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ABSTRACT

Adjoint models are used for atmospheric and oceanic sensitivity studies in order to efficiently evaluate the
sensitivity of a cost function (e.g., the temperature or pressure at some target time tf, averaged over some region
of interest) with respect to the three-dimensional model initial conditions. The time-dependent sensitivity, that
is the sensitivity to initial conditions as function of the initial time ti, may be obtained directly and most efficiently
from the adjoint model solution. There are two approaches to formulating an adjoint of a given model. In the
first (‘‘finite difference of adjoint’’), one derives the continuous adjoint equations from the linearized continuous
forward model equations and then formulates the finite-difference implementation of the continuous adjoint
equations. In the second (‘‘adjoint of finite difference’’), one derives the finite-difference adjoint equations
directly from the finite difference of the forward model. It is shown here that the time-dependent sensitivity
obtained by using the second approach may result in a very strong nonphysical behavior such as a large-
amplitude two-time-step leapfrog computational mode, which may prevent the solution from being used for
time-dependent sensitivity studies. This is an especially relevant problem now, as this second approach is the
one used by automatic adjoint compilers that are becoming widely used. The two approaches are analyzed in
detail using both a simple model and the adjoint of a primitive equations ocean general circulation model. It is
emphasized that both approaches are valid as long as they are used for obtaining the gradient or sensitivity at
a single time, as needed in data assimilation, for example. Criteria are presented for the choice of the appropriate
adjoint formulation for a given problem.

1. Introduction

In atmospheric and oceanic sensitivity studies, one is
often interested in finding how a change to the model initial
conditions at some initial time ti will affect some measure
of the model solution (i.e., a cost function), such as an
area-averaged temperature or pressure, at a later time tf.
For a given initial time ti, this requires running the model
many times and at each run varying the model initial
conditions of a single model variable at a single grid point
and observing its effect on the cost function at tf. For a
high-resolution model this amounts to running the model
tens to hundreds of thousands of times, clearly not a fea-
sible approach. The computational cost is yet higher if one
wishes to study the time-dependent sensitivity, that is, the
sensitivity to initial conditions as a function of the initial
time ti. Instead, the sensitivity as well as the time-depen-
dent sensitivity could be obtained at a computational price
equivalent to running the model only once, using an adjoint
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model (e.g., Hall and Cacuci 1983; Errico and Vukicevic
1992). Adjoint models are also used for four-dimensional
data assimilation in general circulation models (e.g., Ben-
nett and McIntosh 1982; Le Dimet and Talagrand 1986;
Thacker and Long 1988; Tziperman and Thacker 1989;
Schiller and Willebrand 1995; Harms et al. 1992).

There are two approaches that are commonly used to
formulate an adjoint to a given model. The first (‘‘finite
difference of adjoint’’) involves writing the adjoint equa-
tions of the linearized continuous model equations and
then determining an appropriate finite-difference formu-
lation. The second approach (‘‘adjoint of finite differ-
ence’’) derives the adjoint equations directly from the fi-
nite-difference equations of the forward model.

While using an adjoint model of a global primitive equa-
tions general circulation model derived using the adjoint
of finite-difference approach (Sirkes et al. 1996; the adjoint
model is based on that of Long et al. 1989), we noticed
that although the gradient at time ti computed by the adjoint
model was accurate, the adjoint variables strongly oscillate
between time steps (Fig. 1). This very strong numerical
mode, apart from being surprising and interesting, has
important implications to time-dependent sensitivity stud-
ies as defined above. Each adjoint model variable (e.g.,
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FIG. 1. Time series of the adjoint of the temperature, lT, at a depth
of 25 m (model level 1) and horizontal location 24.458N, 288.758E
from the adjoint of a primitive equations ocean GCM. The horizontal
axis indicate time-step number, going backward in time from the n
5 1000 step of the forward model to step n 5 500 of the forward
model. The two thin lines show the adjoint solution for the adjoint
of finite-difference approach, which results in a strong computational
mode. The upper thin line is the adjoint variable at odd time steps
and the lower thin line is the same variable at even time steps. Note
that the adjoint solution oscillates between these two curves every
time step, indicating a large-amplitude two-time-step oscillation. The
thick line shows the same adjoint variable for the finite difference of
adjoint approach, where no computational mode is present. The dotted
line indicates the zero value of the vertical axis.

the adjoint of the temperature at a given model grid point)
represents the sensitivity of the cost function to the initial
value of the corresponding physical variable at ti. The
adjoint solution seen in Fig. 1, however, reflects a nu-
merical mode of the leapfrog scheme, rather than a phys-
ical time-dependent sensitivity behavior.

The purpose of this note is to show that deriving the
adjoint using the adjoint of finite-difference approach

may result, in certain cases, in the development of strong
numerical computational modes, of which the leapfrog
mode of Fig. 1 is a specific example. We emphasize
here, however, that both approaches to formulating an
adjoint model are perfectly valid as long as they are
used for obtaining the gradient or sensitivity at a single
time, as needed in data assimilation, for example. We
then propose criteria for the choice of the appropriate
adjoint formulation for a given problem, as well as ways
of dealing with the strong nonphysical modes shown
above. In the following sections, the two adjoint for-
mulations are presented and solved for a simple advec-
tion–diffusion model equation, comparing the results to
those of a global primitive equations adjoint model (sec-
tion 2). We conclude in section 3.

2. The two adjoint formulations in a simple
advection–diffusion model

Consider a simple one-dimensional advection–dif-
fusion equation for a passive scalar S(x, t):

St 1 cSx 2 KSxx 5 0, (1)

where c is the advection velocity and K is the diffusion
coefficient. Consider the finite difference of adjoint ap-
proach for deriving the adjoint equations. Suppose that we
want to study the sensitivity to initial conditions of the
difference between the model solution and the data Sdata(x,
T) at a time t f 5 T. The cost function is then of the form

L1
data 2J 5 W(x)[S(x, T) 2 S (x, T)] dx,E2 x5x0

where W(x) is some specified weight factor. The adjoint
equations are formed by adding the model equations as
‘‘hard’’ constraints to the cost function (the ‘‘soft’’ con-
straint formulation is very similar; see Bennett and Mc-
Intosh 1982) and forming the Lagrange function

L T

L 5 J 1 l(x, t) [S (x, t) 1 cS (x, t) 2 KS (x, t)] dt dx,E E t x xx

x5x t5t0 0

where l(x, t) is the adjoint variable (Lagrange multiplier)
of the passive scalar concentration S(x, t). At the minimum
of the cost function, the Lagrange function is at a stationary
point with respect to the model variables, and this con-
dition is used to derive the continuous adjoint initial con-
ditions and equations;

dL
data5 0 5 l(x, T) 1 W(x)[S(x, T) 2 S (x, T)]

dS(x, T)

(2)

and

dL
5 0 5 l (x, t) 2 cl (x, t) 2 Kl (x, t).2t x xxdS(x, t)

(3)

Noting that these adjoint equations are integrated back-
ward in time; they may be discretized using centered
difference in space and a leapfrog scheme in time (Hal-
tiner and Williams 1980). The adjoint integration is in-
itialized, at t 5 T, using an Euler-forward time step,
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N N datal 5 2W (S 2 S )k k k k

cDt
N21 N N Nl 5 l 1 (l 2 l )k k k11 k212Dx

KDt
N N N1 (l 2 2l 1 l ) (4)k11 k k212Dx

and the following time steps are according to the leap-
frog scheme

cDt
n n12 n11 n11l 5 l 1 (l 2 l )k k k11 k21Dx

2KDt
n12 n12 n121 (l 2 2l 1 l ), (5)k11 k k212Dx

where

x 5 kDx, k 5 1, 2, . . . , M and t 5 nDt,

n 5 N, N 2 1, . . . , 2, 1, 0 (NDt 5 T).

The solution for the adjoint variable l(x, t) represents
the sensitivity of the cost function to the temperature at
location and time (x, t) (Thacker 1991, 1992). While
the cost function is evaluated in practice using the finite-
difference forward model, this first approach for deriv-
ing the adjoint solution is based on the continuous ad-
joint equation. The resulting sensitivity is therefore ac-
curate only to the accuracy of the finite-difference ap-
proximations, within O(Dx, Dt). [This reduced accuracy
may, in principle, affect the convergence of optimiza-
tions that use an adjoint code to calculate the gradient
of a cost function. However, Schiller and Willebrand
(1995) used an approximate adjoint model that is even
less accurate than the finite difference of adjoint for-
mulation and still obtained a successful convergence of
their optimizations.]

Next, let us consider the ‘‘adjoint of finite difference’’
approach. In the finite-difference forward model, a leap-
frog scheme is used at most time steps:

cDt
n n22 n21 n21S 5 S 2 (S 2 S )k k k11 k21Dx

2KDt
n22 n22 n221 (S 2 2S 1 S ). (6)k11 k k212Dx

An Euler-forward step is used both for initialization (n
5 1) and (as is common in ocean GCMs and, perhaps
less so, in atmospheric GCMs) every several leapfrog
steps during the run, in order to suppress the leapfrog
computational mode. Denoting mixing time steps with
an index m, the tracer at these time steps, , is cal-mSk

culated according to

cDt
m m21 m21 m21S 5 S 2 (S 2 S )k k k11 k212Dx

KDt
m21 m21 m211 (S 2 2S 1 S ). (7)k11 k k212Dx

The finite-difference Lagrange cost function has the
form

M M N1
N data 2 n nL 5 W (S 2 S ) 1 l (S 2 · · · ), (8)O O Ok k k k k2 k51 k51 n50

where the three dots denote the right-hand side of (6)
and (7) inserted at the appropriate time steps. Setting
the derivatives of the Lagrange function with respect to
each of the variables to zero, we obtain equations fornSk

initializing the adjoint integration:

N N datal 5 2W (S 2 S ) ;k k k k

cDt
N21 N Nl 5 (l 2 l ), (9)k k11 k21Dx

while the backward time stepping scheme at nonmixing
time steps is as in (5). Note that the initialization (9)
for is equivalent to the regular leapfrog step (5)N21lk

evaluated at n 5 N 2 1, with a dummy adjoint variable
[which does not appear in the Lagrange functionN11lk

(8)] that is set to zero ( 5 0).N11lk

The adjoint of the mixing time steps in the forward
model (7), derived by differentiating (8) with respect to
the tracer S during the mixing steps, spreads over two
time steps in the adjoint integration

cDt
m21 m11 m ml 5 l 1 (l 2 l )k k k11 k212Dx

2KDt
m11 m11 m11 m1 (l 2 2l 1 l ) 1 lk11 k k21 k2Dx

KDt
m m m1 (l 2 2l 1 l ) (10)k11 k k212Dx

and

cDt
m22 m21 m21l 5 (l 2 l ) . (11)k k11 k21Dx

In this second derivation of the adjoint solution, both
the cost and the adjoint model are obtained using the
same consistent set of finite differences, resulting in an
accuracy of the sensitivity/gradient that is within the
computer roundoff error. We next analyze the two ap-
proaches by solving their continuous and finite-differ-
ence equations analytically.

a. Analytic solutions of the continuous and
finite-difference schemes

The analytic solution to the continuous adjoint equa-
tion 3, assuming that the adjoint initial conditions (2)
reduce to a single wave, l(x, T) 5 Aeimx, is

l(x, t) 5 , t 5 T, . . . , 0,2im(x2ct)1Km tAe (12)

where A is the amplitude and m is the wavenumber. The
finite difference of the adjoint to the advection–diffusion
(5) is found assuming a solution of the form 5nlk
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BnDteimkDx; n 5 N, . . . , 0 (Haltiner and Williams 1980).
The finite-difference solution then takes the form

n 2inb n inb 2n /2 imkDxl 5 [Me 1 (21) Ee ](1 2 d) e , (13)k

where

cDt 4KDt
s 5 sin(mDx), d 5 [1 2 cos(mDx)],

2Dx Dx

s
b 5 arcsin .

1/2[ ](1 2 d)

The constants M and E are determined by the initial
conditions. The term whose amplitude is E oscillates
with a two-time-step frequency and is the computational

mode created by the leapfrog scheme (Haltiner and Wil-
liams 1980). Assuming, similarly to the continuous case,
that the finite-difference adjoint initial conditions reduce
to a single wave component,

5 2Wk( 2 ) 5 AeimkDxN N datal S Sk k k (14)

yields a solution for one of the constants in the general
solution for the adjoint equation

N /2 iNb N11 2iNbM 5 A(1 2 d) e 1 (21) Ee . (15)

The constant E depends on the exact adjoint initiali-
zation procedure, which in turn depends on the adjoint
formulation approach used, as follows.

In the finite difference of adjoint, using the Euler-
forward scheme (4) for the first time step, we obtain

2 1/2 2N N /2 2iNb[(1 2 s 2 d) 2 (1 2 d/2)](21) (1 2 d) e
E 5 A . (16)

2 1/22(1 2 s 2 d)

FIG. 2. Time series of the adjoint variable , from the adjoint ofnlk

the simple advection–diffusion model, at k 5 20. The thick line shows
the finite difference of adjoint formulation, with no computational
mode. The thin line shows the adjoint of finite-difference formulation
that results in a strong leapfrog computational mode. Note that the
two formulations converge at mixing time steps of the forward model,
every 50 time steps (at n 5 100, 50), as well as at the final time step
(n 5 0) that is used to calculate the gradient of the cost function.
These convergence points are denoted by circles in the figure.

For (Dx, Dt) → 0, [while keeping cDt/Dx 5 O(1) due
to the Courant–Friedrichs–Levy (CFL) criterion], the
amplitude of the physical mode in the general solution
for the finite-difference adjoint equation (13) converges
to A, while the amplitude of the computational mode
converges to zero.

In the adjoint of finite difference, one initializes the
adjoint model with a leapfrog step and sets 5 0N11lk

(9), leading to

2 1/2 2N N /2 2iNb[(1 2 s 2 d) 2 is](21) (1 2 d) e
E 5 A .

2 1/22(1 2 s 2 d)
(17)

The amplitudes of both terms in the general finite-dif-
ference solution (13) now remain finite, of order A, for
(Dx, Dt) → 0. This implies that the numerical mode is
as strong as the physical mode and the total solution is
very different from that of the continuous adjoint equa-
tion (12). Note that the two-step numerical mode is
excited in the adjoint of finite difference formulation
both by the initialization procedure and by the adjoint
of the forward model mixing steps.

b. Numerical examples

In order to compare the results of the two adjoint
formulations, their equations were solved over a domain
divided into 100 grid points, using cyclic boundary con-
ditions in x and setting the adjoint initial conditions to
a sine wave (14). The results are plotted from the last
time step (n 5 125) to n 5 0. The adjoint solution in
the finite difference of adjoint approach (Fig. 2, thick
line) is smooth and, for this simple model, is indistin-
guishable from the analytic solution (12) of the contin-

uous adjoint equation. In the adjoint of finite difference
approach (Fig. 2, thin line) the adjoint solution contains
a large-amplitude numerical mode, as anticipated above
and seen also for the adjoint of the primitive equation
ocean GCM (Fig. 1). The solutions for the two adjoint
formulations coincide, within O(Dx, Dt), every 50 time
steps, between the two parts (10) and (11) of the adjoint
of the mixing time step (circles in Fig. 2), as well as at
the final step of the adjoint model, when the value of
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FIG. 3. A contour plot of the gradient field lT(x, y, t 5 200 yr) in
the North Atlantic Ocean, from the global adjoint model of Sirkes et
al. (1996). (a) The exact gradient obtained from lT(x, y, t 5 200 yr).
Contours are scaled by 0.663E102. (b) The same adjoint variable
one time step before the time (a) was drawn, includes a large com-
ponent of computational mode. Contours scaled by 0.126E106.

the adjoint variable is used to calculate the sensitivity/
gradient of the cost function. This convergence of the
two adjoint formulations at mixing time steps can also
be shown from the analytic solutions of the previous
section, by a somewhat tedious manipulation of the ad-
joint solution (17) and the mixing-step equation (10).

The above simple model results of the leapfrog com-
putational mode and the convergence of the two ap-
proaches at mixing steps occur also in the complex ad-
joint GCM of Sirkes et al. (1996), as seen in Fig. 1.
Furthermore, Fig. 3 shows that the entire three-dimen-
sional adjoint temperature–salinity fields in that model
go through a large-amplitude two-step oscillation before
producing a perfectly accurate gradient at the last time
step of the adjoint model integration. Both the amplitude
(note different scaling of contours in Fig. 3a,b) and the
spatial structure of the adjoint solution are significantly
different between consecutive time steps. The spatial
structure at time steps that include a contribution from
the numerical mode (Fig. 3b) is much noisier than the
physical sensitivity (Fig. 3a).

3. Conclusions

We have considered the two possible formulations of
an adjoint model for a given forward model. The first
formulation, finite difference of adjoint, results in a sen-
sitivity that is accurate to only within O(Dx, Dt), but
the adjoint solution does not contain any numerical

modes. The second formulation, adjoint of finite dif-
ference, calculates a gradient at the final time step of
the adjoint integration that is accurate within computer
roundoff error, but the adjoint solution may include
strong computational modes such as the leapfrog com-
putational mode analyzed above. Note that the adjoint
leapfrog computational mode seen in Figs. 1 and 2
makes sense from a numerical point of view, as it rep-
resents the actual model sensitivity to initial conditions.
Because of the leapfrog scheme, the forward model so-
lution at a given time step is sensitive in a different way
to previous model states at odd and even time steps, as
reflected in the adjoint computational mode. But for
time-dependent sensitivity studies, we are interested in
the sensitivity of the physical system underlying the
model numerics, and that, of course, should not contain
any two-step oscillations.

It should be clear that the leapfrog computational
mode analyzed here is only an example of a more gen-
eral problem. The adjoint of finite-difference formula-
tion does not take care explicitly of the numerical sta-
bility of the adjoint solution. Thus other schemes than
leapfrog schemes used in the forward model may result
in other numerical artifacts in the adjoint solution. While
we have offered a solution for the specific leapfrog
scheme problem, of extracting the physical time-depen-
dent sensitivity at mixing time steps, this solution may
clearly not be relevant to other adjoint/numerical prob-
lems. The more general take-home message of this note,
therefore, is that in order to avoid numerical artifacts
in the adjoint solution, one needs to follow one of two
alternative routes. The first is to use the finite difference
of adjoint formulation, where the numerical stability of
the adjoint solution is explicitly taken care of. The sec-
ond alternative is to develop numerical schemes that are
stable and whose adjoint of finite difference is numer-
ically stable as well. This should eliminate the problems
reported here, and we see this as an important future
research direction. Finally, when only the gradient at
the initial time is needed, one may certainly use the
adjoint of finite difference formulation.

The results of this work are especially relevant at this
time due to the ‘‘automatic adjoint compilers’’ (e.g.,
Bischof et al. 1992) that are becoming widely used now
in an effort to reduce the time-consuming adjoint code
development. These compilers derive an adjoint com-
puter code directly from the computer code (e.g., a For-
tran code) of the forward model. They follow the adjoint
of finite difference approach and may, therefore, suffer
all of the potential difficulties discussed above.

We wish to end by emphasizing that both approaches,
the adjoint of finite difference and finite difference of
adjoint are perfectly valid as long as they are used care-
fully and for obtaining the gradient or sensitivity at a
single time, as needed in data assimilation, for example.
We hope that the present note will help future studies
in choosing the appropriate approach for a given prob-
lem that requires the use of an adjoint model.
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