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ABSTRACT

A class of finite difference methods called splitting techniques are
presented for the solution of the multigroup diffusion theory reactor
kinetics equations in two space dimensions. A subset of the above class
is shown to be consistent with the differential equations and numerically
stable. An exponential transformation of the semi-discrete equations is
shown to reduce the truncation error of the above methods so that they
beoome practical methods for two-dimensional problems. A variety of
numerical experiments are presented which illusthate the truncation
error, convergence rates, and stability of a particular member of the
above class.
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Chapter 1

INTRODUC TION

1. 1 The Reactor Kinetics Equations

Knowledge of the kinetic behavior of a nuclear reactor subjected to

a perturbation from a critical configuration is important for the safe

design of that reactor. Most naturally occurring perturbations affecting

the state of a reactor, whether from external or internal origin, are

localized in space and are not distributed uniformly throughout the reac-

tor. Examples are sodium voiding, burnout, and control rod motions.

The transient behavior of the neutron population following such a pertur-

bation will exhibit changes in both the energy spectrum and spatial shape.

This behavior is described approximately by the multigroup diffusion

theory reactor kinetics equations. These equations are obtained from

the more precise mathematical models of transport theory; it is gener-

ally held that a solution to the time-dependent transport equations would

be prohibitively expensive for practical use in more than one dimension.

This thesis will be concerned with the numerical solution of the lin-

ear multigroup diffusion theory reactor kinetics equations. Reactor

parameters will be allowed to depend upon time as well as space, which

would be the case with externally manipulated control rods. However,

no attempt will be made to handle the nonlinear problems arising from

the consideration of feedback effects such as temperature coefficients

and related thermal effects. It is anticipated, however, that methods

developed here will have applicability to the nonlinear problems excluded
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above. In some of the future discussions it will be necessary to con-

sider only constant coefficient problems. In no case should such a re-

stri=tson be taken as a practical one.

The reactor kinetics equations may be written in the following form:

d* g

dt t) = -D t) t) +

G

,(r, t) *',

IL
+ f~ Cgi(r, t)

i= 1

dC. G
(r, t) = -X C (,t)+ 

g'=1

(1< g< G)

Parameters appearing in the above equations have the following meanings:

* = neutron flux neutrons)

g (cm -sec
in g' energy group

vg = characteristic velocity (sM) of gth energy group

thD = diffusion coefficient (cm) in g' energy group
g

C. = concentration (atoms)

cm
of i'th precursor

X = decay constant (sec-1 ) of i'th precursor

1-1
E ,= intergroup transfer cross section (cm ) g #*g

gg
th

= negative of group removal cross section in g' group

f . = probability (sec~ ) that the i'th precursor will produce a
r i th

neutron in g' energy group

= cross section (cm 1 ) for production of ith precursor by
. o . n . th

fission in g' group

1

v
g

(rt)

(1. 1)

pig,(r, t) *(E, t)g (1. i< I)

p.
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G = total number of energy groups

I = total number of precursor groups.

Boundary conditions for the above equations will be homogeneous

Neumann or Dirichlet, and an initial condition consisting of the flux and

precursor distributions in space and energy must be specified.

Three broad classes of methods have been used to obtain approxi-

mate solutions to Eqs. (1. 1).

Modal methods, 1 whereby the unknowns * (x, y, z, t) are expanded

in'sum of spatial modes with time-varying coefficients, have been used

with a great deal of success, especially in two and three space dimen-

sions. Synthesis techniques,2 a subset of the above class, are particu-

larly popular. Nodal methods3 result from the division of the reactor

into subregions or "nodes" and the specification of coupling between

nodes. To date nodal methods have not been widely used except for

rather particular and limited kinetics studies. A discussion of a repre-

sentative nodal method is given in Ref. 4.

Finite difference techniques have until recently been limited to one

space dimension. Well known examples are the GAKIN 5 method and the

WIGLE6 method. Each of these methods has now been extended to two

78
space dimensions, resulting in the LUMAC and TWIGL 8 methods, re-

spectively. The GAKIN and LUMAC methods represent the most ad-

vanced finite difference kinetics methods available to date.

It is the subject of this thesis to explore the feasibility of finite dif-

ference techniques in higher spatial dimensions and to develop a particu-

lar method for two-dimensional kinetics which is "economical" enough

for practical computations.
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With the definition of a vector 6

*y ( r, t)

$2(W, t)

$G( t)

C rt)

C i(F, t)

defined in the following manner:

(1. 2)

Eqs. (1. 1) may be written in the shorthand notation

= M o

where the (G+I) by (G+I) matrix operator M is given by

z12

V D2V 22

zG2

1G I f11 12

z2G I f2 1 f22

V.DG V+GG 'fG1

P1G

P2G

PIG

fG2

0

(1. 3)

0 . 0 fII

f 2

GI

0

0

0 0 -XI

(1.4)

V1 - D1 V 1 y

221

EG1

P1 1

pi 1

0

'''

'''

X1P12

PI2
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In the most general case, excluding feedback, the parameters pig, z gg,

and D appearing in the above matrix may depend on time. The constants

fgi and X are always independent of time. The form of the reactor kin-

etics equation represented by Eq. (1. 3) will be convenient for later ref-

erence.

In section 1. 2 the semi-discrete form of the reactor kinetics equations

is developed. These equations may be written in a form similar to

Eq. (1. 3). They are called "tsemi-discrete" because the spatial variables

have been discretized with the time dependence remaining continuous.

The semi-discrete form of the kinetics equations is the common

base on which all presently used finite difference techniques are built.

Each of the methods in use today differs from all the others only in its

treatment of the time derivative of the semi-discrete equation.

1. 2 The Semi-Discrete Equations

The discretization of the spatial variables is considered in this sec-

tion. In order to maintain some degree of simplicity, the following

discussion will be limited to rectangular geometries on a Cartesian

coordinate system with the two space variables x and y. It is expected,

however, that the methods developed in this thesis will be applicable to

more complicated two-dimensional geometries.

In order to reduce the reactor kinetics equations to a two-dimensional

problem, there will be assumed to be no variations in the z direction.

Consider the single equation
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d$ G
1 g 9

v -t (x, y, t) = V D 9 (x, y, t) +

g'=1

gg,(x',y) ' ,(xyt)

+ f gC(x, Y, t)

i= 1

(1. 5)

and the grid with constant mesh spacings Ax and Ay

Fig.

- Ax -*.

Ay

k-1 k k+1

1. 1. Two-dimensional grid.

Equation (1. 5) is integrated over a volume element (AxAy) about point

(k, j) having unit extent in the z direction. This volume element is

illustrated by dashed lines in Fig. 1. 1. The equation is then divided

y
A

j+ 1

j

j -1
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by the volume of the element, giving the following relation:

1
v

g

g (X, y, t)

dr = - D (X, y) Vg (X y, t) dr

+ gi

i= 1

C (x, y, t) -

AxAy dr.

With the following definitions,

* (X, y) -.

g, k, j AxAy

Ci(x, y) d
i, k, j AxAy

e gg(x, Y) (x, y, t)

gg,k,jg',k,j AXAy
dr,

where all integrals are taken over the volume element AxAy about (k, j);

and using Gauss' theorem, we may write

1 d
v dt g, k, j

Ax SD (x, y) V* (x, y, t) - ds

.G

+ I Igg', k, jg', k, j + fgi ci, k, j

g'=1 i=1

G zl(xy) $ ,(x, y,t)

g'=1

dr

(1. 6)

(1. 7a)

(1. 7b)

(1. 7c)

(1. 8)
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where ds is an outward normal surface element and S is the surface of

the volume element.

The surface integral in the above expression is approximated in the

following manner:

- - 1
Dgxy g* (xAt -ds D 1

gj+2

g, i, j-

1
g, ij+

g, i- - ,

(Ax)

g,i,j g, i, j-1

g,i+1, j g,i,j

Ax

g,i,j g,i-1,j
Ax (A

(1.9)

where D 1

gij

Ay
= Dg(xi yj + Y), etc.

For the case of a spatially constant diffusion coefficient D g, the

above treatment is exactly the five-point central difference approxima-

tion to the V2 operator in two dimensions:

D V2 

62
x g

g (Ax) 2

2

y g
+

() 2

where 62 is the central difference operator.

An important feature of the above treatment of the spatial derivatives

1
AxAy

S

goisj+l _ gsisj
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is illustrated by the case of spatially dependent diffusion coefficients.

Continuity of the neutron current DV across the surfaces of the volume

elements has been preserved by the evaluation of the diffusion coeffi-

cients at these surfaces. Thus, if volume elements A and B share a

common surface ds, then the integral term approximated by Eq. (1. 9)

representing neutron current across this surface ds is approximated

in the same way for both elements. As a result, no neutrons have been

artificially created or lost at these interfaces.

Equation (1. 8) with the approximation of Eq. (1. 9) may now be

written in matrix notation with the definition of the vectors * and C.
gi

containing the flux and precursor values j and C. at all of thecontaining 't'g, k,j 3 ,k,j ataloh

mesh points. The matrix equation is

d* g
-(H +V) + ITgg I+ Fgi.C (1. 10)

g' i

The matrices H and V each contain only three nonzero elements per

row, and each may be made tridiagonal with the proper ordering of the

unknowns j . within the vector 1 . These matrices are given by

v

H g 1 -(D +D 1
g h, k, j 2 g,k+, j g,k + ,j g,kj- , g,j

+ D I } (1. 1 1a)

v
,~ g

V 9 .gp = ( D J*~k - (D 1+ D 1 .VgAg,k, ( 2 g,k, j+ g,k,j + g,k,j - g

+ D -g,k, j-11. (1. 11b)
g,k, j --
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The matrices Tgg, and F gi are diagonal and are given by

Tgg' g, k, j a g, k, j
(1. 12)

(1. 13)F .C. . c f .C ..
gi1, k, j =gi i,k,j

The matrices H g Vg, T ,, and Fg. are N by N matrices where
g g gg"g

N is the total number of space points on the grid.

The spatially discrete precursor equations are much simpler to

derive and are given by

dC.

dt -A + P , g,,

g'

where A. and P ig, are diagonal matrices given by

AiC. i= XC i k

(1. 14)

(1.15)

(1. 16)pig' g', k, j = PigI g', k, j

With the further definition of a vector i as

1

(1. 17)

the set of Eqs. (1. 10) and (1. 14) may be combined using the shorthand

notation
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dL A
dt - LA . (1. 18)

The above equation is the semi-discrete form of the reactor kinetics

equations.

The matrix A is given in terms of previously defined matrices as

A = I-

H 1 +V 1 +T 1

H 2 +V 2 + T 2 2

TG2

P12

P22

TQ

P 1 1

P'21

Py ii PI2

1iG

T
2GI

TGGI

' 2G I

'IG

F 
1 1

F
2 1

FG1

-A
1

FG
2

F 1 I
... F 2 1

F G IFGI

-A
2

-AI

(1. 19)

For later use, the following definitions of the matrices D and E

are made.

H1 +V 0

0 H2 2

0 1

0

0

.0 HG+VG

(1. 20)

0 0

L
I-A1

0
-A

2

I
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E = A - D. (1.21)

Under the assumption of homogeneous Dirichlet boundary conditions,

the matrix (-D) is a Stieltjes matrix. That is to say, it is symmetric

and positive definite. Therefore the matrix D is symmetric and nega-

tive definite. This fact will be useful in the stability analysis of Chap-

ter 2.

The above treatment of the V - DV operator is well known to be con-

2 2 9
sistent and accurate to order (Ax) and (Ay) . That is to say, if 0 is

a genuine solution of the differential equation

de
-t= Mo,

-2 2
then A 0 = M 0 + 0(Ax2 ) + O(Ay 2 ). The above fact will be useful for the

consistency analysis of fully discrete equations to be considered in

Chapter 2.

Certain properties of the matrix A are of interest. It is nonsym-

metric and has been observed to have complex eigenvalues in some in-

stances (usually these appear only in problems with many energy groups).

All the elements of A are positive or zero, except for diagonal elements

which are strictly negative for problems of physical interest. A partic-

ular feature of A which should be noted is the wide disparity between

the magnitudes of its elements. The parameters X, for instance, are on

the order of unity, while elements of the H and V matrices may be

quite large. Typical elements are v D /h , and it may be pointed out

that these elements depend inversely upon the square of the mesh spacing

and will be unbounded in the limit as this spacing is decreased to zero.
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It is for this reason that the matrices H and V g are called the "princi-

pal part" of the matrix A. In Chapter 2 of this thesis it will be shown

that it is the principal part of A which determines the all-important

numerical property called stability.

For the theoretically important case of a step change in the prop-

erties of the reactor, the matrix A is independent of time. The solu-

At
tion operator for Eq. (1. 18) is formally seen to be et, so that

-- At -
* (t) = e $.P (1. 22)

A t (A t)2
The computation of the operator e = I + At + + ... is so exceed-

2

ingly difficult, however, that approximate methods for solving Eq. (1.18)

are sought even for the case of constant coefficients.

It is possible to divide existing methods for the solution of Eq. (1.18)

into three rather arbitrary classes: explicit, implicit, and alternating

semi-implicit. The simplest explicit method results from the approxi-

mation of eAt by the first two terms of a Taylor's series expansion, so

that

--J+1 -
$ = (I+hA) $ , (1. 23)

where h is a time increment. This method is characterized by an ab-

solute minimum computational effort for each time step, but it suffers

a drawback known as numerical instability. In order to achieve a stable

method, the time step size h must be extremely small, so that a large

number of steps are required in any practical computation.

Fully implicit methods have numerical properties which are just

the reverse of explicit methods. They require the inversion of the entire

- - ----------------
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A matrix at each time step, a necessarily iterative process that is very

costly in computation time. An example of a fully implicit, method is the

TWIGL method with the theta weighting parameter equal to 0. 5, i. e. ,

eJ+1 -)1 + hA) _J. (1.24)

Implicit methods are unconditionally stable, however, and therefore

the time step size characteristic of these methods is quite large.

Semi-implicit methods represent a compromise between the explicit

and implicit methods which, if properly devised, may have the advan-

tages of both. A defining characteristic of this class of methods is that

they require the inversion of only a segment of the matrix A at each

time step. This segment is usually chosen so that the inversion process

is simple and requires no iteration. Properly formulated, these methods

may possess unconditional stability. An example of this type of method

is the rather famous "Alternating Direction Implicit" method. 1 0 Unfor-

tunately for the kinetics equations, these methods possess unacceptably

large truncation error, which limits the time step size to the order of

that necessary for an explicit method.

A primary result of this thesis is the development of a technique

whereby the truncation error of alternating semi-implicit methods may

be vastly decreased. This technique is presented in Chapter 2. The

consistency and stability of these alternating semi-implicit methods, as

well as their asymptotic behavior, are discussed in other sections of

Chapter 2.

A particular member of the above class of methods is chosen for

detailed examination in Chapter 3. The results of a number of numerical

-- I I I I I I
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experiments performed with this method, called MITKIN, are also pre-

sented in that chapter. Chapter 4 contains a summary discussion of the

properties of the MITKIN method, including a discussion of computer

requirements, and Chapter 5 presents recommendations concerning the

utilization of the method and future improvements which might be made.
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Chapter 2

THEORY

This chapter will be concerned with methods for obtaining an approx-

imate solution to the semi-discrete equation

d+P
-- = A+ (2. 1)

which was developed in section 1. 2 of this thesis. Methods to be consid-

ered are members of the class of alternating semi-implicit methods and

are frequently referred to in this work as "splitting" techniques. Some

rather general ideas concerning the consistency and stability of these

methods may be formulated.

In section 2. 1 an exponential transformation is introduced which has

been experimentally observed to reduce significantly the truncation error

of some splitting methods. Section 2. 2 demonstrates the consistency and

stability of a subset of this class of methods when applied to the trans-

formed equation derived in section 2. 1. This transformed equation in-

volves a diagonal matrix of free parameters, called frequencies. The

selection of these parameters is discussed in section 2. 3.

A great deal of matrix algebra is involved in the ensuing sections

of this chapter. Specifically, the concepts of vector and matrix norms

are crucial to an understanding of the sections on consistency and stabil-

ity. Reference 11 contains an excellent treatment of the properties of

these norms.

. ......................- dkwd.&dW" I ..... ....
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2. 1 The Exponential Transformation,

The reactor kinetics equations are, from a mathematical point of

view, "stiff" equations for reactivities less than prompt critical. Stiff-

ness in this connotation will mean that the equations have time constants

which span a wide range of values. This is due to the physical fact that

the decay constants of the precursors are much smaller than the char-

acteristic neutron diffusion time constants in the higher energy groups.

These presursors retard the response of the reactor to a perturbation

from a critical state, a well-known fact which facilitates the control of

a nuclear reactor. The prediction of this response from numerical sol-

utions of the kinetics equations is not facilitated but is actually made

more difficult by the presence of these precursors. The time step size

of many stable methods is limited by the neutron equations, but the

presence of the precursors greatly lengthens the time interval during

which the solution readjusts to a new shape. An unacceptably large

number of time steps is necessary to predict this most interesting

region of the transient. This is entirely a truncation error problem

and has nothing in common with numerical instability. A means by

which this difficulty may be surmounted is presented in this section.

Consider the following change of variables. Let

(t) = e'Ot (t), (2.2)

where w is a diagonal matrix and the function (t) represents what is

cJ.t
hopefully a small modulation on the assumed behavior e . It is em-

phasized that, since w is a diagonal matrix, the matrix e is readily
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computed; and therefore the transformation between the variables 4P

and 4 is easily made. An equation for the new variable $(t) may be

derived in the following manner. Differentiating Eq. (2. 2),

coP t d4)+ ewt-
= e -+oet 4, (2.3)

The substitution of Eqs. (2. 2) and (2. 3) in Eq. (2.1) gives

e Wt + o et 4=A e Wt
dt

or

d -Wt (A-w etb

= e (A-o)e 
(2.4)

It is contended that Eq. (2. 4) with a proper selection of the free

parameters o is less difficult to solve than Eq. (2. 1). By "less diffi-

cult to solve" it is intended to mean that, given any method, the trun-

cation error of that method will be less when applied to Eq. (2. 4) than

when applied to Eq. (2. 1). It is not intended to mean that the stability

properties of the Eqs. (2. 1) are altered by the transformation. Equa-

tion (2. 4) is still a rather formidable one from the viewpoint of numeri-

cal stability.

If the matrix o is chosen so that

oF(t1 ) = A i(t 1 ), (2. 5)

then it is easily seen that

d4

dt 0 
(2.6)

dt1
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Thus in some interval about time t1 the function 4 does indeed represent

a small modulation on the assumed behavior. Unfortunately, these time

intervals are rather small. Because of the stiffness of the equations,

however, the intervals are much longer than the time step size men-

tioned in the first paragraph of this section. It is for this reason that

this transformation increases the time step size which can be taken by

many methods for reasonably small truncation error.

There is one difficulty with the above analysis that must be noted.

The exact solution P(t) which appears in Eq. (2. 5) is, of course, unavail-

able, so that the frequencies of Eq. (2. 5) can not be determined. Meth-

ods for selecting these free parameters are discussed in section 2. 3.

2. 2 Splitting Methods

A general class of splitting techniques is attractive for the solution

of Eq. (2. 4) over a time interval 2h. These splitting methods encom-

pass such well known methods as ADI and ADE (alternating direction

implicit and explicit, respectively). In order to obtain a general stabil-

ity criterion for all methods of this type, the following analysis will be

completed in terms of arbitrary splittings of the matrices involved. The

matrices D and E which were defined by Eqs. (1. 20) and (1. 21) are

split in the following manner:

D = Al + A 2

E = E1 + E 2 (2.7)

so that
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A = A 1 +A 2 +E 1
(2. 8a)

(2. 8b)A = A +A 2 + E 3 + E

With the evaluation of the matrices eWt and e-wt at the midpoint of

the time interval the following difference equations may be written:

[-h wh -h
1Al+E 1 -w] e * (h)

-wh wh-
- e [A 2+E 2] e

(2.9)

((2h) - 4p(h) wh hwh h

h e e-h [A 2 +E 3 -w] e (2h) - e- [A I+E 4] eh (h).

The above equations may be solved for 4(2h) in terms of p(0), which

is equal to LP (0). The equations give

& -oh -1 -1
* (2h) e [I-h(A1 +E I -w)] [I+h(A 2+E 2)][I-h(A 2+E 3-~-

[I+h(A 1 +E 4 )] ewh $(0) (2. 10)

But since L(2h) = e 2coh ((2h), we have

LP(2h) = B(w, h) j(0), (2. 11)

where the advancement matrix B is given by

B(w, h) = e wh [I-h(A 1+E 0 -- 1 [I+h(A +E 2 )][I-h(A2 +E 3-W)]-1

[I+h(A 1+E 4 )] ewh. (2. 12)

If w and h are held constant with time, Eq.

(h)- (0)

h

...................

(2. 11) becomes
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J+2 = B(oh) , (2. 13)

where $P is a shorthand notation for p(Jh). Given the initial condition

i(0) = $ , we may write

2NN
- 2= Bo, h) Np

with the additional assumption that reactor properties do not change with

time. This assumption is necessary for the discussions of consistency

and stability of the following two sections.

2. 2. 1 Consistency

2N
It is, of course, hoped that I is some approximation to the exact

solution O(2Nh) of the differential equations. If this is to be true, it is

necessary that the difference Eqs. (2. 13) be consistent over a single
-J+2 - J

time step. Since 2h~ - is to be an approximation to the time deriv-

ative, the ratio

B( ,h) 6 - e
2h

must be an approximation to M e in some sense, where M is given by

Eq. (1. 4). It is not necessary that this be true for all 0, since M, for

example, is not even defined for discontinuous e. It must be true for

0 a genuine solution of the differential equations for some arbitrary ini-

12
tial condition. The consistency condition may be written formally as

B(o., h) - I

2h - M 6(t) - 0 as h -0 for 0 < t <T.
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Since e is a genuine solution of -= M 0, the above condition may be

expressed in the following form which is more convenient in most cases.

0(t+2h) - B(o, h) (t)
-0

h
as h - 0 for 0 < t , T.

Implicit in these conditions is the requirement that the spatial mesh

spacings be reduced as the time step size is decreased. A relation of

the form h = g(Ax, Ay) must be specified to precisely determine the

manner in which these increments are taken to zero.

The following theorem will be useful for the consistency analysis

of Eq. (2. 13).

Theorem 1. If each of the matrices C*(h) and C 2 (h) are consistent,

then the matrix B = C1 C2 is also consistent.

Proof: If C and C2 are consistent, then

0(t+h) - C 2 0(t)
-0

h

E(t+2h) - C 1S(t+h)

h
. 0

as h - 0

as h - 0

But since C is consistent, its norm is bounded as h -0, and

1(t+h) - C 2e(t)

1 h
-0 0 as h - 0.

Using the fact that ||Axi| 1 |Ai ll |1xii,



-C 1 C 2 0 (t)
0

h
as h - 0.

The triangle inequality ||x+y 1 x + || y 11 gives

C 1 (t+h) - C 1C 2 (t)

h
+

0(t+2h) - C y(t+h)

h

or, finally,

0(t+2h) - C 1C 20 (t)

h
- 0 as h - 0.

But the above equation is the consistency condition for the matrix C1C2

and the theorem is proved.

The matrix B of Eq. (2. 13) is factored into the product of the two

matrices C
1 and C 2 , so that

B = C 1C 2' (2. 15)

The matrices C and C2 are defined by

C 1 = e wh[I-h(A 1+E C - 1) [I+h(A 2+E 2 )] (2. 16 a)

C 2 = [I-h(A2+E 3 -w)]~ [I+h(A 2+E 4)] ewh. (2. 16b)

Each of the matrices C and C2 will now be shown to be consistent. Con-

sider first the matrix C 2 .

C 1 (t+h)

31

as h - 0
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$(t+h) - C 2et) (t+h) - [I-h( A2+E 3 -) [I+h(A +E)]eh(t)

h h

0(t+h) is expanded in a Taylor' s series about time t:

S(t+h) = e(t) + h + - + .(t~) 0at 2 at 2 +.

Substituting,

0(t+h) - C 0 (t) 2

h = e (t)+hh+--- 8- C 2 (t)

S[I-h(A 2 +E 3- [I-h(A 2+E 3- )

112312 23

(t) + h + 2 .. - [I+h(A +E 4)] eh (t)

LetA3 be a bound for I[I-h(A2+E 3 -c) . This matrix may easily be

shown to have a bounded norm as h - 0, under the ;restriction that the

time step size h and the mesh spacings Ax and Ay are related by expres-

sions of the form

h = r (Ax) 2= r (Ay)

where r1 and r 2 are constants. This boundedness is demonstrated

during the stability analysis of the next section. Therefore,
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0(t+h) - C 2 (t)
h2+[I-hA -hE+whj(t)+h-aE +O(h

h 2 3  L t J

- [I+hA 1+hE 4+h+o(h 2 )] (t)

-hA 0(t) + h + 0(h 2) E (t)

h

hh t

dO
But since E is a genuine solution of T = MO, and since AE = MO +

0(Ax ) + 0(Ay

E(t+h) -C2E)(t)22
t p ||0(h) + O(Ax2) + 0(Ay 2

h

Recalling the requirement that the time increment is to be decreased

with the square of the mesh spacings Ax and Ay, we have

0(t+h) - C 0(t)
2___ p 0(h) -0 as h - 0.

h

The matrix operator C 2 is therefore consistent with the differential

equations. An exactly analogous treatment of C 1 will show that it, too,

is consistent, and the consistency of the matrix B = C 1 C 2 follows from

Theorem 1.
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2. 2. 2 Stability

A fundamental theorem due to Lax assures the convergence of the

solution of a consistent difference equation to the solution of a well-

posed differential equation if and only if the difference equations are

stable.13 If the difference equations are written in the form

J+1 = B(h) Yj

a s~ff~iecomdtorfor numerical stabilityis-that

I B(h)N 1 is bounded for 0 4 h < T

0 Nh < T.

This condition is equivalent to the restriction that

11B(h)II 1 1 + 0(h).

In order to prove the stability of the difference system of Eq. (2. 13),

it will be necessary to make two assumptions. First, the matrix B

must not depend on time; i. e. , the consideration is limited to step

changes in the reactor properties and to a constant frequency matrix W.

Second, any consideration of stability assumes a relation of the form

h = g(Ax, Ay) between the time step size and the spatial mesh spacings.

It will shortly become evident that for the kinetics equations the above

relationship must be

h_ 2= r 1(2. 17a)
(Ax)2

h2 = r 2 , (2. 17b)
(Ay)
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where r 1 and r 2 are constants.

For the following stability analysis it will be helpful to establish that

the norms of certain matrices are bounded for 0 < h < T. These matrices

-1 -1
are (I+hA 1 ), (I+hA 2 (I-hA 1 ) , and (I-hA 2 )~ . This is not a trivial issue,

since the elements of the matrices A1 and A 2 are inversely proportional

2 2
to (Ax) and (Ay) . With the restriction of Eq. (2. 17), however, most of

the elements of hA are constant with decreasing h. The exceptions are

te n apearing

of the matrix. For these elements, the multiplication by a small h pro-

duces an element of hA tending to zero in the limit. In the L or maxi-

mum norm, where the norm of a matrix is the maximum of the row sums,

the norms of the matrices (I+hA 1 ) and (I+hA 2 ) are bounded (they are actu-

ally constant with h) by observation, independent of the choice of the ma-

trices A1 and A 2 . This is true even though the dimension of the matrices

involved is increasing with decreasing h.

-1
The situation is not so easy for the case of the matrices (I-hA 1 )

and (I-hA2 ) , since the inversions generally produce a full matrix. It

is now necessary to place a condition on the choice of the splitting of D

into A 1 and A 2 if the above matrices are to possess bounded norms. A

simple argument shows that if the matrices (I-hA 1 ) and (I-hA2 ) are strictly

diagonally dominant the norms of their inverses are bounded. Let

I - hA = Q + R,

where Q is a diagonal matrix consisting of the diagonal elements of

I - hA. These diagonal elements are all greater than 1. Then

............... .......
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jj(I-hA)Y l = I(Q+R)V1 Il = j (I+Q R)~ Q 1 1

4 (I+Q7 R)_l 11 _ l.

But

IIQ'1II <1

thus

(I-hA

<1 + IIQ'RII + Q~ R 2+....

But since (I-hA) is to be strictly diagonally dominant, it follows that

the L norm of Q R is less than one. The above series converges to

-1
a finite limit which may serve as a bound for the L norm of (I-hA)~

The L norms of (I-hA 1 ) and (I-hA 2 )~ have been shown to be

bounded for 0 < h < T provided the matrices (I-hA1 ) and (I-hA2 ) are

strictly diagonally dominant. This will be the case if D is split so that

Al and A 2 are both diagonally dominant. Boundedness for other norms

follows from the equivalence theorem, which states that for any matrix

A and two matrix norms, 1A Ii, and |1A 112, there exist, positive con-

stants K and K2 such that 1 4

K, 11 A ll 1 _< ||A|112 < K2 11All|1.

The matrix B is factored into the product of two matrices, C 1 and

C2, defined by Eqs. (2. 16). It will be shown next that each of these ma-

trices can be separated into two terms, one being the difference approxi-

mation of the principal part of A and the other term being of order h.
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C =e wh [I-h(A +E - W)]1 [I+h(A +E 2)]

C = [I+0(h)] [I-h(I-hA 1 ) -1 (E 1 -w)] [I-hA1 ] 1 [I+h(A 2+E 2)'

But since 1 (I-hA 1) j is bounded for 0 1 h - T, the second term of the

right-hand side of the above expression is [I-0(h)] 1 which is equal to

I + 0(h). Therefore

r. = [ 1+0(h)l [ 1+0(h)l (I-hA ) 1 [I+hA +O(h)l.
I I 6

Finally,

C = (I-hA1)~ 1 (I+hA 2) + 0(h). (2. 18)

Similar algebra produces an equivalent result for the matrix C 2 :

C 2 = (I-hA2 ) (+hA 1) + 0(h). (2. 19)

The matrix B becomes

B = C 1 C 2 = (I-hA 1) 1 (I+hA 2)(I-hA 2)~1 (I+hA 1 ) + O(h). (2. 20)

From Eq. (2. 20) it may be seen that the advancement matrix B has

been written as the sum of its principal part, which will be called B1,

and terms of order h. The principal part of the matrix B is given by

B' = (I-hA 1 )~ 1 (I+hA 2 )(I-hA 2 )~ 1 (I+hA 1 ).

In order to complete the proof of stability it is necessary to show that

................................



the matrices (I+hA 2)(I1112) and (I+hA 1 )(I-hA ) -

under some conditions on A1 and A 2.

In the L 2 norm,

(I+hA)(I-hA) - max
v
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are norm reducing

-T AT -1 T -1-
v (I-hA ) (I+hA )(I+hA)(I-hA) v

-T-
V v

-T T-
u (I+hA )(I+hA) ui

~(I+hA) (I+hA)~ i - max
u uT(I-hA T)(I-hA )u

-T T 2 T
-1u [I+h(A +A) + hA A] u

(I+hA)(I-hA)~I = max T T 2 -r + A
U u [I-h(A +A) +hA TA] u

Since a matrix of the form A A is always positive definite, A having real

entries, the above norm is clearly less than one if the matrix A T+A is neg-

ative definite. Therefore, if a particular splitting method is chosen so

T T
that A1 + A and A 2 + A2 are negative definite matrices, then the ma-

trices (I+hA 1 ,I-hA)~ 1 and (I+hA2 )(I-hA 2 )~ are norm-reducing.

Since the advancement matrix B is given by

B = B' + 0(h)

the stability of B is evident provided that it can be shown that its princi-

pal part B' is bounded less than 1 + 0(h). This boundedness will be estab-

lished in the L 2 norm. Let

B' = LiMR,

Let

........... ......
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-1 - 1
where L = (I-hA1 ) , M = (I+hA 2 )(I-hA 2 ) , and R = (I+hA 1 ). It has been

shown that J M j <1 and Rj < 1 ifA and A 2 are chosen properly. But

B'N = LMR L.MR LMR... LMR

However, IILI = II(I-hA ),JI andDR'II = R II+hA1 I have been previously

sh~n t beboudedfo 0 S h <_T_ Thll-- B N s biined orlarge N.

This implies that

IB' < 1 + 0(h) for 0 < h< -r

0 < Nh < T.

Therefore

JIBi1 < 1 + 0(h) for 0 < h< T

0 < Nh < T,

and the difference equations are stable.

It should be emphasized that several assumptions and restrictions

were made in the preceding stability proof. The splitting of D must be

T
done in such a way that A1 and A2 are diagonally dominant and A 1 +A 1

T
and A 2 + 2 are negative definite. The ratio of the time step size to the

square of the spatial mesh spacings was assumed to be fixed, although no

limit was placed on the size of this ratio. It is in this sense that uncon-

ditional stability has been achieved.

The final assumption was that the frequency matrix w is constant

independent of time. Generally these frequencies will be allowed to vary

with time. The larger question of the stability of the resulting nonlinear

... ...... .... W6AAA*W.1
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advancement has not yet been answered by means other than numerical

experiment. Conclusions concerning the experimental stability of meth-

ods in which the frequencies are changed at each time step are presented

in section 4. 2.

2. 2. 3 Asymptotic Behavior

A particularly attractive feature of the exponential transformation is

that the splitting methods just discussed may be forced to yield the correct

asymptotic behavior. If the largest eigenvalue w0 of A corresponds to

the eigenvector o, i. e.,

A = c o0 , (2. 21)

then the asymptotic behavior of the function 'W(t) is

P (t)=a e 0 .

The eigenvector may be shown to be an eigenvector of the advancement
2w h

matrix B with eigenvalue e 0 , provided the frequencies are chosen equal

to the eigenvalue w0 of A.

B(w , h) =e 0 [I-h(A +E W - 9] I+h(A 2+E2

woh

[I-h(A2+E 3 W] [I+h(A 1+E g)] eh

But

(A 1 +E 4 ) o (W O-A 2 -E 3) o

(A 2 +E 2 o o-A 1 -E 1 ) .
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Substituting,

B(wh) = e 2 w 0 [I-h(A +E - )] 1 [I+h(A 2+E 2

[I-h(A2+E 3 -W)] 1 [I-h(A2+E 3 -w 0) o7

B(w , h) = e [I-h(A 1 +E 1 - 0)] [I-h(A1 +E 1 -W0 ] 0

Finally,

2w h
0

B(w, h)p. = e Lo. (2. 23)

From the above equation it may be seen that the matrix B(w 0 , h) oper-

ating on the asymptotic solution, which is a multiple of 0, produces the
2w h

exact growth of e 0 over the time step 2h.

2. 3 Frequency Selection

It has been previously stated that the frequencies w must be updated

frequently in order that the function 4 be a small modulation on the as-

sumed behavior e t. In the interest of accuracy, it would seem most

reasonable to alter the frequencies after each time step, provided that

a stable method for the selection of these frequencies may be found.

A cursory examination of the problem might lead one to select "instan-

taneous" frequencies at each time step, using the approximate solution

+ as

o 1 =A .(2. 24)

The choice of these "instantaneous" frequencies leads to a zero derivative
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of (t) at the beginning of the time step. Small perturbations in y pro-

duce enormous instantaneous frequencies, however, which are in serious

error over most of the time step. The above method of frequency selec-

tion has been experimentally observed to induce instability in difference

systems of the type of Eq. (2. 12).

The most desirable frequencies are those accurate over some finite

interval of time, i. e. , those which produce as small as possible total

change in r(t) over that interval. These frequencies are, of course,

theoretically given by the relation

w i -J Ah -J
e h =e A . (2. 25)

As a practical relation for obtaining frequencies Eq. (2. 25) is useless.

Ah
If, however, instead of the exact solution operator e the difference

approximation B is used, the following relation is obtained:

e2 h J = B(w, h) .

The above relation may be put in a much simpler form.

e2wh J _ ewh [I-h(A 1 +E 1 - w)] [I+h(A 2 +E 2)]

[I-h(A 2+E 3- ) [I+h(A 1+E 4)] eh J. (2. 27)

Assume that w satisfies the equation

wh -J
(Aw)e = 0. (2. 28)

Then
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(A +Eg) ewh -J (A+E )] h J

Substituting in Eq. (2. 27),

e 2wh J = e oh [I-h(A +E-)] [I+h(A2 +E 2)]

[I-h(A2+E 3 - w)]~ [I-h(A2 +E 3 -w)] ewh J

or

2wh -J 2wh -J
e 4' = e q'.

Therefore the relations (2. 27) and (2. 28) are equivalent. If the frequen-

cies satisfy one of these relations, then the solution at the next time step

may be found from

-AJ+2 2ch-J (2.29)
LP =e + .

The frequencies determined by Eq. (2. 28) represent an instantaneous

frequency evaluated from the approximate solution in the middle of the

time step. Unfortunately, the solution of Eq. (2. 28) must be obtained

by use of time-consuming iterative methods.

A third method for selecting the frequencies rests upon the assump-

tion that the change in the frequencies over a time step is small. In this

case, the frequencies computed from the relation

d = 1 ln (2. 30)
2h -J-2

'i- --- _- '--.__- ____ 11 1. 1
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may be a reasonable approximation to those of Eq. (2. 28). Since the

above formula is explicit (~ is calculated from ~J using the frequen-

cies o J-2), the saving of computation is quite large for each time step,

although it is likely that the use of the above frequencies will require a

greater number of time steps.

The particular method for selecting frequencies that is finally cho-

sen for use with a splitting technqiue should be the one most effective

for that technique.
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Chapter 3

RESULTS

Certain theoretical properties of a broad class of finite difference

techniques, the splitting methods, were developed within the previous

chapter. A particular member of this class of methods is chosen for

detailed study in this chapter. The method, called MITKIN, will be de-

fined in section 3. 1 and be shown to possess desirable numerical char-

acteristics. In section 3. 2 the results of many numerical experiments

with the MITKIN method are presented.

3. 1 The MITKIN Method

A numerical method may be specified uniquely by the definition of

the matrices A1 , A 2 , E 1 , E 2 , E 3 , and E4 appearing in.Eq. (2. 12) and

by the choosing of a method for the selection of the frequencies W. A

particular method called MITKIN that has been thoroughly studied and

for which results are quoted at the end of this chapter results from the

following choice. Let A 1 be lower triangular containing half the

diagonal of D and A 2 be upper triangular containing the other half of the

diagonal of D. Let the matrix E 1 be lower triangular containing the full

diagonal of E and E2 be strictly upper triangular. Then let E 3 = E 1 and

E 4 = E 2.

The primary advantage of this method is the rapidity with which

-J+2 Jmay be computed from + . The amount of computation necessary

to carry out a time step is only slightly greater than that required by a

fully explicit method. This easily may be seen by an examination of the

"I ..........
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matrices [I - h(A 1 +E 1 - )] 1 and [I -h(A 2 +E 1 - W)]~ 1. The matrix

[I -h(A 1 +E 1 -w)] is lower triangular, and the inversion process is a

simple back-substitution. The matrix [I - h(A 2 +E - w)] is not triangu-

lar; it may be easily put in lower triangular form, however, by a sim-

ple reordering of the unknowns. The inversion again becomes a simple

back-substitution.

The final realization of the MITKIN method is a double sweep of the

spatial mesh. The first sweep begins at one corner and ends up at the

opposite corner. The second sweep reverses the order in which the

space points are solved. For each sweep of the spatial mesh the group

structure is solved starting with neutron group one and ending with the

precursor groups. This sweeping of the spatial mesh is precisely the

same as that employed by the so-called "alternating direction explicit"

method.

The above method easily can be shown to satisfy the stability condi-

tions of the previous chapter. The matrices A 1 and A 2 are diagonally

dominant by observation, and, further,

T T
A +A T=A 2 +A 2 = D.

Since D is negative definite the second stability condition is also satis-

fied.

The selection of the frequencies at each time step for the MITKIN

method was done in accordance with Eq. (2. 30), with one exception.

Because the truncation error of the precursor equations is small without

the use of frequencies, zero frequencies are assumed for these equa-

tions. Equation (2. 30) fails to specify the frequencies to be used over
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the first time step. These frequencies are taken as zero.

The final section of this chapter contains the results of many numer-

ical experiments performed with the MITKIN method.

3. 2 Numerical Results

A set of numerical experiments was designed in order to test the

stability and the truncation error of the MITKIN method. Although the

stability of the method with time-independent frequencies has been con-

clusively established on theoretical grounds, instability due to the

changing of the frequencies at each time step must be admitted as a

serious possibility. Such instability has in fact been seen for some

splitting methods and will be discussed in section 4. 2. Truncation error

in this thesis means the percentage discrepancy between the solution of

the difference equations and the exact solution of the semi-discrete equa-

tions. It will be treated as an experimentally determined quantity. This

is done because the emphasis in this work is on taking the maximum

possible time step, whereas mathematical concepts of truncation error

are valid as the time step size approaches zero.

All of the cases which have been examined represent perturbations

from one of five critical configurations. These five configurations are

described in detail in Appendix A. Three of the configurations are homo-

geneous; the other two represent true space-dependent problems. There

are both two-group and four-group problems with one precursor group,

and a two neutron group problem with six precursor groups.
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3. 2. 1 Homogeneous Problems

Spatially homogeneous probldms, frequently referred toias "model"

problems, represent a highly valued tool to the numerical analyst, since

it is for these problems that exact solutions may be easy to obtain. If

the spatial dependence of the initial condition can be expressed as a sum

of a small number of the spatial modes, then solutions of both the differ-

ential equations and the semi-discrete equations can be obtained for the

case of a uniform step change in the reactor properties. The emphasis

in this thesis is upon the treatment of the time derivative, and the trun-

cation error produced by the discretization of the spatial variables is not

of interest here. Accordingly, the solution of the semi-discrete equa-

tions will be used in this section as the standard for comparison.

The following method is used to obtain the exact solution of the semi-

discrete equations. If i is in the fundamental spatial mode, then V

2- 2 15
may be replaced by B < where B is the difference buckling given by

B2  2 1 - cosj] + 2 - cosj

(Ax) 2 1(4,y) _

K and J being the number of mesh intervals in the x and y directions.

Since the spatial shape is known for all time, the problem is reduced to

the solution of the set of equations

dS(t) = A' (t),dt

where A' is a (G+I) by (G+I) matrix. The Above equations are the point

kinetics equations where S is a vector containing the flux and precursor
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concentrations in all groups. The vector S may be thought to repre-

sent the reactor "spectrum."

The initial condition S is expanded in a sum of the eigenvectors of

A', which must be computed along with their respective eigenvalues.

S = aieV

where e is an eigenvector of A' corresponding to the eigenvalue X. The

exact solution then becomes

( M= a 2 e e

MITKIN and exact solutions were obtained for four test cases. In

each of these test cases the initial condition 0 is in the fundamental

spatial mode, which is a cosine shape for rectangular geometries. The

test cases represent two and four group, one and six precursor groupe

problems with positive and negative reactivities. Each test case repre-

sents a particular perturbation from one of the critical configurations

of Appendix A. The precise perturbation is specified for each test

case in the following way. If P0 represents a critical reactor param-

eter, then

P(t) = P0 + A P(t).

TEST CASE 1

Critical Configuration: 1

Perturbation: Step change, AZc (group 2) = -. 369 X 10~
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This test case represents a two neutron group, one precursor group

problem with ten mesh intervals in each direction. The perturbation

from a critical configuration is made in a step fashion at a time 0. 0 sec-

onds by a uniform change in the thermal capture cross section. A

series of computer runs were made with different time step sizes in

order to illustrate convergence rates both with and without the exponen-

tial transformation. For the second case, the frequencies W were set

to zero. The values tabulated below are the thermal flux at the center

of the reactor.

Table 3. 1. MITKIN results for test case 1.

TIME MITKIN EXACT
(sec)

h=.004 h=.002 h=.001 h=.0005

0.00 .382 .382 .382 .382 .382

0.08 . 526 . 596 .610 .612 .613

0.16 . 773 .815 .816 .816 .816

0.24 1.008 1.004 .999 .997 .997

0.32 1.205 1.170 1. 161 1.159 1.158

0.40 1. 370 1. 318 1. 307 1. 304 1. 303

Table 3. 2. MITKIN ( = 0) results for test case 1.

TIME MITKIN (w=0) EXACT
(sec)

h=.004 h=.002 h=.001 h=.0005

0.00 .382 .382 .382 .382 .382

0.08 .420 .447 .482 .520 .613

0.16 .457 .509 . 576 .649 .816

0.24 .495 .569 .666 .768 .997

0.32 .529 .627 .752 .880 1. 158

0.40 .564 .684 .833 .985 1.303

..................... ............

. ...... .... ........
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Table 3. 1 demonstrates that the convergence of the MITKIN method

to the exact solution is rather fast with decreasing time step size. In

section 4. 1 this convergence is illustrated to be of order h 2. Addition-

ally, the truncation error for a time step size of.. 001 is less than half

of one per cent, which seems more than adequate for most cases of

interest.

By contrast, the results of Table 3. 2 are disappointing. The trun-

cation error at a time step size of . 001 sec is about 40%, which is com-

pletely unacceptable. Perhaps the most distressing result illustrated

by this table, however, is that at a time step size of . 0005 second the

error is still approximately 20%. For this range of time step sizes,

the convergence rate is of order h. This slow convergence rate, in

addition to the large truncation error, makes this a most undesirable

method.

TEST CASE 2

Critical Configuration: 1

Perturbation: Step change, A5c (group 2) = +. 231 X 10

This case is similar to test case 1 but with a negative reactivity

insertion. The following results illustrate the feasibility of increasing

the time step size as the solution changes less rapidly. Values tabu-

lated are the thermal flux at the center of the reactor.

The results in table 3. 3 show that the MITKIN method is capable

of producing accurate results for negative reactivity insertions. A sec-

ond feature of the method is demonstrated by these results. This is the

ability to increase the time step size in time zones where the solution

is not changing too rapidly.



Table 3. 3.

TEST CASE 3

Critical Configuration:

Results for test case 2.

3

Perturbation: Step change, AZ c (group 2) = -.

This case is similar to test case 1 but with six delayed neutron

groups. The values tabulated are the neutron flux in group 2 at the

reactor center.

Table 3. 4. Results for test case 3.

The above results show that the method is not affected by the addi-

tional number of precursor groups.
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TIME h MITKIN EXAC T

0.00 - .3823 .3823

0.04 .001 . 3263 .3243

0.08 .001 .2922 .2920

0.12 .001 . 2735 .2739

0, 16 .001 . 2633 . 2638

0.20 .001 . 2576 .2580

0.60 .01 .2441 .2485

2.20 .01 .2377 .2379

369 X 10~4

TIME h MITKIN EXACT

0.00 .001 .3823 .3823

0.08 .001 .6102 .6136

0.16 .001 .8216 .8220

0.24 .001 1.0160 1.0147

0.32 .001 1.1995 1.1973

0. 40 .001 1. 3766 1. 3738
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TEST CASE 4

Critical Configuration: 2

Perturbation: Step change, Av = +. 01172

This is a spatially homogeneous, four neutron group, one precursor

group problem with ten mesh intervals in each coordinate direction. The

problem is intended to demonstrate the feasibility of treating fast reac-

tor kinetics with the MITKIN method. The perturbation from a critical

configuration is made by changing v in all groups by the above amount.

Values tabulated are the flux in group 4 at the reactor center. The flux

in groups 1, 2, and 3 shows a similar behavior.

Table 3. 5. Results for test case 4.

TIME (sec) h MITKIN EXAC T

0.00 .000002 .004475 .004475

0.00016 .000002 .005473 .005481

0.00032 .000002 .006378 .006381

0.00048 .000002 .007148 .007149

0.00064 .000002 .007805 .007804

0.00080 .000002 .008364 .008362

0.00180 .00001 .01048 .01040

The extremely small time step size taken for this problem was nec-

essary because of the very fast initial transient. The flux approximately

doubles in . 0008 second. Test case 8 will illustrate that such a small

time step size is not inherent for a four group problem.

The results of Table 3. 5 show excellent agreement of the MITKIN

results with the exact answer.
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The four test cases which have been presented in this chapter give

important data concerning the MITKIN method. The exact truncation

error may be seen and convergence rates determined. No evidence of

instability appeared.

It is apparent that the ability of the method to accurately predict a

spatial transient is not illustrated by these results. Since this is the

fundamental purpose of a space-dependent method such as MITKIN, the

next section contains results for four problems in which there are spa-

tial effects.

3. 2. 2 Space-dependent Problems

The four test cases for which results are quoted in this section are

multiregion problems with flux shapes deviating significantly from a

cosine. More important is the fact that the perturbation from the ini-

tial critical configuration is made in only a few of the spatial regions.

The resulting transient contains changes in the spatial shape of the flux.

Exact solutions are not available for these problems. Approximate

solutions for test cases 5, 6, and 7 are available from the TWIGL code, 16

and similar solutions for the four-group test case 8 are available from

the LUMAC code. 1 7 The proposed method MITKIN is compared with

these approximate solutions.

TEST 'CASE 5

Critical Configuration: 4

Perturbation: Step change, Ac (material 1, group 2) -. 0035

This is a two neutron group, one presursor group problem with a

spatially dependent step insertion of positive reactivity. A TWIGL

.........
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solution is available for comparison. The thermal flux value is quoted

at two points, the reactor center (11, 11) and at a mesh point (6, 6) in the

center of a driven region. These points are illustrated in the following

figure which shows the problem geometry. For material properties see

Appendix A.

21

184

14+

y mesh
points

8+

4-

1

1 4 8 14

x mesh points

18 21

Fig. 3. 1. Geometry for test case 5.

The cross-hatched areas of the above figure represent regions in

which the perturbation is made.

The results of Table 3. 6 show a discrepancy of about 3% between

the MITKIN and the TWIGL solutions. This discrepancy, although small,

is significant. Runs made with smaller time step sizes indicate that the

S j A i

1
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Table 3. 6. Results for test case 5.

Point (11, 11) Point (6, 6)

Time h MITKIN TWIGL MITKIN TWIGL

0.0 .0001 16.75 16. 75 4.390 5.390

0.01 .0001 27.69 27.69 9.488 9.273

0.02 .0001 31.50 30.78 10.907 10.658

0.03 .0002 33.13 32.40 11.460 11.209

0.04 .001 33.97 33. 15 11. 752 11.467

0..05 .001 34.6 3 33. 53 11.976 11.597

0.06 .001 34.99 33.73 12.100 11.666

0.07 .001 35.06 33.85 12. 122 11.705

MITKIN results are accurate to better than 1%. The disagreement be-

tween the two codes is thought to be due to truncation error in the

TWIGL solutions caused by an excessive time step size for the problem.

TEST CASE 6

Critical Configuration: 4

Perturbation: Ramp change, Arc (material 1, group 2)

for 0 t , 0. 2 sec

AFc (material 1, group 2)

for t>0.2 sec

= -. 0035(t/0.2)

= -. 0035

This is a ramp version of test case 5. Values tabulated are the

thermal flux.

The results of Table 3. 7 show extremely close agreement between

the MITKIN and TWIGL methods for this problem. The MITKIN method

is observed to be stable for this problem, which represents the first
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Table 3. 7. Results for test case 6.

Point (11, 11) Point (6, 6)

Time h MITKIN TWIGL MITKIN TWIGL

0.0 .0005 16. 75 16. 75 5. 39 5.39

0.05 .0005 18.79 18. 76 6.16 6.15

0. 10 .0005 21. 75 21. 74 7. 25 7. 25

0.15 .0005 25.95 25.96 8.82 8.82

0.20 .0005 32.31 32.37 11.18 11.20

0.25 .0005 34.12 34.05 11.80 11. 77

case in which reactor parameters are allowed to vary with time.

TEST CASE 7

Critical Configuration: 4

Perturbation: Ramp change, AZc (material 1, group 2) =+.03(t/.02)

for 0 < t < . 02 sec

Ac (material 1, group 2)=+.03

for t > 0.02 sec

This is a negative ramp version of test case 5. Values tabulated

are the thermal flux.

Both the MITKIN and TWIGL methods are guaranteed to produce the

exact asymptotic shape and spectrum, and this behavior is clearly illus-

trated by this problem. During the early part of the transient these

approximate solutions disagree by about 2%. But at 0. 04 second, 0. 02

second after the end of the ramp change in the cross section, the sol-

utions agree to better than 0. 025%. This is due to the fact that the pre-

cursor equations are treated with great accuracy by both methods, and
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Table 3. 8. Results for test case 7.

Point (11, 11) Point (6, 6)

Time h MITKIN TWIGL MITKIN TWIGL

0. 0 .0001 16. 750 16. 750 5. 390 5. 390

0.004 .0001 13.880 13.100 3.910 3.g65

0.008 .0001 9.000 9.949 2.275 2.296

0.012 .0001 6.421 6.506 1.489 1. 512

0.016 .0001 5. 246 5.288 1.120 1.131

0.020 . 0001 4. 573 4. 594 0. 902 0. 907

0.040 . 0001 4.385 4. 385 0. 871 0.871

since the asymptotic behavior for negative reactivities is

mined by the precursors, the methods produce extremely

totic results for negative reactivities.

TEST CA$E 8

Critical Configuration: 5

Perturbation: Ramp change,

solely deter-

accurate asymp-

c (material 4, group 4)= -. 003(

for 0 <t,4.2 sec

&Zc (material 4, group 4) = -. 003

for t > . 2 sec

t/.2)

This is a four neutron group, one precursor group problem having

no symmetry along either coordinate. LUMAC approximate solutions

are available for comparison with the MITKIN results. The reactor is

perturbed from a critical configuration by a ramp change in the ther-

mal cross section of one region. Since this region contains a material

having a zero fission cross section, the lower energy groups in this

region are coupled to the higher ones (excluding downscattering) only by
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diffusion to and from surrounding regions, where thermal neutrons may

cause fissions giving rise to fast neutrons. The result is a problem in

which large spatial and spectrum shape changes occur over the transient.

It is for this reason that this problem is considered the most severe test

of the proposed method.

Results are tabulated for groups 1 and 4 at space points (12, 3) and

(3, 9) in order to illustrate the magnitude of these shape changes. These

two points are shown in the following figure illustrating the problem

geometry. See Appendix A for further detail of material properties in

the various regions.

11

0

Ca,
5

1

1 10 14 21

x mesh points

Fig. 3. 2. Geometry for test case 8.

The cross-hatched area in the above figure represents the region

in which the perturbation is made.
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The MITKIN results in the following tables are quoted for two time

step sizes.

Table 3. 9. Group 1 flux at point (12, 3).

Time MITKIN LUMAC
(sec)

h = .001 h =.0005

0.0 .1314 .1314 .1314

0.05 .1385 .1385 .1385

0.10 . 1434 . 1433 . 1453

0.15 . 1485 .1488 . 1499

0.20 .1556 .1553 .1551

0.30 .1550 .1553 .1605

Table 3. 10. Group 4 flux at point (12, 3).

Time MITKIN LUMAC
(see)

h(= . 001 h = .0005

0.00 .968 .968 .968

0.05 1.055 1.054 1.056

0.10 1.155 1.153 1.166

0.15 1.268 1.270 1.278

0.20 1.412 1.408 1.410

0.30 1.407 1.409 1.451

Table 3. 11. Group 1 flux at point (3, 9).

Time MITKIN LUMAC
(sec)

h = .001 h = .0005

0.00 .4463 .4463 .4463

0.05 .4567 .4566 .4569

0.10 .4681 .4679 .4730

0.15 .4796 .4807 .4830

0.20 .4964 .4955 .4943

0.30 .4948 .4957 .5123
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Table 3. 12. Group 4 flux at point (3, 9).

Time MITKIN LUMAC
(sec)

h =.001 h =.0005

0.0 .03594 .03594 .03594

0.05 .03677 .03677 .0368

0.10 .03768 .03767 .0381

0.15 .03861 .03869 .0389

0.20 .03995 .03988 .0398

0.30 .03982 .03989 .0412

Examination of the results of Tables 3. 9-3. 12 shows that over a

period of 0. 2 second the flux in groups 1 and 4 at point (3, 9) increases

by about 10%, whereas the growth at point (12, 3) is 46% for group 4 and

18% for group 1. The proximity of the MITKIN solutions for the two

time step sizes shown implies that the results are quite accurate, and

the close agreement with the results of the LUMAC code is strong evi-

dence that a good approximation to the exact solution has been obtained.
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Chapter 4

CONCLUSIONS

Certain conclusions may be drawn from the numerical results of

Chapter 3. These conclusions fall roughly into three categories: trun-

cation error, stability, and computer requirements. Special properties

of the MITKIN method pertinent to each of these categories will be dis-

cussed in the following three sections.

4. 1 Truncation Error

Test case 1 gives supportive evidence for the contention of the closing

paragraph of Chapter 1 of this thesis, where it was stated that the trun-

cation error of semi-implicit methods is large for the reactor kinetics

equations. The MITKIN method with w = 0 is such a method, and the

truncation error is indeed large. Several other types of semi-implicit

methods were explored in the course of this work, and all appear to have

truncation error of the magnitude of that exhibited for MITKIN (w =0) in

test case 1. In particular, the ADI method suffers equivalently large

truncation error. 1 8

The exponential transformation appears to reduce the truncation

error so drastically that most of these splitting methods become pre-

sentable candidates for the solution of the reactor kinetics equations.

In order to illustrate this convergence acceleration,- the truncation error

of the solution at 0. 4 second for test case 1 is plotted in Fig. 4. 1. The

precise definition of this truncation error is
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100. 0 1-

MITKIN (w=0)

10. 0 1-

1. 0 1-

MITKIN

0. 1 1-

.-O1 I I I

.0005 .001 .002
T

. 004

Time Step Size h

Fig. 4. 1. Convergence rates.

% Error
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(MITKIN-EXACT)Error = 100 X (M EXACT

The percentage error for the zero frequency method is easily seen

to be several hundred times as large as that for the MITKIN method with

frequency correction. An examination of the dependence of the error

for the MITKIN method upon the time step size h shows an almost exact

relationship of the form Error = ah2 is valid over this range of time

step sizes. The method therefore behaves experimentally as if it were

2
accurate to order h . Without the use of the frequencies, the conver-

gence rate is much slower.

A large amount of experience with the MITKIN method gives a con-

venient rule of thumb relating the truncation error to the percentage

change in the solution over one time step. A 1% change in the solution

over each time step produces about 1% truncation error after 100 steps.

This result is very significant. It implies that, regardless of the nature

of the problem, the important time interval during which the flux doubles

can be solved in 100 steps to an accuracy of about 1%.

4. 2 Stability

The time step size for the MITKIN method does not appear to be

limited by stability problems, but instead is limited by the accuracy de-

sired by the user. If the time step size is increased, the computed solu-

tion will depart farther from the exact solution, but the wild oscillations

characteristic of instability have never been observed.

This fact is not true for all splitting methods. In particular, the

method similar to MITKIN but having E 1 lower triangular containing
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half the diagonal of E and E 2 upper triangular with E 3 = E2 and E =E1

has been observed to be strongly limited by stability problems.

4. 3 Computer Requirements

The computer time necessary to generate a MITKIN approximate

solution has been found to compare favorably with that required by other

methods for comparable truncation error. The MITKIN time step size

is roughly equivalent to that of the LUMAC method for most problems.

The computer time necessary to carry out one time step, however, is

about half that required by the LUMAC code. Comparison with running

times for the TWIGL code is difficult, since the TWIGL runs were made

on a different computer. It appears, however, that the MITKIN method

is at least as fast as TWIGL. The following table gives experimental

running times for the MITKIN method on the IBM 360/65 for various

numbers of unknowns. The times quoted were computed by dividing the

total execution time for a run by the number of time steps taken. It

should be noted that one MITKIN time step will advance real time by 2h.

Table 4. 1 Computer times.

Mesh points Groups Precursors Seconds/Step

400 2 1 1.34

100 4 1 0.56

100 2 6 0.54

100 2 1 0.33

200 4 1 1.20



66

The computer time necessary to carry out a time step 2h will depend

on the number of flux unknowns and the number of precursor unknowns.

The precursors do not require as much computer time as the neutron

groups, however, since the equations for the precursors are much sim-

pler. If it is assumed that an expression of the following form is valid

for the computer time necessary to carry out a time step, then the em-

pirical constants a and P may be determined from the data of Table 4.1.

Time/step = aN(G+pI)

where

N = number of mesh points

G = number of groups

I = number of precursors.

The above constants have been found to be approximately a = .00144 sec

and P = 0. 3.

The above formula may be used to obtain a time estimate for larger

problems. For example, a problem with 10 energy groups, 6 precursor

groups, and 1000 mesh points would require an amount of computer time

given by the following relation.

Time/step = (.00144 sec)(1000)[10+.3(6)]

Time/step 17 seconds.

The above time estimates are valid for the IBM 360/65 computer.

A correction factor should be applied if time estimates are desired for

another machine. The CDC 6600 is about four times as fast as the above-

mentioned machine, for example, and, accordingly, the time per time

1 ; Pq I--- I-,
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step on the CDC 6600 would be about 4 seconds for the above problem.

The MITKIN method as presently formulated requires the allocation

of three storage locations to each of the neutron flux unknowns and one

location to each precursor unknown. The three locations are required

since it is necessary to simultaneously store the value of the flux at two

time levels and a frequency. Clever programming can reduce the above

requirement to two locations per flux unknown plus an additional N loca-

tions which hold the flux values in one energy group.

A primary advantage of the MITKIN method is that it is exception-

ally easy to program. This logical simplicity is reflected in a compact

program requiring a relatively small amount of core storage. The

MITKIN code which is listed in Appendix C occupies approximately

52, 000 bytes of core storage when compiled by the Fortran G compiler

on the IBM 360/65.
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Chapter 5

RECOMMENDATIONS

The MITKIN method possesses the following advantages:

a) low truncation error,

b) convergence rate 0(h 2

c) experimentally stable,

d) minimal computation per time step,

e) simple programming logic.

Because of these advantages it is recommended for the solution of the

reactor kinetics equations in two-dimensional rectangular geometries.

The extension of the MITKIN method to three-dimensional rectan-

gular geometries is straightforward, and the method itself requires no

modification. All of the stability and consistency proofs of Chapter 2

apply in three dimensions, thus the method may be expected to perform

satisfactorily. The number of unknowns in a fine mesh three-dimensional

computation is so enormous, however, that computer times for a reason-

able number of steps becomes excessive. The MITKIN method does not

represent a practical method in three space dimensions.

The method of the selection of the frequencies w holds much prom-

ise for future refinement of the method. It would seem reasonable to use

the MITKIN algorithm B(w, h) to iteratively solve Eq. (2. 28) for the fre-

quencies o. A particular method might be the successive substitution

Wk = k-1 '

where

"I .....................
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1 B(wo, h)
g(w) = 2hIn

If the time step size for the same truncation error is lengthened by more

than the computer time necessary to obtain convergence of the above iter-

ation, then this method would represent an improvement in the MITKIN

technique.
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Appendix A

CRITICAL CONFIGURATIONS

This appendix contains the specification of- reactor parameters de-

fining five critical configurations. Symbols used in this appendix are

defined below.

Ax = mesh spacing (cm) along x coordinate

Ay = mesh spacing (cm) along y coordinate

X = decay constant (sec 1 ) of i'th precursor

Pi = delay fraction of i'th precursor

f = delay spectrum, i. e. , the probability that precursor j

produces a neutron in energy group i

v. = velocity of i'th neutron group (cmjsec)

x = prompt fission spectrum

D = diffusion coefficient

Zc = capture

v = average number of neutrons per fission

z2 = fission cross section

EJ..J+1 = scattering cross section (cm~ )

Critical Configuration 1

Number of neutron groups = 2

Number of precursor groups = 1



Geometry: Homogeneous square 200 cm on a side

Ax = 20 cm

Ay = 20 cm

Precursor Constants:

X, = .08, s 1 = . 0064, f i = 1. 0,

Group 1

v 0. 3 X 108

x 1.0

Material Properties:

D

Group 1

1. 35

.00114
c

V 2.41

.000242

E J-J+1 .0023

f21 .0

Group 2

0. 22 X 106

0. 0

Group 2

1. 08

.0014069

2.41

.00428

0. 0

Initial Conditions:

Spatial shape:

Spectrum:

Cosine

1.0

.38234

. 00034742

Critical Configuration 2

Number of neutron groups = 4

Number of precursor groups = 1

74



Geometry: Homogeneous square 150 cm on a side

Ax = 15. 0 cm

Ay = 15. 0 cm

Precursor Constants:

X, = .08, P i = .0074,

Group 1

v
10.25 X10,

f 11 = 0. 0, f 2 1 = 1.0 ,

Group 2

.5 X 10 9

Group 3

. 43 X 10

f 3 1 =0. 0, f 41=0.0
31 ou * 41

Group 4

. 25 X 106

x 0.575

Material Properties:

D

c

v

Group 1

2. 0291

. 00237

3. 16578

0. 01316

0.06532

Initial Condition:

Spatial shape:

Spectrum: 1.0000000

11. 2690000

1.0066000

0. 0044746

0.0133890

75

0. 425 0. 0 0. 0

Group 2

1. 1609

. 00438

3. 16578

0. 00111

0.00481

Group 3

. 76965

.03266

3. 16578

0. 0182

0.00232

Group 4

35676

1339

3. 16578

0. 38769

0.0

Cosine
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Critical Configuration 3

Number of neutron groups = 2

Number of precursor groups = 6

Geometry: Homogeneous square 200 cm on a side

Ax = 20. 0

Ay = 20. 0

Delayed Constants:

= .0127,

x2 = .0317,

x 3 = . 1150,

x4 = .3110,

x5 = 140,

x6 = 3. 87,

P 1 = . 000244

P2 = .001363

p3 = .001203

p4 = .002605

P5 = .000819

P6 = .000166

Group 1

.3 X 108v

x 1.0

f . = 1.0, f 2 = 0.0

Group 2

.22 X 106

0.0

Material Properties:

Group 1

1. 35

.00114

2.41

.000242

0. 0023 0.0

D

c

V

Group 2

1. 08

.0014069

2.41

.00408

E J-J+1

U



Initial Condition:

Spatial shape:

Spectrum:

Cosine

1.0

. 38234

. 83435

. 18672

. 45429

. 36376

. 25405

. 18628

x

x

x

x

x

x

10~4

10-3

10~4

10~ 4

10- 5

10- 6

Critical Configuration 4

Number of neutron groups = 2

Number of precursor groups

Geometry:

21

18

Ax= 8.0 cm

Ay= 8 .0 cm

~14
0

'Ci

4

1

8 14

x mesh points

77

3

1 2 1

2 3 2

1 2 1

- - --A

1 4 18 21
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where the numbers indicate the material composition of that space region.

Delayed Constants:

x 1 = . 08,

v

x

s i = . 0075,

Group 1

. 1 X 108

1.0

Material Properties:

Material 1

Group 1

1.4

.0065

2.1877

.0035

0.01

Group 2

014

.05

2. 1877

0.1

0.0

Material 2

(same as material 1)

Material 3

Group 1

1. 3

.0065

2. 1877

.0015

Group 2

0. 5

0.02

2.1877

.03

.01 0.0z J-J+1

fi l = 1. 0,
f2 1

= 0. 0

Group 2

. 2 X 106

0.0

D

c

V

D

c

V
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Critical Configuration 5

Number of neutron groups = 4

Number of precursor groups = 1

Geometry:

11

Ax = 8.0 cm

Ay = 8.0 cm

-a
0

5

1
1 10 14 21

x mesh points

where the numbers indicate the material composition of that space

region.

Delayed Constants:

f 00 = 0.0,x1 = . 0 8 , p, = .0064,

1 1 2

2 4 3

f 21 = 1' 0' f 31= 0' 0.' 41 =0'0



Group 1

v .1 x 1010

x 0.755

Material Properties:

Group 2

. 1 X 10 9

0. 245

Group 3

.5 X 10 7

0. 0

Material 1

Group 1

2. 7778

. 0013

1.4507

.00136

. 0586

Group 1

3. 3333

.00065

1. 4507

.000 7

. 0586

Group 1

4. 1667

.00077

.0570

Group 2

1.0753

. 001

1.4507

.00197

. 00197

Material 2

Group 2

1.3889

.0005

1. 4507

.0009

.0828

Material 3

Group 2

2. 0833

.00072

0. 0

0.0

.0822

Material 4

(same as material 3)
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Group 4

.2 X 106

0. 0

D

c

V

z J-J+1

D

c

v

E J-J+1

Group 3

. 64103

. 0097

1.4507

.0262

. 085

Group 3

.83333

.0045

1. 4507

.0131

.0850

Group 3

1. 0753

.00051

0. 0

0.0

.0847

Group 4

. 16260

. 115

1.4507

. 54

0. 0

Group 4

2.0833

.058

1. 4507

.274

0. 0

Group 4

.26247

.012

0. 0

0.0

0. 0

D

c

v 0. 0

0.0

E J-J+1
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Appendix B

INPUT PREPARATION FOR MITKIN CODE

The MITKIN code was written in Fortran IV for the IBM 360 for

the purpose of testing the MITKIN method with frequency correction in

two dimensional rectangular geometries. The code is not intended to be

universally general or for use as a production code, but it does possess

certain flexibility. Only homogeneous Dirichlet boundary conditions can

be handled, and the boundary zeros are stored and counted as mesh points.

Maximum dimension sizes are 4 neutron groups, 6 precursor groups, 26

mesh points in each direction, 5 materials, and 10 spatial regions in each

coordinate direction. Mesh spacings are allowed to vary from region to

region.

The geometry is handled in a simple way. The reactor is divided

into spatial regions by laying a grid across the reactor with lines paral-

lel to the x and y axes. A particular region is identified by giving the

set of numbers (I, J) specifying the X region and the Y region. A dif-

ferent material may be assigned to each region (I, J). The geometry of

a sample problem is illustrated below.

The subroutine ALTER must be supplied by the user. It is called

at each time step if IRAMP = 1 and is used to change the reactor proper-

ties during a time zone.



2

y regions

1

1

Card Type 1

(TITLE(I), I = 1, 20)

2

x regions

3

FORMAT (20A4)

Alphanumeric Title with 1 in

column for page control

FORMAT (1615)Card Type 2

NNG

NPG

NXR

NYR

NMAT

NXTP

NYTP

Number

Number

Number

Number

Number

Number

Number

of

of

of

of

of

of

of

neutron groups

precursor groups

X regions

Y regions

materials

X test points

Y test points
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Region (1, 2) (2, 2) (3, 2)

Region (1, 1) (2, 1) (3, 1)



IF IX1 = 0

IF IX1 = 1

Card Type 3

cosine spatial shape

initial condition read

from cards

FORMAT (5E 15. 5)

(THX(I), I = 1, NXR)

Card Type 4

Thickness of I'th X region (in cm)

FORMAT (5E 15. 5)

(THY(I), I= 1, NYR)

Card Type 5

Thickness of I'th Y region (in cm)

FORMAT (1615)

(NIX(I), I= 1, NXR)

Card Type 6

Number of mesh intervals in X region I

FORMAT (1615)

(NIY(I), I = 1, NYR)

Card Type 7

Number of mesh intervals in

Y region I

FORMAT (1615)

((MA TC(I,J), J=1, NYR), I=1,NXR)

Card Type 8

Material composition I. D. number of

spatial region (I, J)

FORMAT (1615)

(ITP(I), I=1 , NXTP)

(JTP(I), I = 1, NYTP)

X coordinate of test points

Y coordinate of test points

Repeat Card Type 9 for I = 1, NPG

Card Type 9

LAM(I)

FORMAT (5E 15. 5)

Decay constant of I'th precursor

(sec~1 )

Ix1

83

................



BETA(I)

(F(I, K), K = 1, NNG)

Card Type 10

84

Delayed fraction for I'th precursor

Delay spectrum of I'th precursor

FORMAT (5E15. 5)

(V(I), I = 1, NNG)

Card Type 11

(C H(I), I= 1, NNG)

Velocity for I'th neutron group

(cm/sec)

FORMAT (5E 15. 5)

Fission spectrum

Repeat Card Types 12 through 17 for II = 1,NMAT

Card Type 12 FORMAT (1615)

I. D. number of materialI

INDF

Card Type 13

IF INDF < 0,

IF INDF > 0,

from cards

v = Mf = 0

v and Z are read

FORMAT (5E15. 5)

(DIFF(I, K), K = 1, NNG)

Card Type 14

Diffusion coefficient material I,

group K (cm)

FORMAT (5E 15. 5)

(SIGC(I,K),K= 1,NNG) Capture cross section material I,

group K (cm1 )

Delete Card Types 15 and 16 if INDF < 0

Card Type 15 FORMAT (5E15. 5)

v for material I in group K(XNU(I, K), K = 1., NNG)



Card Type 16 FORMAT (5+15. 5)

(SIGF(I, K), K = 1, NNG)

Card Type 17

(SIGS(I,K,L), L=1, NNG), K=1, NNG)

Fission cross section material I,

group K (cm~ )

FORMAT (5E 15. 5)

Scattering matrix
SK-L

(cml1)

Note: Z

zero.

should be set equal to

Delete Card Type 18 if IX1 = 1

Card Type 18 FORMAT (5E 15. 5)

(EIGEN(I), I= 1, NNG+NPG) Initial spectrum for homogeneous

problems

Delete Card Type 19 if IX1 # 1

Repeat Card Type 19 for K = 1,NNG+NPG

Card Type 19 FORMAT (6E12.6)

(A(K,I,J), I=1, ITOT), J=1, JTOT) The initial condition where ITOT +

JTOT are total number of mesh

points in X + Y directions counting

boundary points.

Repeat Card Type 20 as often as desired

Card Type 20

IPRIN

MAX

FORMAT (315, E15. 5)

Printout will occur every IPRIN steps

Total number of steps to be taken in

this time zone

85

I
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IRAMP IF IRAMP = 1 the subrouting "alter"

is called. User must supply own

routine.

H Time step size to be used in this time

interval.
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Appendix C

CODE LISTING

-111.11 ..... ..... 11 ... - ,
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