=−∞

S� (D� − 1) ,
S+ (D) = �=+∞∑

�=1
S� (D� − 1) , D ∈ T, (48)

Further, we setY+ (D) = �−�+(�), Y− (D) = �−�−(�), D ∈ T. (49)

Finally, we haveY±
� = 12I ∫�

−�
Y± (���) �−����J, C ∈ Z. (50)

Obviously, Y+
� = 0 as C < 0, and Y−

� = 0 as C > 0.
Remark 5. Notice that the Wiener-Hopf factorization (44) is
also satis�ed if we substitute S−(D) + � and S+(D) − � into (49)
(with any constant �) instead S−(D) and S+(D), respectively.

Hence, to solve the problem (24), one needs to construct

the inverse Toeplitz operator N(:)−1 by using the above
algorithm.�us, an approximate solution to the problem (11)
can be written as 3 = N (:−1+ ) N (:−1− )4. (51)

From a practical point of view, it is more convenient to
rewrite (51) in terms of Laurent operators �(Y±):3 = � (Y+) Q� (Y−) 4. (52)

An e�cient numerical realization of (52) is available by
means of fast Fourier transform (FFT) due to (19). �e
complexity of the method is �(Z lnZ), where Z is the
number of space discretization points.

3.2. Wiener-Hopf Method for Finite Di	erence Schemes: Opti-
mization Problems. Optimal stopping problems play a very
important role in the mathematical �nance and they are con-
nected with pricing American, Bermudan, and other types of
options. Pricing such options can be typically reduced to the
sequence of the following problems.

Let 4(!) be a monotonically increasing function, and
it changes sign on the real line. Consider the following
problem: -−1 (- − �) 3 (!) = 4 (!) , ! > ℎ,3 (!) = 0, ! ≤ ℎ, (53)
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where the continuous function 3(!) is maximized over barri-
ers ℎ.

Applying a �nite di�erence scheme to (53) which approx-

imates -−1(- − �) by formulas (14) and (15), we obtain the
following discrete equation on the half line:

(� (:) 3)� = 4�, C > C0,3� = 0, C ≤ C0, (54)

where 3� = 3(!�), 4� = (-ΔD)−14(!�), C0 maximizes 3, and: is the symbol of a Laurent �(:) (see (12)–(16)).
Introduce the orthogonal projection Q� as follows:

Q� � = { �, C > 7,0, C ≤ 7. (55)

Further, we factorize the corresponding Toeplitz operatorN(:) (see �eorem 3, Proposition 4, and (38)–(50)). �e
factorization formulas (48) are chosen in such a way that
functions Y, Y+, and Y− are characteristic functions of
in�nitely divisible distributions.

�eorem 6. Let sequences {Y�}, {Y±
� } be as de�ned by (43) and

(47)–(50), and assume that the conditions of Proposition 4 are
satis�ed. Set

Q (
) = ∑
�∈Z
Y� exp (−�7
Δ!) , 
 ∈ R,

Q+ (
) = �=0∑
�=−∞

Y−
� exp (−�7
Δ!) , 
 ∈ R,

Q− (
) = �=+∞∑
�=0

Y+
� exp (−�7
Δ!) , 
 ∈ R.

(56)


en Q, Q+, and Q− are characteristic functions of in�nitely
divisible lattice distributions supported on {! = CΔ! | C ∈ Z},{! = CΔ! | C ∈ Z, C ≥ 0}, and {! = CΔ! | C ∈ Z, C ≤ 0},
respectively.

Proof. Recall that the characteristic function of an in�nitely
divisible lattice distribution with themaximal stepΔ! has the
following form (see, e.g., [30]):

# (
) = exp(∑
�∈Z

#� (exp (�C
Δ!) − 1)) , 
 ∈ R, (57)

where #� ≥ 0, ∀C ∈ Z, ∑�∈Z #� < +∞.
From (35), we have

−S (D) = +∞∑
�=1

:̃(D)�U − ln (:0) . (58)

Since S ∈ F and S(1) = 0, the function −S can be written as
follows: −S (D) = +∞∑

�=−∞
(−S�) (D� − 1) , (59)

where S� are de�ned by (47).
Notice that by the de�nition (see (32)) :̃� > 0, C ̸= 0. It

follows that the Fourier coe�cients of :̃(D)�/U are also positive
for every U due to Cauchy’s series product theorem. Since‖:̃‖� < �0 < 1, ‖:̃�/U‖� < ��0/U. Hence, all the coe�cients−S� in the formula (59) are positive.

Clearly, the functions a(D) ∈ F (D = ��� ∈ T) are contin-

uous on T and, when regarded as functions a(�−�Δ��), 
 ∈ R,
they are (2I/Δ!)-periodic continuous functions. Hence, the
function Y(D) (see (39) and (43)) can be rewritten in the form
(57): Q (
) = exp(∑

� ̸= 0
(−S−�) (exp (�7
Δ!) − 1)) . (60)

Analogously, we rewrite Q±(
) in the form (57):Q− (
) = exp(∑
�<0

(−S−�) (exp (�7
Δ!) − 1)) ,
Q+ (
) = exp(∑

�>0
(−S−�) (exp (�7
Δ!) − 1)) . (61)

It follows that Q, Q+, and Q− are characteristic functions of
in�nitely divisible lattice distributions with the maximal stepΔ! supported on {! = CΔ! | C ∈ Z}, {! = CΔ! | C ∈ Z, C ≥0}, and {! = CΔ! | C ∈ Z, C ≤ 0}, respectively.

From�eorem 6we have that there exist discrete random
variables �, �+, and �− taking on values of the form !� =CΔ!, C ∈ Z, such thatQ (� = !�) = Y−�, C ∈ Z,Q (�− = !�) = Y+

−�, C ∈ Z,Q (�+ = !�) = Y−
−�, C ∈ Z, (62)

where {Y�} and {Y±
� } are de�ned by (43) and (47)–(50).

It follows that the corresponding Laurent operators �(Y),�(Y+), and �(Y−) can be interpreted as expectation oper-
ators conditioned on current values of �, �−, and �+,
respectively:� (Y) 3 (!�) = ∑

�∈Z
Y�3 (!�−�) = � [3 (!� + �)] ,

� (Y+) 3 (!�) = �=+∞∑
�=0

Y+
� 3 (!�−�) = � [3 (!� + �−)] ,

� (Y−) 3 (!�) = �=0∑
�=−∞

Y−
� 3 (!�−�) = � [3 (!� + �+)] .

(63)

�e following simple properties are immediate from the
interpretation of �(Y±) as expectation operators.
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Proposition 7. Laurent operators �(Y±) enjoy the following
properties.

(a) If 3� = 0, ∀C ≥ C0, then, ∀C ≥ C0, (�(Y−)3)� = 0.
(b) If 3� = 0, ∀C ≤ C0, then, ∀C ≤ C0, (�(Y+)3)� = 0.
(c) If 3� ≥ 0, ∀C, then, (�(Y−)3)� ≥ 0, ∀C. If, in addition,

there exists C0 such that 3� > 0 ∀C > C0, then (�(Y−)3)� > 0, ∀C.
(d) If 3� ≥ 0, ∀C, then (�(Y+)3)� ≥ 0, ∀!. If, in addition,

there exists C0 such that 3� > 0 ∀C < C0, then (�(Y+)3)� > 0, ∀C.
(e) If 3 = {3�} is monotone, then {(�(Y−)3)�} and {(�(Y+)3)�} are also monotone.

Proposition 7 is a direct analog of the properties of the
expected present value operators introduced in [14]; see
Proposition 6.2.1.

Taking into account that 4 = {4�} in (54) is a mono-
tonically increasing sequence and it changes the sign, then
from Proposition 7 an approximate solution 3 = (. . . , 3(!−2),3(!−1), 3(!0), 3(!1), 3(!2), . . .) to the problem (53) can be
written in terms of Laurent operators �(Y±):3 = � (Y+) Q�0� (Y−) 4, (64)

where the only number C0 can be found from the following
conditions: (� (Y−) 4)� > 0, C > C0,(� (Y−) 4)� ≤ 0, C ≤ C0. (65)

We remark that (64) includes the requirement that the seriese� = �=0∑
�=−∞

Y−
� 4�−�, C ∈ Z (66)

are convergent. An e�cient numerical realization of (64) is
based on (19) and fast Fourier transform.

3.3. Wiener-Hopf Factorization for Finite Di	erence Schemes:
Algorithm. In the subsection, we give an algorithm of the
construction of an approximate Wiener-Hopf factorization
for �nite di�erence schemes.

Wiener-Hopf Factorization

Step 1. Input the interest rate � and the parameters of the Lévy
exponents (5).

Step 2. Input the space step Δ!.
Step 3. Choose a �nite di�erence scheme (FDS) for an
approximation of the in�nitesimal generator �.
Step 4. Choose desired truncation error W for coe�cients {9�}
in (12) (as a rule, the choice W = 10−6 is optimal). Due to the
FDS, calculate 9�, 7 = −1, −2, . . . , 7−, where 7− = max{7 < 0 ||9�| < W/2}; calculate 9�, 7 = 1, 2, . . . , 7+, where 7+ = min{7 >0 | |9�| < W/2}. Set 9� = 0, as 7 < 7− or 7 > 7+.

Step 5. Input the terminal date N and de�ne the number of
time steps U (the choice of U typically depends on the �nite

di�erence scheme). Set space step ΔD = N/U and - = (ΔD)−1 +�.
Step 6. Input !min and !max, the lower and upper bounds for
the space variable !. As a rule, the choice !min = ln(0.4) and!max = ln(2.5) is optimal.

Step 7. De�ne the number of space points � as follows. Set70 = max{−7−; 7+; (!max−!min)/2Δ!}. We �nd integer numberC0 such that 2�0−1 < 70 ≤ 2�0 and set� = 2�0 . We will use fast
Fourier transform for real-valued functions (FFT); see details
in [5, 31]. �at is why we choose the number of space points
as a power of 2.
Step 8. Find coe�cients :�, 7 = −�+1, . . . , �, by the formula
(15).

Step 9. Denote by i� = exp(�IC/�), C = −� + 1, . . . , �. Find:(i�) = ∑�=�
�=−�+1 :�i��, C = −� + 1, . . . , �, using FFT.

Step 10. We �nd the symbol of �(Y) = (�(:−1)): Y(i�) =:−1(i�), C = −� + 1, . . . , � (see (39)).

Step 11. We �nd S(i�) := ln(:(i�)), C = −� + 1, . . . , �
(see (46)). Using inverse FFT, we obtain the sequence of
coe�cients S�, C = −� + 1, . . . , �, for decomposition of S(i)
to the series S (i) = �=�∑

�=−�+1
S�i� (67)

Step 12. Set S−0 = −∑�=−1
�=−�+1 S� and S−(i) = ∑�=−1

�=−�+1 S�i� + S−0 ;
set S+0 = S0 − S−0 and S+(i) = ∑�=�

�=1 S�i� + S+0 (see (48)). Using
FFT we obtain S±(i�), C = −� + 1, . . . , �.

Step 13. We �nd the symbols of �(Y±): Y±(i�) = exp(−S±(i�)), C = −� + 1, . . . , � (see (49)).

4. Implementation of Wiener-Hopf
Method for Solution to Standard
Problems on Option Pricing

We assume that the riskless rate � > 0 is constant and, under
a risk-neutral measure chosen by the market, the log price of
the stock�� = log �� follows a Lévy process with the in�nites-
imal generator � (see (6)) and characteristic exponent 
 (see
(5)).

4.1. Barrier Options. Consider a contract which pays the
speci�ed amount 4(��) at the terminal date N, provided
during the life-time of the contract, the price of the stock does
not cross a speci�ed constant barrier � from above (down-
and-out barrier options) or from below (up-and-out barrier
options). When the barrier is crossed, the option expires
worthless or the option owner is entitled to some rebate.
We restrict ourselves to the case of down-and-out barrier
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options without rebate; the generalization to the cases of a
up-and-out barrier options and barrier options with rebate is
straightforward. �e price j(D, ��) of such barrier option can
be found as the solution to the following integrodi�erential
equation with initial and boundary conditions (see [1]). Set! = ln(�/�), 3(!) = 4(���), and V(D, !) = j(D,���). �en,(k� + � − �) V (D, !) = 0, 0 ≤ D ≤ N, ! > 0, (68)

V (N, !) = 3 (!) , ! > 0, (69)

V (D, !) = 0, 0 ≤ D ≤ N, ! ≤ 0. (70)

�emost numerical methods start with a time discretiza-
tion (the method of lines); see, for example, [5]. Divide [0, N]
into U subperiods by points D� = lΔD, l = 0, 1, . . . , U, whereΔD = N/U, and denote by V�(!) the approximation to V(!, D�).
�en V�(!) = 3(!), and by discretizing the derivative k� in
(68), we obtain, for l = U − 1, U − 2, . . . , 0,

V�+1 (!) − V� (!)ΔD − (� − �) V� (!) = 0, ! > 0. (71)

Equation (70) assumes the form

V� (!) = 0, ! ≤ 0. (72)

Set - = ΔD−1 + �; then (71) can be rewritten as follows:-−1 (- − �) V� (!) = (-ΔD)−1V�+1 (!) , ! > 0. (73)

Notice that the sequence of problems (72) and (73) has
the form (11). Applying a �nite di�erence scheme to (72) and

(73) which approximates -−1(-−�) by formulas (14) and (15),
we obtain the discrete problem of the form (22) which can
be easily solved by using (52). See details in Section 3.1. One
can speed up the calculations by using real-valued FFT and
similar tricks as in [5].

4.2. American Options. We consider the American put on
a stock which pays no dividends; the generalization to the
case of a dividend-paying stock and the American call is
straightforward. (Moreover, as it is well-known, changing the
direction on the line, the unknown function, the riskless rate,
and the process, one can reduce the pricing problem for the
American call to the pricing problem for the American put).

Let j(D, ��) be the price of American put with the strike
price m and the terminal date N. Set ! = ln(�/m), 3(!) =m(1 − ��), and V(D, !) = j(D, m��). Assume that the optimal
stopping time is of the form i�� ∧ N, where i�� is the hitting
time of a closed set o ⊂ R × (−∞,N] by the two-dimensional

process �̂� = (��, D). SetC = R×[0, N) \o (this is the contin-
uation region, where the option remains alive), and consider
the following boundary value problem:(k� + � − �) V (D, !) = 0, (D, !) ∈ C, (74)

V (D, !) = 3 (!) , (D, !) ∈ o or D = N, (75)

V (D, !) ≥ (!)+, D ≤ N, ! ∈ R, (76)(k� + � − �) V (D, !) ≤ 0, D < N, (D, !) ∉ C, (77)

where 3(!)+ := max{3(!), 0}.
Under certain regularity conditions (see �eorem 6.1 in

[1]), the continuous bounded solution to the free boundary
problem (74)–(77) gives the optimal early exercise region, o,
and the rational option price, V.

We apply the Lévy analog of Carr’s randomization proce-
dure developed in Section 6.2.2 of [1] for the American put.
Normalize the strike price to 1; divide [0, N] into U subperiods
by points D� = lΔD, l = 0, 1, . . . , U, where ΔD = N/U; and
denote by V�(!) the approximation to V(!, D�); ℎ� denotes the
approximation to the early exercise boundary at time D�.�en

V�(!) = m(1 − ��)+, and by discretizing the derivative k� in
(74), we obtain, for l = U − 1, U − 2, . . . , 0,

V�+1 (!) − V� (!)ΔD − (� − �) V� (!) = 0, ! > ℎ�. (78)

Equation (75) assumes the form

V� (!) = 3 (!) , ! ≤ ℎ�. (79)

�e approximation ℎ� to the early exercise boundary is found
so that the V� is maximal.

Introduce Ṽ�(!) = V�(!) − 3(!) and substitute V�(!) =
Ṽ�(!) + 3(!) into (78) and (79):

Ṽ�+1 (!) − Ṽ� (!)ΔD − (� − �) Ṽ� (!) = �, ! > ℎ�, (80)

Ṽ� (!) = 0, ! ≤ ℎ�. (81)

Set - = ΔD−1 + � and 4� = (-ΔD)−1Ṽ�+1 − -−1(� − �)3 =(-ΔD)−1Ṽ�+1 − -−1m�; then (80) can be rewritten as follows:-−1 (- − �) Ṽ� (!) = 4� (!) , ! > ℎ�. (82)

Notice that the sequence of problems (81) and (82) has the
form (53), where4�(!) is monotonically increasing function.
Applying a �nite di�erence scheme to (81) and (82) which

approximates -−1(- − �) by formulas (14) and (15), we obtain
the discrete problem of form (54) which can be easily solved
by using (64). See details in Section 3.2.

5. Numerical Examples

5.1. 
e FDS&WH Method and the Method of Cont and
Voltchkova (2005). In this subsection we apply our �nite dif-
ference scheme with Wiener-Hopf method (we refer to the
method FDS&WH) to KoBoL process and compare barrier
option prices with the results obtained by themethod in Cont
and Voltchkova (2005) [9] (we refer to this method as CV
method).We study convergence of twomethods for processes
of order ] < 1 and ] > 1.
Example 1 (Process of order ] < 1). To compare CV method
with FDS&WH for processes of order ] < 1, we take KoBoL
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Table 1: Convergence of the down-and-out put prices in KoBoL model, ] < 1: FDS &WH versus CV.

(a)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 93 0.0577 −59.1% 1 0.1380 −2.2% 1

0.0005 152 0.0716 −49.2% 3 0.1400 −0.8% 2

0.00025 253 0.0873 −38.1% 19 0.1408 −0.2% 8

0.0001 520 0.1073 −24.0% 78 0.1411 0.0% 33

0.00005 926 0.1197 −15.2% 324 0.1411 0.0% 126

0.000025 1688 0.1281 −9.2% 1348 0.1411 568

0.00001 4000 0.1330 −5.7% 14655

(b)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 93 0.2344 −19.8% 1 0.2899 −0.8% 1

0.0005 152 0.2464 −15.7% 3 0.2915 −0.2% 2

0.00025 253 0.2571 −12.0% 19 0.2920 0.0% 8

0.0001 520 0.2679 −8.3% 78 0.2922 0.0% 33

0.00005 926 0.2740 −6.2% 324 0.2922 0.0% 126

0.000025 1688 0.2787 −4.6% 1348 0.2922 568

0.00001 4000 0.2832 −3.1% 14655

(c)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 93 0.2182 −16.7% 1 0.2583 −1.4% 1

0.0005 152 0.2273 −13.3% 3 0.2604 −0.6% 2

0.00025 253 0.2353 −10.2% 19 0.2614 −0.3% 8

0.0001 520 0.2434 −7.1% 78 0.2618 −0.1% 33

0.00005 926 0.2481 −5.3% 324 0.2620 0.0% 126

0.000025 1688 0.2517 −4.0% 1348 0.2621 568

0.00001 4000 0.2552 −2.6% 14655

(d)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 93 0.1718 −15.4% 1 0.1995 −1.7% 1

0.0005 152 0.1781 −12.2% 3 0.2012 −0.9% 2

0.00025 253 0.1838 −9.4% 19 0.2022 −0.4% 8

0.0001 520 0.1896 −6.6% 78 0.2027 −0.2% 33

0.00005 926 0.1930 −4.9% 324 0.2029 −0.1% 126

0.000025 1688 0.1956 −3.6% 1348 0.2030 568

0.00001 4000 0.1981 −2.4% 14655

KoBoL parameters: ! = 0, ] = 0.5, �+ = 4, �− = −6, " = 1.
# = 100,$ = 90, � = 0.04879, � = 0.5, %: the relative di�erence between the current option price and the price computed by FDS & WH method for
space step Δ� = 0.000025.
(a): & = 91; (b): & = 101; (c): & = 111; (d): & = 121.

model with parameters � = 0, ] = 0.5, &+ = 4.0, &− = −6.0,
and # = 1.0. We choose instantaneous interest rate � =0.04879, time to expiry N = 0.5 year, strike price m = 100,
and the barrier� = 90. As the base �nite di�erence scheme
we choose the one developed in [12].

In Table 1, we compare the down-and-out barrier put
option prices calculated by FDS&WH and CV methods for
spot prices � = 91, 101, 111, 121 (the values are obtained on
a PC with characteristics AMD Turion (tm) 64X2 1.6GHz,
896Mb, underWindows XP).We see that FDS&WHmethod
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Table 2: Convergence of the down-and-out put prices in KoBoL model, ] > 1: FDS &WH versus CV.

(a)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 95 0.372 −28.9% 1 0.551 5.3% 1

0.0005 218 0.402 −23.3% 2 0.543 3.6% 3

0.00025 501 0.431 −17.7% 10 0.536 2.3% 15

0.0001 1501 0.464 −11.4% 188 0.529 1.0% 98

0.00005 3440 0.481 −8.2% 1045 0.526 0.4% 482

0.000025 7882 0.492 −6.1% 5520 0.524 2697

(b)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 95 2.314 −5.7% 1 2.565 4.5% 1

0.0005 218 2.344 −4.5% 2 2.522 2.7% 3

0.00025 501 2.369 −3.5% 10 2.494 1.6% 15

0.0001 1501 2.394 −2.5% 188 2.471 0.7% 98

0.00005 3440 2.407 −1.9% 1045 2.461 0.3% 482

0.000025 7882 2.418 −1.5% 5520 2.455 2697

(c)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 95 2.304 −3.4% 1 2.428 1.8% 1

0.0005 218 2.320 −2.7% 2 2.414 1.2% 3

0.00025 501 2.335 −2.1% 10 2.403 0.7% 15

0.0001 1501 2.349 −1.5% 188 2.393 0.3% 98

0.00005 3440 2.357 −1.2% 1045 2.389 0.1% 482

0.000025 7882 2.364 −0.9% 5520 2.386 2697

(d)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 95 1.547 −2.2% 1 1.567 −0.9% 1

0.0005 218 1.554 −1.8% 2 1.575 −0.4% 3

0.00025 501 1.560 −1.4% 10 1.579 −0.2% 15

0.0001 1501 1.566 −1.0% 188 1.581 0.0% 98

0.00005 3440 1.570 −0.7% 1045 1.581 0.0% 482

0.000025 7882 1.573 −0.5% 5520 1.581 2697

(e)

Parameters CV FDS &WHΔ! t Option price W CPU time, sec. Option price W CPU time, sec.

0.001 95 0.862 −1.5% 1 0.849 −3.0% 1

0.0005 218 0.865 −1.2% 2 0.861 −1.7% 3

0.00025 501 0.867 −0.9% 10 0.868 −0.9% 15

0.0001 1501 0.870 −0.6% 188 0.872 −0.3% 98

0.00005 3440 0.872 −0.4% 1045 0.874 −0.1% 482

0.000025 7882 0.873 −0.3% 5520 0.875 2697

KoBoL parameters: ! = 0, ] = 1.2, �+ = 8.8, �− = −14.5, " = 1.
# = 100,$ = 80, � = 0.04879, � = 0.1;' : number of time steps; %: the relative di�erence between the current option price and the price computed by
FDS &WHmethod for space step Δ� = 0.000025.
(a): & = 81; (b): & = 91; (c): & = 101; (d): & = 111; Table 2(e): & = 121.
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Table 3: American put, time of computation: FDS &WH versus FDS.

Parameters Relative di�erence Time of computation, sec.

Space step Δ! Number of time stepst W* W� FDS FDS &WH

0.002 65 0.21% 0.2% 14 1

0.001 112 0.21% 0.2% 64 3

0.0005 203 0.2% 0.2% 536 13

KoBoL parameters: ! = 0, ] = 0.2, �+ = 3.2, �− = −5.4, " = 1.
# = 100, � = 0.03, � = 0.5.
%* and %� are the maximums of the relative di�erences between correspondent prices and boundaries, respectively, in the region & ≤ 1.3#.

demonstrates very fast convergence: in few seconds the
accuracy reaches less than 0.5%. In the same timeCVmethod
converges very slowly and gives an error in 2-3% only a�er
several hours of calculations. From Table 1 we clearly see that
prices computed by FDS&WHstabilize su�ciently fast, while
the ones computed by CV method essentially vary from the
previous space step. Notice that near the barrier the prices
computed by CV method are especially unstable.

Example 2 (Process of order ] > 1). In the case of processes
of order ] > 1, we take KoBoL model with parameters � = 0,
] = 1.2, &+ = 8.8, &− = −14.5, and # = 1. We choose riskless
rate � = 0.04879, time to expiry N = 0.1 year, strike pricem = 100, and the barrier� = 80.

In Table 2, we compare the down-and-out barrier put
option prices calculated by FDS&WH and CV methods.
�e FDS method can be extended for the case of in�nite
variation (] > 1); see details in [32]. CVmethoddemonstrates
better convergence in comparisonwith the previous example,
but FDS&WH method converges faster, especially in the
neighborhood of the barrier.

5.2. 
e FDS&WH Method and FDS (Levendorskǐı et al.
(2006)), [12]. In this subsection we apply our �nite di�erence
scheme with Wiener-Hopf method to KoBoL process and
compare American option prices with the results obtained by
the �nite di�erencemethod in [12] (we refer to thismethod as
FDS method). We take KoBoL model with parameters � = 0,
] = 0.2, &+ = 3.2, &− = −5.4, and # = 1. We choose riskless
rate � = 0.03, time to expiry N = 0.5 year, and strike pricem = 100. �e di�erences between prices and early exercise
boundaries computed by the both methods are insigni�cant.
Table 3 con�rms our observation. As we see form Table 3 the
time of computation by FDS&WHmethod is in several times
lesser.

6. Conclusion

Many option pricing problems can be solved by using �nite
di�erence schemes. �e method is very popular in practice,
because, in a di�usion model, the correspondent system has
a tridiagonal matrix which can be easily inverted.

In the presence of jumps, we have the additional integral
term which can be replaced by a discrete sum. As the result,
one needs to invert a dense Toeplitz matrix. To avoid this
problem, many authors (see, e.g., [9–11]) suggest computing
the integral part by using the solution from the previous time

step, while the di�erential term is treated implicitly.�is leads
to the explicit-implicit scheme,with tridiagonal systemwhich
can be solved in�(Z lnZ) operations, whereZ is a number
of space discretization points. However, the advantage in
speed turns to the drawback in accuracy, especially in the case
of barrier options. In the in�nite activity case described in [9],
the explicit-implicit scheme demonstrates bad convergence
near the barrier and hence also becomes time consuming (see
details in [5]).

In [12], an accurate implicit �nite di�erence scheme for
pricing American options was developed. �e procedure of
inversion for the dense matrix of the system is iterative, and
it requires 5–10 iterations on each time step. Hence, for a �xed
space and time steps, modi�cation of the scheme for barrier
options is in several times slower than that of the scheme in
[9], but more accurate as examples in [5] show.

In [33], the case of discrete monitoring is considered.
�e usual backward recursion that arises in discrete barrier
option pricing is converted into a set of independent integral
equations by using a y-transform approach. In order to solve
these equations, the rectangle quadrature rule transforms
each integral equation into a Toeplitz linear system which is
solved by iterative algorithms as in [12].

In the paper, we suggest a new approach which incor-
porates the Wiener-Hopf factorization method into a �nite
di�erence scheme with a Toeplitz system. Notice that our
algorithm has the same complexity as the ones which use the
explicit-implicit scheme, with a tridiagonal matrix. However,
our method is more accurate, because it inverts the whole
Toeplitz matrix, not only its tridiagonal part.

We give an important probabilistic interpretation based
on the in�nitely divisible distributions theory to the Laurent
operators in the Wiener-Hopf factorization identity for �nite
di�erence schemes. It implies very useful properties which
allowdeveloping e�ectivemethods for solvingmany standard
problems on option pricing (e.g., European, barrier, �rst
touch digital, and American options).
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under Lévy processes,” Journal of Computational Finance, vol. 9,
no. 2, 2006.

[13] S. I. Boyarchenko and S. Z. Levendorskǐı, “American options:
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