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SUMMARY 
An algorithm for the numerical modelling of magnetotelluric fields in 2-D generally 
anisotropic block structures is presented. Electrical properties of the individual 
homogeneous blocks are described by an arbitrary symmetric and positive-definite 
conductivity tensor. The problem leads to a coupled system of partial differential 
equations for the strike-parallel components of the electromagnetic field, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEx and H,. 
These equations are numerically approximated by the finite-difference (FD) method, 
making use of the integro-interpolation approach. As the magnetic component H, 
is constant in the non-conductive air, only equations for the electric mode are 
approximated within the air layer. The system of linear difference equations, resulting 
from the FD approximation, can be arranged in such a way that its matrix is symmetric 
and band-limited, and can be solved, for not too large models, by Gaussian elimination. 
The algorithm is applied to model situations which demonstrate some non-trivial 
phenomena caused by electrical anisotropy. In particular, the effect of 2-D anisotropy 
on the relation between magnetotelluric impedances and induction arrows is studied in 
detail. 

Key words: 2-D structures, electrical anisotropy, finite-difference method, magneto- 
telluric sounding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 INTRODUCTION 

Recently, several attempts to interpret magnetotelluric data 
have appeared in which large electrical anisotropy of deep 
geoelectrical structures plays a substantial role, ‘large’ refer- 
ring to as much as several orders of magnitude in terms of 
the anisotropy ratio 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pmax/pmln. A typical example is data 
from around the deep borehole KTB in Oberpfalz (Germany), 
where a highly anisotropic structure of regional extent (3, as 
high as lo3) is proposed by several authors (e.g. Tauber 1993; 
Eisel 1994; Cerv, Pek & Praus 1994) to explain a large aniso- 
tropy of the magnetotelluric curves and a systematic dis- 
crepancy between the magnetotelluric principal directions and 
those indicated by the induction arrows. As a physical source 
of this large anisotropy, a collective effect of narrow, nearly 
vertical graphitized cataclastic zones, detected in this region in 
near-surface structures (e.g. Stoll 1989) as well as on the KTB 
borehole log (e.g. Winter 1994), is hypothesized (Eisel 1994), 
although other physical mechanisms, specifically the effect of 
fluids and sulphides, have to be considered (Tauber 1993; 
Winter 1994). There are more examples of large anisotropies 
interpreted at various depths of the crust or upper mantle, for 
example in Tezkan (1988) for the data from the contact zone of 
the Rhenohercynikum and the Northern Phyllite Zone, 

Germany, in Tezkan, Cerv & Pek (1992) from the contact of the 
Rhine-Graben and Black Forest, Germany, in Eisel & Bahr 
(1993) and Jones, Groom & Kurtz (1993) for the BC87 data set 
from British Columbia, Canada, and in Kurtz et al. (1993) for 
the data from the Kapuskasing Uplift, Ontario, Canada, to 
mention a few. The latter paper reports several references 
related to the subject. 

Methods currently used for modelling the effects of the 
electrical anisotropy on the magnetotelluric data are mostly 
based on rather oversimplified assumptions-either 1-D 
approximations of the Earth’s structure employed on the local 
scale, or 2-D models with different conductivities for the E 
and H polarization modes-thus constraining the anisotropy 
in such a way that the conductivity tensor must reduce to the 
diagonal form just in the strike-bound coordinate system. 
A physically more plausible model of the electrical macro- 
anisotropy, used in a series of interpretations (e.g. Tezkan 
1988; Tezkan et al. 1992; Eisel 1994), and based on stacking 
alternately conductive and non-conductive dykes, is subject 
to the same constraint. Unless powerful 3-D modelling tools 
are used, only structures with dykes parallel to the strike of 
the model can be managed. It is clear that the above 2-D 
approximations of the electrical anisotropy do remain within 
the reach of 2-D algorithms currently used to model 2-D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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isotropic geoelectrical structures, and they do not allow some 
features, which are intuitively expected to occur in models 
with general anisotropy, to be verified and quantitatively 
analysed. 

Although a sufficiently general finite-element algorithm for 
the modelling of magnetotelluric fields in 2-D structures with 
genuine anisotropy was yblished 20 years ago (Reddy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Rankin 1975), it has not yet been used in practical applications, 
as far as we know. Since then, articles dealing with anisotropy 
in multidimensional geoelectrical structures have appeared 
only sporadically, and only now does the question seem to be 
attracting more attection again. 

In Saraf, Negi & Cerv (1986) the finite-difference modelling 
algorithm for the H-polarization mode was generalized to 
allow for structures with different conductivities in the 
horizontal and vertical directions. Using a Rayleigh FFT 
technique, Osella & Martinelli (1993) could model the 
magnetotelluric response of 2-D anisotropic structures with 
smoothly varying layer boundaries, including models with a 
smooth topography. In their algorithm, however, the con- 
ductivity tensor is supposed to be diagonal in the strike-bound 
coordinate system. The first 3-D modelling results for aniso- 
tropic structures were presented by Xiong (1989), who used the 
integral equation technique to compute the electromagnetic 
field of a 3-D body embedded in a stratified anisotropic earth. 

Recently, Schmucker (1994a,b) presented a 2-D thin-sheet 
modelling algorithm which allows the bimodal induction in a 
2-D thin sheet underlain by an arbitrary layered anisotropic 
half-space to be calculated. In Grubert (1994), the original 
analytic H-polarization solution of the classical problem of a 
vertical contact of two quarter-spaces (d’Erceville & Kunetz 
1962) has been generalized to anisotropic quarter-spaces with 
dipping anisotropy. With Weidelt’s (1994) extension of the 
finite-difference 3-D forward modelling algorithm of Mackie, 
Madden & Wannamaker (1993) to generally anisotropic 3-D 
media, the modelling of anisotropic geoelectrical structures 
seems to reach its culmination. 

Although a general 3-D algorithm is now available to model 
anisotropic geoelectrical structures, we still consider relatively 
simple 2-D modelling approaches to be quite useful in many 
situations. The main aim of this contribution is to present a 
new version of a numerical algorithm which makes it possible 
to model magnetotelluric fields in 2-D structures containing 
quite generally anisotropic subdomains. The algorithm is 
based on the finite-difference approximation of a coupled 
system of second-order partial differential equations, which 
are a generalization of the Helmholtz equations, well known 
from 2-D isotropic studies. Since many of the general ideas of 
the present method have been adopted from Reddy & Rankin 
(1975), we do not pretend to have developed a totally new 
algorithm, we rather consider our version a ‘come back’ of an 
old approach with a few new features, in particular as regards 
the general character of the anisotropy and the construction of 
the finite-difference scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 FORMULATION OF THE PROBLEM 

We assume a traditional 2-D geoelectric model with its struc- 
tural strike parallel to the x-axis of the Cartesian coordinate 
system. The z-axis is positive downwards. The model consists 
of a finite system of homogeneous, but in general anisotropic, 
2-D blocks. 2-D inhomogeneities are confined to a finite 

region within the model. Outside this region, the structure 
merges into its anisotropic layered background, which can be 
in general different for either side of the model. The earth’s 
surface is assumed to be planar (no topography is considered 
here) and to coincide with the coordinate plane z = 0. Above 
the surface a perfectly insulating air layer is assumed. The 
primary electromagnetic field is modelled by a monochromatic 
electromagnetic plane wave (angular frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 2n/T, 
with T being the period) propagating perpendicularly to the 
earth’s surface from sources located at z = -m. 

In the quasi-stationary approximation, the governing 
equations for the electromagnetic field are Maxwell’s 
equations in the form 

V X E =  hpOH, (1) 

V x H = 6E,  (2) 

where a time factor exp( - iwt) is assumed. By virtue of the 2-D 
condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/dx = 0, these equations, written for the individual 
components, reduce to 

(3) 

(4) 

(7) 

We will suppose throughout this paper that the conductivity 
tensor within the earth’s conductor, 

is symmetric and positive-definite (or positive-semi-definite if 
the non-conductive air layer is considered). Then the con- 
ductivity tensor can be defined by its three principal values and 
by three rotation angles, analogous to Euler’s elementary 
rotations known from classical mechanics. The conductivity 
tensor is constructed by successively applying three rotations 
to its diagonal, principal form-first, around the z-axis by the 
anisotropy strike as, then around the new x-axis by the aniso- 
tropy dip ED, and finally around the latest z-axis by the slant 
angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEL. In this way, any orientation of the principal axes of 
the conductivity tensor in space can be achieved. 

To complete the mathematical formulation of the problem 
we must supply the boundary conditions for the field com- 
ponents, both on the inner and outer boundaries of the model. 
On inner boundaries, where blocks with different electrical 
properties make contact, the following conditions must hold: 
(i) continuity of the tangential component of the electric field 
E,; (ii) continuity of the normal component of the current 
densityj, = 6E.n; and (iii) continuity of all the components of 
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FD modelling in 2 - 0  anisotropic media 507 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the magnetic field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH, as we assume the magnetic permeability 
to be equal to the vacuum value, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= po = 471 x H m-’, 
everywhere within the model. 

On the outer boundaries of the model, Dirichlet boundary 
conditions can be set, constructed from 1-D solutions for the 
corresponding layered media at the left- and right-hand sides 
of the model. In our version of the algorithm this is accom- 
plished by applying a matrix propagation method to the 
vector composed of the horizontal components of the mag- 
netotelluric field. This procedure can be considered as a 
slight modification of well-known techniques developed by 
Reddy & Rankin (1971) or Loewenthal & Landisman (1973). 
At the top and the bottom of the model the boundary con- 
ditions are constructed simply as linear interpolations of the 
respective 1-D values at the left- and right-hand margins of 
the model. If the layered structures on both the left-hand side 
and right-hand side of the model are the same, then the top 
boundary conditions are uniform E, at the top of the air 
layer, placed on top of the model for the higher spatial har- 
monics in Ex to attenuate, and uniform H, directly on the 
surface of the earth. 

From eqs (3) to (8), the field components Ey, E,, Hy, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz 
can be eliminated, which, after some algebra, yields a coupled 
pair of second-order partial differential equations for Ex and 
H, : 

(9) 

for the E-mode, where 

A = ( o x y o y z  - a x r o y y ) / D ,  B = ( g x z g y z  - oxYozZ)/D, 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD = o y y g z z  - o y z ,  

and, for the H-mode, with the symmetry of the conductivity 
tensor employed, 

Of course, there is not a ‘pure’ E-mode or H-mode any more 
in generally anisotropic media. The coupling between the 
modes is expressed through the first-order terms in eqs (9) and 
(10). For these terms to vanish, the conductivity tensor must 
be of a degenerate form with oxz = oxy = 0, i.e. the coupling 
between the field modes dissolves if both the anisotropy 
strike and slant are zero, as = = 0. Then, eqs (9) and 
(10) decouple into two separate ‘pure’ field modes. The 
conductivity tensor then reduces to 

where 0 is the zero-vector, and 

describes the dipping anisotropy in the H-polarization mode. 

Non-zero values of the non-diagonal elements of eH cause the 
mixed-derivative terms to appear in (10). 

3 NUMERICAL APPROXIMATION 

To approximate numerically the governing equations (9) and 
(10) we will use the finite-difference (FD) method in the tradi- 
tional way it was used earlier to model 2-D isotropic structures 
(e.g. Haak 1972; Brewitt-Taylor & Weaver 1976; Cerv & Praus 
1978). First of all, the structure is projected onto a numerical 
grid and, within a finite grid region, subdivided into a system 
of electrically homogeneous, but in general anisotropic, 
rectangular grid cells. The grid is in general irregular and it 
should both fit the geometry of the model under study and meet 
general rules accepted for designing numerical grids in induc- 
tion modelling studies for isotropic structures (e.g. Yudin 
1982), respecting, however, the fact that, unlike scalar con- 
ductivities in isotropic structures, the tensorial conductivities 
are characterized by a range of values rather than by a single 
value. 

Following Cerv & Praus (1978), we use the integro- 
interpolation method to derive the F D  equations for individual 
grid nodes. In this approach, eqs (9) and (10) are integrated 
across a rectangular integration cell, say 

if node ( j ,  k )  is considered (Fig. l), and these integrals are then 
approximated around the respective grid point. Thus, the 
integral rather than the differential form of the basic field 
eqs (9) and (10) is used for the FD approximation. For more 
details on the mathematical background of the method see for 
example Cerv & Praus (1978). 

To avoid the explicit presentation of the whole integration 
process here, which is a straightforward, but quite tedious, 
procedure, we will illustrate the basic approximation steps 
by immediately referring to the equivalent integral form of 
Maxwell’s equations, specified for the integration cell Gjk 

defined above. Eq. (9) represents another form of (6), with the 
y and z field components eliminated by making use of the other 
equations. The corresponding integral form of this equation, 
representing the x-projection of 

where T(Gjk) is the oriented boundary of the integration cell 
GJk, dg is the element of the integration path along this 
boundary, and dG = dGe,, with ex denoting the unit vector in 
the x-direction and dG an areal element of Gjk, can be written as 

where gy is the mean value of the function v ( y ,  z )  across y 
(either a section of the boundary, or the integration cell), 
PI P2 is the (oriented positive counter-clockwise when 
looking from the positive x-direction) distance between the 

__ 
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508 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPek zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1. Section of the finite-difference grid around the node point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(j, k) ,  along with the geometrical parameters 

corresponding vertices of the integration cell, S ( G j k )  the area 
of the integration cell, andj, = (i?E), = axxEx + axyEy + axzEz 
is the x-component of the current density. 

Approximating the mean value of the derivative in, for 
example, the first term of eq. (1 1) by the appropriate difference 
of the nodal values, we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

where symbolic notation is introduced, for example 
Ex( y j ,  Z k )  = E,( j ,  k) .  The other three terms can be 
approximated in the same way. 

To approximate the last term on the left-hand side of (1 l), we 
first express the current densityj, in terms of Ex and H,, 

aHx aH, 
j,= W E , + A - + + - ,  

ay aZ 
where W = oxx +Adzx  + Btrxy, and then write 

(see Fig. 1). 
Applying the approximation steps outlined above to all 

the terms of eq. (1 1 )  we arrive at an approximate difference 
equation for the ‘E-mode’ at the ( j ,  k)th mesh node, which 
represents the FD approximation of eq. (9) and is in general of 
the form 

where P , k  is the total conductance within the integration cell 
G j k ,  

1 
wjk =; (AYjAzk F k  + A Y j + I A z k  y+l k + A y j A z k + l  Y , k + l  

+ AYj+lAzk+l  y+l k + l ) .  

The integral in (12) is computed directly by separating it into 
four integrals, each across one of the individual homogeneous 
subcells of the integration cell G l k .  So, for example, integrating 
the first integral term in (12) across the subcell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[y ; )  yj1 x [ z i  2 z k l  gives 

i t 1  k+I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+c 
p=j-1 q=k-1 
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The corresponding integral form of the 'H-mode', 

eq. (lo), is given by the x-projection of eq. (3) integrated 
across the cell Gjk, 

which yields 

(F) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,KL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ (x)LNm + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(F) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,NM 
- -  

+ - impos(Gjk)(ZjG,k = 0 .  (14) 

Using (7) and (8), we can express Ey and Ez by means of the 
'basic' components Ex, H,  : 

Thus, considering, for example, the first term in (14), we 
can approximate it separately for its three individual sub- 
terms. The first one represents a generalized form already 
encountered in the traditional isotropic H-mode case, and is 
easily approximated by substituting the difference of nodal 
values for the vertical derivative: 

The second sub-term arises due to dipping anisotropy 
(gYz # 0) and can be written 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (9) [H,(j ,  k )  + H x ( j ,  k - 1) 
j k  

- H , ( j +  1, k )  - H , ( j +  1, k -  I ) ] ,  

where the values of H,  on the sides and at the apices of the 
integration cell GJk are again approximated by averages of the 
adjacent nodal values (see Fig. l), for example 

The third sub-term contains the electrical component Ex and 
represents the contribution of the inter-mode coupling due to 

the anisotropy. It can be approximately written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

Applying the approximation steps outlined here to all the 
terms in (14), and approximating the last term by 

x (Azk + AZk+l)Hx(j> k )  1 

we finally arrive at the linear difference equation for the 
H-mode at the ( j ,  k)th mesh node: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j + l  k+l 
+ c c q%J> q)Hx(P, 4 )  = 0 .  (16) 

p=j-l q=k-l 

As opposed to the analogous equation (13) for the E-mode, in 
eq. (16), only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC$!jE( p ,  q) = 0 for 

(P, 4 )  E { ( j  - 1, k - I ) ,  ( j  + 1, k - 11, ( J  - 1, k + I ) ,  

( j  + 1, k + 1) ) .  

The corresponding 'magnetic' coefficients q f H ( p ,  q)  do not in 
general vanish at these nodes, and do express the effect of 
dipping anisotropy, i.e. they are present even in the case of 
dipping anisotropy in the pure H-mode when no inter-mode 
coupling takes place. 

Thus, to summarize, for an arbitrary grid point ( j ,  k )  
the FD approximation results in a pair of linear algebraic 
equations, (13) and (16), which relate the components Ex and 
H,y at the central node ( j ,  k )  to their eight nearest neighbours 
in the grid. If a grid point involved in eqs (13) and (16) falls on 
the outer boundary of the grid region, then the field values at 
this node are replaced by the appropriate boundary condi- 
tions, and the corresponding terms are transferred to the 
right-hand sides of eqs (13) and (16). 

In the Appendix, all the coefficients C$(p, q), CL, 

B € { E , H } , p = j - l , j , j + l , q = k - l , k , k + l ,  are given 
explicitly. From these FD scheme patterns, it can be seen that 
the matrix of coefficients C,",B(p, q) is never fully occupied, i.e. 
we need not deal with a 9-point (i.e. 18-value) scheme in any 
case. For the E-mode, we have a 5-point (10-value) scheme 
only. For the H-mode, a complete 9-point scheme must be 
considered; it contains, however, 14 non-zero coefficients only. 
These are the maximum numbers of coefficients, with full 
anisotropy, considered. The number of non-zero coefficients 
will decrease as the anisotropy within the grid cells involved 
degenerates. 

The FD scheme simplifies particularly within the insulating 
air-layer. By virtue of eqs (7) and (8), aH,/az = 0 and 
dH,/dy = 0 in the air, i.e. H,  must be constant everywhere in 
the air, and eq. (10) need not be approximated at all. Eq. (9) 
reduces to the Laplace equation. Hence, within the air layer 
only the E-mode equation is FD approximated, which yields a 
5-point FD scheme with only five coefficients G',zE. 
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Having the governing field equations (9) and (10) FD 
approximated in all grid nodes, the linear algebraic equations 
(13), (16) must be properly arranged into a system for further 
treatment. This may seem a rather intricate task, since two 
sets of variables are involved, Ex and H,. Moreover, these 
variables are not sought on identical sets of grid nodes-while 
the E-mode equation is approximated throughout the grid, 
the H-mode equation is to be solved within the conducting 
earth only. 

Two possibilities for arranging the variables into an array 
seem obvious (Fig. 2). For both, we will order the variables 
throughout the grid in a column-by-column manner, but a 
row-by-row alternative is possible as well. In the first variant, 
(i), at first all electric variables are ordered throughout the grid, 
from the top to the bottom within each column, and afterwards 
a block of magnetic variables inside the earth, ordered in the 
same way, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis joined to the electric subarray (Fig. 2, left). In the 
second variant, (ii), within a column, electric variables are 
ordered in succession from the top of the column to the earth's 
surface, and then, inside the earth, electric and magnetic 
components are stacked up alternately until the bottom of the 
column is reached. Then the next column is taken and 

SOLUTION OF THE FD EQUATIONS processed in the same way (Fig. 2, right), until the whole mesh 
is deployed. 

Each of these arrangements of the variables leads to a 
specific form of the matrix of the system of linear algebraic 
equations for the approximate field values. Arrangement (i) 
gives a four-block matrix which contains the principal mode 
coefficients in the diagonal blocks, and the coupling coefficients 
in the anti-diagonal blocks (Fig. 2, left). For isotropic struc- 
ture, the two field modes, E and H, obviously separate into two 
independent matrices. 

Arrangement (ii) mixes the principal mode coefficients and 
those arising due to inter-mode coupling together within each 
row of the matrix, but leads to a more compact, band-limited 
matrix (Fig. 2, right). Although we have not attempted an 
exact proof, in our opinion this arrangement (or the corre- 
sponding row-to-row analogy of it, depending on the number 
of grid points in the horizontal and vertical directions) yields a 
matrix with the narrowest band possible for the particular 
mesh division. It can easily be shown that, after multiplying all 
the H-mode equations by a constant factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi o p o ,  the matrix is 
symmetric [the same applies, naturally, to matrix (i)]. Here, we 
prefer arrangement (ii), as it allows Gaussian elimination, in a 
special modification for symmetric, band-limited matrices, to 
be used to solve the FD linear algebraic system. To store the 

1 .a . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 

2 0.. . 
3 0.. . !u 
4 a a a  a 1" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 0 .  . IU 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 
6 .  a. a 
i a  0..  . 
a . a o a  a ! r i  
9 . 0.. . !O 1310 
10 a a. 0: n o n  r; 
11 a .. i 
12 . 0.. : 
13 . a.0 I 0 
14 . 0.0; n n c 1  

! 

1 a e  . '., 
2 0.. a 8. 

3 a..n a '\ 
4 .anom .O '\ 

5 0080. 0. n'. 
6 .0.0 a n  '. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00. ', 
8 .  0 .  '. 
10 . a e o n  a 

12 .., 0. 0 00.0. 0. 0 
13 O n  o n o n  a n  

'. . a. 
am. 16 ". . 

18 e n  een.0 
0. 0 00.0. 19 

20 '. .O a n o n  
21 '\ fl08 0.0. 

0.0. 7 

9 .  0.. 1. 

1 1  ,. a n  ..0.0 0 '.. 
14 '*..,n 0 . omom 00. 

17 '\, 0.. n 

I5 

Figure 2. Two variants of ordering the variables throughout the grid, along with a symbolic form of the resulting matrix of the system of FD 
equations. Circles are for electric components, squares for magnetic components, empty symbols in the matrix patterns are for coefficients which arise 
only due to anisotropy. 
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upper half-band of the matrix, as required by the modified 
algorithm of Gaussian elimination, N ~ T O R  complex numbers 
need to be placed in memory, 

NSTOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1)(2ME + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMA - 2) (2ME + M A  + 1) , 
’- 

number of equations band-width 

where N is the number of horizontal grid steps, and ME, M A  
are the numbers of vertical grid steps within the conducting 
earth and in the air layer, respectively. This is usually by far the 
most memory-consuming part of the modelling algorithm. 

As regards the computation time, Gaussian elimination is 
also the most time-consuming procedure of the algorithm. 
The time required increases rapidly for large grids, in par- 
ticular with increasing number of vertical grid points (in the 
case of column-by-column arrangement of the nodes). On a 
PC 486/66 MHz, with 32-bit Lahey FORTRAN used to 
compile the program, typical times required to compute the 
solution for two independent polarizations of the field and 
to evaluate the standard magnetotelluric functions on the 
surface for one period were 21 s for the mesh parameters 
( N ,  M E ,  MA) = (40, 20, lo), 44 s for (40, 25, 15), 95 s with 
(40, 35, 15), and 195 s for (80, 35, 15). 

5 MAGNETOTELLURIC FUNCTIONS ON 
THE EARTH’S SURFACE 

Solving the system of linear FD equations (13) and (16) pro- 
vides us with approximate values of the field components EX 
and Hx at all grid points. For practical purposes, all com- 
ponents of the magnetotelluric field must be evaluated at the 
earth-air interface. From these, various magnetotelluric func- 
tions and parameters can be computed as practice-oriented 
modelling outputs. 

With knowledge of Ex and Hx throughout the grid, values of 
the ‘secondary’ field components E,, E,, H,, and HZ can be 
evaluated at any grid point using eqs (4), (5),  and (15): 

On the surface, aH,/ay = 0, as no vertical current can flow 
through the earth-air interface, but, in contrast to the isotropic 
case, Ez does not in general vanish immediately below the 
earth’s surface. The field components on the surface are com- 
puted by approximating numerically the derivatives aEx/ay, 
aE,/az, and aHX/az  in the above formulae. 

The magnetotelluric and geomagnetic transfer functions on 
the earth’s surface (impedances, admittances, components of 
the induction vectors, etc.) are evaluated using the field com- 
ponents computed for two independent polarizations of the 
primary electromagnetic wave. Anisotropy within a 2-D 
structure leads in general to a full and non-diagonizable 
impedance tensor, thus imitating locally a 3-D underground. 
Other magnetotelluric parameters, such as Swift’s principal 
direction, skew, ellipticity, etc., can now be computed easily. 

6 NUMERICAL TESTS 

There are only a few opportunities to check the results of the 
modelling algorithm presented with other independent 

computations. As well as for some trivial checks, such as the 
identity of the magnetotelluric functions when different polar- 
izations of the primary wave are used, we carried out the fol- 
lowing tests. 

(1) The results of the present algorithm for an isotropic 
structure are identical with those obtained independently by a 
2-D ‘isotropic’ modelling program by te rv  & Praus (1978) for 
the same model. 

(2) The results for a 1-D anisotropic layered structure, 
approximated as a 2-D model, are practically identical with 
those obtained independently by a 1-D algorithm based on the 
matrix propagation of the electromagnetic fields through the 
layers. The deviations do not exceed 2 per cent in modulus 
and 1” in phase (Fig. 3). The systematic increase of the error 
towards the bottom of the model is due to a rapid mesh 
coarsening at greater depths. The jumps observed in the plots 
are attributed to layer boundaries with large contrasts of 
the electrical conductivities. These effects can be reduced by 
refining the FD mesh, although, of course, at the cost of 
increased demands on computer resources. 

(3) Reddy & Rankin (1975) studied a 2-D horizontally 
anisotropic dyke model in detail. In Fig. 4, a comparison of 
our results with those taken from their paper is shown for a 
set of magnetotelluric functions-apparent resistivities and 
impedance phases. For this model the results are almost 
identical: very small differences are observed only near the 
dyke contacts, where the difference between the approxi- 
mations is likely to play some role. 

7 NUMERICAL EXAMPLES-NON-TRIVIAL 
PHENOMENA 

In what follows, we will demonstrate the developed algorithm 
by showing a few simple models which illustrate the effect of 
large electrical anisotropy upon the magnetotelluric functions 
and induction arrows. We will particularly concentrate on 
phenomena which seem to be not quite trivial consequences of 
the electrical anisotropy and which might be of value for the 
interpretation of practical data in situations when significant 
anisotropy is suspected to affect the magnetotelluric field 
observed. To demonstrate the effects analysed as clearly as 
possible, we have chosen rather exaggerated anisotropies and 
geometrical dimensions of the relevant structures in the models 
presented in this section. 

Example 1: 
anisotropic structures 

In the first example, we study the influence of anisotropic 
structures on the induction arrows. We have chosen these 
models since absolutely nothing could have been said earlier 
about induction arrows in anisotropic structures with solely 
1-D modelling algorithms available. 

The model in Fig. 5 consists of a two-layer earth with an 
anisotropic half-layer inserted in the first layer. The principal 
resistivities of the anisotropic inhomogeneity are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApst/p,,,,/pzz = 
3/100/3, in R m, and the anisotropy strike, c( s, is 30” with 
respect to the structural strike of the model. and y are the 
&principal horizontal coordinates resulting from the rotation 
of the original zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y-coordinate system by CIS around the z-axis. 

distortions of the induction arrows by 
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512 J. Pek and T. Verner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M.E. of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/Elx/  (per cent) 
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M.E of JHlxl (per cent) M.E. of iE2x/ (per cent) M.E. of 1H2x/ (per cent) 
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Figure 3. Comparison of the matrix propagation solution and that obtained by the present 2-D finite-difference algorithm for a I-D anisotropic 
layeredmodel with the following parameters: hl = 0.5 km, p ,  = 100 R m, h2 = 1 km, p z  = 3000 R m, h3 = 3 km, p3 , r r /p3 ,qq /p3 , z z  =10/300/10 S2 m, 
anisotropy strike as, = 30", hs = 101.5 km, p s  = 1000 R m, p 6  = 30 R m. 5 and q are the 6-principal horizontal coordinates resulting from the 
rotation of the original x, y-coordinate system by as around the z-axis. The period of the field is 100 s. The maximum error (M.E.) of the 2-D FD 
solution with respect to the 1-D analytic solution along each horizontal mesh line is displayed for modules and arguments of the components of the 
electromagnetic field for two perpendicular polarizations of the primary magnetic variations. 

In the upper part of Fig. 5, the top view of the induction arrows 
and polar impedance diagrams for Z,, and Z,, is shown for 
selected points along the model's surface and for a series 
of periods from 10 to 3000 s. Under the influence of the 
anisotropic half-layer, the real induction arrows behave in 
a way qualitatively expected-they are deflected so as to 
preserve their perpendicular direction with respect to the pre- 
dominant induced currents. Similar effect can be observed for 
the polar impedance diagrams zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZxy as well-their minimum 
axes indicate the direction of preferred conductivity, i.e. the 
anisotropy strike in this case. Immediately above the contact, 
the polar diagrams Z,, change their orientation which reflects 
the remote influence of the discontinuity of E, at the deep 
conductivity jump. 

A different pattern, however, is observed if two iso- 
tropic domains make contact and the effect of an addi- 
tional anisotropic layer is superimposed over that excited by 
the lateral inhomogeneity. The model in Fig. 6 is a modified 
version of the preceding model-the conductive half-layer 
is made isotropic, resistivity 3 !2 m, and is overlaid with 
an additional anisotropic layer, with principal resistivities 
ptt/p,,4/pzi = 30/1000/30 Q m and an anisotropy strike 
as = 30". In this case, the real induction arrows are oriented in 
the direction of preferred conductivity of the anisotropic layer, 

and not perpendicularly to it as one would expect. We explain 
this phenomenon by the effect of compensation currents within 
the conducting half-layer, which try to cancel out the vertical 
magnetic field excited by the j ,  currents arising due to a 
deflection of perpendicular currents ( j,) in the anisotropic 
layer. 

In Fig. 7, smoothed real current densities % [ j x ( y ,  z)]  and 

&[ j y (y ,  z>] are displayed in the vicinity of the deep contact 
for two polarizations of the primary magnetic field-polar- 
ization 1 with Ho = (Ho,, Ho,, HoZ) = (0, 1, 0) (is. 
E-polarization in the isotropic case), and polarization 2 with 
Ho = (-1, 0, 0) (H-polarization in the isotropic case). The 
period of the field is 30 s. In the case of polarization 1, the 
current distribution for j ,  does not principally differ from that 
observed in the isotropic case. The strike-parallel currents are 
mostly concentrated within the good conductor and also partly 
within the less conductive anisotropic layer. The current 
deflection due to the anisotropy takes place solely within the 
anisotropic layer; perpendicular currents j ,  are practically 
negligible everywhere outside this layer. 

For polarization 2, the currents perpendicular to the struc- 
tural strike again behave analogously to the isotropic case- 
they prefer flowing in the well-conducting half-layer, and, after 
they encounter the contact with the poor conductor, they 
escape into the less resistive anisotropic layer. Here, due to 
a deflection caused by the anisotropy, quite large positive 
parallel currentsj, come into existence which, in turn, induce 
secondary, negative Foucault currents in the underlying half- 
layer. From Fig. 7 it can be seen that, as to the magnitude, 
these compensating currents are comparable with the parallel 
currents generated in polarization 1 by the external magnetic 
field of the same amplitude. The vertical magnetic field of 
these negative currents, correlated now with the parallel 
magnetic component H,, explains the rather large deflection of 
the real induction arrows towards the direction of preferred 
conductivity of the anisotropic layer. 

An effect quite similar to that described above for an aniso- 
tropic cover is observed if the anisotropic layer is situated 
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Figure 4. Comparison of apparent resistivities (top row of plots) and phases (bottom row of plots) for the horizontally anisotropic dyke model of 
Reddy & Rankin (1975). The results are displayed along a 25 km long section starting from the centre of the model and extending to the right. The 
dashed line at 4 km indicates the position of the contact. Solid line-modelling results by Reddy & Rankin (1975); squares-results obtained by the 
present FD algorithm. 

below the lateral contact (Fig. 8): only the frequency range of 
the maximum influence of the anisotropy is shifted, owing to 
the greater depth of the layer, towards longer periods. 

Example 2: 
different anisotropy strikes 

Another non-trivial effect is connected with the magneto- 
telluric phases at the contact of two generally anisotropic 
blocks. In isotropic models, when crossing an outcropping 
contact of two blocks with different conductivities, the 
apparent resistivities related to the telluric component per- 
pendicular to the contact suffer a jump, but the corresponding 
phases pass the contact continuously. This is a general con- 
sequence of the continuity of the normal component of the 
current density at the contact, and in 2-D models it refers to the 
H-polarization field mode. Here,j, = j ,  = uEy = aH,/az, and, 

vertical stack of anisotropic bodies with 

due to the continuity of H,, Ey suffers a jump by the real factor 
o(yc+, 0 +)/a(yc-, 0 +) at a contact located at y = yc.  This 
discontinuity affects the modulus of Ey, but evidently not its 
phase. 

In an anisotropic medium the current density is in general 
given by a linear combination of all three components of the 
telluric field, and the phase of the telluric component perpen- 
dicular to a conductivity contact is no longer continuous at the 
contact. For certain configurations of the anisotropic domains, 
serious distortions of both the apparent resistivities and 
impedance phases can occur above outcropping anisotropic 
blocks. 

By experimenting, we found such a highly anomalous dis- 
tortion to take place for a model consisting of an outcropping 
anisotropic block underlain by an anisotropic layer with a 
different anisotropy strike (Fig. 9). If the outcrop is narrow 
enough and the two anisotropy strikes involved are near to 
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0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3000s QJ 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA B C D E R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Top view of the real (full arrows) and imaginary (dashed arrows) induction arrows and polar impedance diagrams for a two-layer earth 
with an anisotropic half-layer inserted in the first layer. The conductivity tensor of the anisotropic layer is given by the principal resistivities 
pcc/p7,,/pzr = 3/ 100/3 Q m, and the anisotropy strike c(s = 30" towards R. All resistivities are in R m. The polar impedance diagrams are normalized 
in such a way that the principal axis of the main diagram at point L ( y ~  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a km) is the same for all periods. 

perpendicular, the yx-phase jump does not recover across the 
whole anomalous block, and this phase totally leaves its 
'natural' quadrant along the outcrop. In Fig. 10 we demon- 
strate this phenomenon by surface plots showing both the yx- 
apparent resistivity and phase near the contact as a function of 
the anisotropy strike of the base layer c(s2 E (30", 210"), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus1 
being 30". The plot is constructed for a period of 30 s. 

The figure shows that, in this particular situation, for 
anisotropy strikes that do not differ by more than about 45", 
the yx-phase jump is generally very small, a few degrees at the 
most. For a greater divergence of the strikes, the yx-phase 
decreases rapidly above the anisotropic outcrop, the difference 
between the phases above the anomaly and those above the 
isotropic medium reaching as much as 180" directly at the 
contact, and more than 90" at the centre of the outcrop. 
Physically this means that, within some near-surface portion of 
the anisotropic outcropping block, the collinearity of the 
strike-perpendicular currents and telluric fields is impaired, or 

more specifically, the telluric field perpendicular to the struc- 
tural strike is locally reversed with respect to the electric 
current. We tried to visualize this anomalous situation in 
Fig. 11 by comparing the projections, onto the vertical plane, 
of the current densities % j( y ,  z )  and electric fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9% E(y, z )  
within the anisotropic block. The figure clearly shows a 
zone where the electric intensity and current density are anti- 
parallel along the entire internal boundary of the block. The 
generating magnetic field is Ho = ( - 1, 0, 0) (polarization 2) 
for this model, and the period of the field is 30 s. It must be 
emphasized, however, that the phenomenon described here 
refers to the ( y ,  z)-projection of the electric intensities 
and current densities only. As a whole, due to the positive- 
definiteness of the conductivity tensor within the earth, the 
currents and electrical intensities can never be anti-parallel, 
although their directional difference can be quite large (as 
much as 60" in the present example). 

The effect described above diminishes rapidly with 
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0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 6. Top view of the real (full arrows) and imaginary (dashed arrows) induction arrows and polar impedance diagrams for a model with a 
lateral conductivity contact overlaid with an anisotropic layer. The conductivity tensor of the anisotropic layer is given by the principal resistivities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p f S / p ~ , , / p z ~  = 30/1000/30 !2 m and the anisotropy strike of 30" towards R. All resistivities are in !2 m. The normalization of the polar impedance 
diagrams is the same as in Fig. 5. 

increasing width of the anisotropic block. For broader blocks, 
the anomalous behaviour of the yx-phase is restricted solely to 
very narrow intervals immediately around the contacts, and 
the phase recovers quickly outside those narrow contact zones. 

The anomalous behaviour of the yx-phase is not necessarily 
connected with outcropping anisotropic dykes. The effect of the 
yx-phase leaving its 'natural' interval (90", 180") can be 
observed even in the case where the top of the anisotropic block 
is separated by some distance from the surface. The effect 
decreases, however, very rapidly with increasing depth of the 
structure. Of course, in the case of a submerged stack of aniso- 
tropic bodies, no phase jump is observed in the surface data. 

above to be quite interesting with regard to the induction 
studies carried out in the regional vicinity of the deep drilling 
experiment KTB in Oberpfalz (Germany). A discrepancy often 
discussed when considering the induction data from this area 
consists of a regionally observed directional difference between 
the induction arrows and principal impedances-while the 
impedances display rather large anisotropy with minor axes of 
the impedance diagrams directed predominantly towards NW 
to NNW, the real induction arrows are almost uniformly 
directed towards the south, at least for longer periods over 
10 s. This means that, according to the induction arrows, the 
regional structure strikes E-W and becomes gradually more 
resistive towards the south, as indicated by the decreasing 
moduli of the arrows. Magnetotelluric impedances indicate 
that the preferred conductivity of more local structures is 
oriented NW-SE. This directional pattern cannot be explained 
by a single 2-D model. 

Example 3: 
directions and induction arrows in practical data from 
West Bohemia (Czech Republic) 

inconsistency of magnetotelluric principal 

- 
We consider the results of the simple modellings presented In Fig. 12(c), both the impedances and real induction'arrows 
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Figure 7. Smoothed real horizontal current densities within the model from Fig. 6 for a period of 30 s. The plots in the left-hand column are for 
polarization 1 (primary magnetic field HOx = 0, HOy = I); those in the right-hand column are for polarization 2 (primary magnetic field Hor = -1, 
Ho, = 0). j x ,  j y  are the strike-parallel and strike-perpendicular components of the current density, respectively. 

from a series of measuring points in West Bohemia, near to the 
KTB site, are shown for a few periods from the long-period 
magnetotelluric range. Although the impedances are evidently 
distorted by static shifts, which is indicated by rapid changes of 
the magnetotelluric parameters over short inter-station "dis- 
tances and has also been shown by a distortion analysis (Cerv 
et al. 1993, 1994), the above-mentioned regional tendency in 
the mutual orientation of the impedances and real induction 
arrows can be clearly recognized in the data. 

Eisel (1994) interpreted the large anisotropy, typical of his 
broad-band AMT/MT data from the immediate vicinity of the 
KTB drilling site, as an effect of the dyke macro-anisotropy. In 
his model of the Erbendorf-Vohenstrauss zone (ZEV), the 
principal feature is a highly anisotropic block situated in the 
upper-to-middle crust immediately beneath the ZEV. Towards 
the NE, this block seems to submerge to greater depths. The 
huge anisotropy of the block, with /z = pmax/pmrn exceeding 
lo2, is considered to be caused by NW-SE striking, steeply 
dipping cataclastic zones filled with fluids, graphite and other 
conductive minerals. These zones are actually observed on 
the borehole lithology, and in the broader vicinity of the 
drilling site are detected by large anomalies of the spontaneous 
polarization. 

One of the hypothetical interpretations of the magneto- 
telluric data from West Bohemia was based on Eisel's results 
(eerv et al. 1994) and represented a speculative extrapolation 
of his ZEV model further to the east, with the highly aniso- 
tropic block located in the crust and extending over a depth 
range from 4 to 10 km (Fig. 12b). The regional E-W structure 
was modelled by a single conductive half-layer in the middle 
crust, cut off before the northern end of the profile. The 

resulting impedances and real induction arrows for this aniso- 
tropic 2-D model are shown in Figure 12(d). The model data fit 
the experimental induction arrows satisfactorily, including 
some minor, yet systematic variations in the azimuths of the 
arrows. In particular, the minor deflection of the real induction 
arrows from east at the north of the profile to west at its 
southern end is expressed clearly by the model arrows. 

As regards the magnetotelluric data, the minor axes of the 
impedance diagrams are systematically deflected towards the 
NW all along the profile and for all the period range con- 
sidered. The anisotropy of the principal apparent resistivities 
exceeds the value of 60 for practically all sites. Of course, the 
rapid local variations of the experimental magnetotelluric 
data, caused most probably by the local static distortions, can 
hardly be rendered properly by a simple, schematic model like 
this. Nevertheless, without penetrating further into the details 
of physical or geological conditions and consequences of the 
problem, the numerical experiment has proved that, within the 
class of 2-D anisotropic models, the seemingly inconsistent 
relation between the impedances and induction arrows can be 
resolved. 

8 CONCLUSION 

In the present paper we have tried to describe a complete and 
general algorithm for the 2-D modelling in generally aniso- 
tropic media. This study is a response to several recent 
magnetotelluric interpretation attempts which have taken 
seriously the possibility of large electrical anisotropies within 
crustal and upper mantle geoelectrical structures. 

As regards the theoretical formulation of the problem, there 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Top view of the real (full arrows) and imaginary (dashed arrows) induction arrows and polar impedance diagrams for a model with a 
lateral conductivity contact placed above an anisotropic layer. The conductivity tensor of the anisotropic layer is given by the principal resistivities 
pie/pW/pI2 = 3/100/3 R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn and the anisotropy strike of 30” towards R. All resistivities are in Q ni. The normalization of the polar impedance dia- 
grams is the same as in Fig. 5. 

Distance from the centre general problem with only the anisotropy strike considered 
already revealed the mechanism of mode-mixing in anisotropic 
structures. Additional degrees of freedom for the conductivity 
tensor, given by allowing for the anisotropy dip and slant, 
generalize the principal field equations (9) and (10) only by 
extending eq. (10) by the mixed derivatives second-order 
terms. The inter-mode coupling is not affected substantially by 
this extension. 

The numerical solution of the problem is based on the FD 
approximation of the mutually coupled field equations (9) and 
(10) by using the integral form of Maxwell’s equations in the 
close vicinity of each grid node. Two specific features of the 
algorithm may be worth mentioning: ( I )  the conductivity 
tensor within each of the anisotropic subdomains of the 

! 
I 

’ 

I000 R m  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Model of an outcropping anisotropic block underlain by an 
anisotropic layer with a different anisotropy strike. medium can be represented by an arbitrary symmetric, 

positive-definite matrix, thus allowing the anisotropy strike, 
has not been too much progress when Reddy & Rankin (1975) 
is taken as a reference basis. Their analysis of a slightly less 

dip, and slant to be introduced; and (ii) under the quasi- 
steady state conditions, the H-mode equations need not be 
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Figure 10. Surface plots of the apparent resistivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApf;, and phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq$yx for the model from Fig. 9 as a function of the distance from the centre of the 
model for various anisotropy strikes of the base layer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r----;----,---- ~ 

Anisotropic block I 

Re j(y,z) 

r- Anisotropic layer 
1 anisotropy strike 120 deg) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

7 

Figure 11. Vertical projections of the current density and the electric intensity in the anisotropic block from the model in Fig. 9. The difference 
between the anisotropy strikes of the outcrop and the base layer is 90". The generating primary magnetic field is Ho, = - 1, Hay = 0. The period of the 
field is 30 s. 

approximated within the non-conductive air layer, which 
allows us to avoid numerical difficulties arising from the huge 
conductivity contrasts at the earth-air interface, as well as to 
reduce slightly the size of the problem. As for the computa- 
tional demands, for models of not too extreme a size the system 
of the approximate FD equations can be solved by Gaussian 
elimination in a reasonable time and with acceptable memory 
requirements on a PC. 

The algorithm is written in an elementary form, without 
any refinements, such as asymptotic boundary conditions at 
infinity, integral boundary conditions on the surface of the 
conductive earth, or refined formulae for the spatial derivatives 
as proposed by Weaver, Le Quang & Fischer (1985, 1986), 
etc., which are often encountered in routine 2-D 'isotropic' 
modelling codes. Some of those procedures can become rather 
intricate when general anisotropy is involved. 

With the numerical examples chosen for demonstration we 
tried to show that models containing anisotropic structures can 
produce data with qualitative features that are unknown in 

isotropic media. The most striking phenomena are generally 
connected with the strike-parallel component of the electric 
intensity arising from the deflection, owing to the anisotropy, 
of strike-perpendicular currents. 

In particular, azimuths of the real induction arrows, which 
are commonly considered to represent an undistorted strike 
indicator, can be severely affected by large-scale anisotropic 
structures within the geoelectrical section. The deflection of 
the induction arrows with respect to the structural strike is 
largely dependent on whether the anisotropic sub-domain is 
itself the primary source of the vertical magnetic field, or 
whether it exerts a secondary influence on the vertical mag- 
netic component generated elsewhere in the structure. The 
deflection of the induction arrows may be in quite opposite 
directions in the above two cases, which might cause confusion 
when interpreting the structural and anisotropy strikes of the 
medium. 

The other example presented changes the common view on 
static-shift manifestations if anisotropic structures are located 
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Figure 12. A speculative schematic model of a crustal anisotropic structure beneath the western part of the Bohemian Massif (Czech Republic). 
(a) Layout of the magnetotelluric stations along the Czech-German border, and the location of the deep drilling experiment KTB (Germany). 
(b) N-S section of the geoelectrical model with a highly conductive half-layer in the N and a largely anisotropic layer in the upper crust beneath the 
profile. (c) Experimental real induction arrows and main polar impedance diagrams at individual stations along the profile for four periods of 
the field. (d) Corresponding modelling results obtained for the model from (b). To avoid scaling difficulties, all impedances are reduced by the square 
root of the period. 

in the distorting surface layer. As opposed to the isotropic case, 
at outcropping contacts of anisotropic bodies a discontinuity 
of both the 'perpendicular' apparent resistivities and phases is 
observed. Moreover, largely anisotropic composite structures 
seem to be able to blur the common concept of principal 
(antidiagonal) and secondary (diagonal) impedances as known 
from isotropic 2-D situations. 

The examples presented were chosen rather arbitrarily, and 
do not cover the subject of anisotropy effects systematically. 
Nevertheless, they clearly demonstrate that severe distortions 
of magnetotelluric functions can occur if it is accepted that 
large anisotropies exist within the Earth. 

The electrical macro-anisotropy in the Earth is generally a 
bulk property, which mostly results from a specific arrange- 
ment of the conductive fraction within the structures due to 

geodynamical, thermodynamical, or geochemical processes. 
Therefore, models with intrinsic anisotropy are necessarily 
only an approximation of the natural conditions, and we con- 
sider it important for further studies to clarify how far the 
analogy between the intrinsic anisotropy and the bulk aniso- 
tropy can be followed, especially as regards their influence on 
the observable geoelectrical data. 
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APPENDIX A: F D  SCHEMES FOR THE 2-D 
MODELLING IN  ANISOTROPIC 
STRUCTURES 

In this Appendix, the finite difference schemes and coeffi- 
cients are summarized which arise from FD approximating 
the basic differential equations (9) and (10). The schemes display 
eight points which surround the ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  k)th grid node along with the 
corresponding coefficients C,y(p,  q), C$H(p, q), C'(p, q), 

andC,zH(p, q ) , p E  { j -  l , j , i +  l},q E { k -  1 ,  k ,  k +  l} [see 
eqs (13), (16)]. For each point in the scheme, the coefficients for 
the electric component, Ex, are given in the top half-box, and 
those for the magnetic field, Hx,  in the bottom half-box. 

Al: E-mode equation [eqs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S) ,  (13)] 
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FD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodelling in 2-D anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA521 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i - 1  .I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 - 1  i 1 + 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 2  H-mode equation [eqs (lo), (16)] 
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