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The finite-difference time domain (FDTD) method for the solution of light scattering by nonspherical particles
has been developed for small ice crystals of hexagonal shapes including solid and hollow columns, plates, and
bullet rosettes commonly occurring in cirrus clouds. To account for absorption, we have introduced the effec-
tive permittivity and conductivity to circumvent the required complex calculations in the direct discretization
of the basic Maxwell equations. In the construction of the finite-difference scheme for the time-marching it-
eration for the near field the mean values of dielectric constants are defined and evaluated by the Maxwell–
Garnett rule. In computing the scattered field in the radiation zone (far field) and the absorption cross sec-
tion, we have applied a new algorithm involving the integration of the electric field over the volume inside the
scatterer on the basis of electromagnetic principles. This algorithm removes the high-angular-resolution re-
quirement in integrating the scattered energy for the computation of the scattering cross section. The appli-
cability and the accuracy of the FDTD technique in three-dimensional space are validated by comparison with
Mie scattering results for a number of size parameters and wavelengths. We demonstrate that neither the
conventional geometric optics method nor the Mie theory can be used to approximate the scattering, absorp-
tion, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20.
© 1996 Optical Society of America.
1. INTRODUCTION

The scattering of electromagnetic waves by passive ob-
jects can be solved analytically for only some special ge-
ometries such as spheres,1 infinite circular cylinders,2–4

and spheroids.5,6 For these shapes the variable-
separation method can be applied to solve the vector wave
equation. However, it appears unlikely that this ap-
proach can be employed to produce the scattering and ab-
sorption characteristics of hexagonal ice particles because
of the difficulty involved in imposing the electromagnetic
boundary condition at the particle surface. In the past
the geometric optics principles have been extensively
used to determine the scattering of light by hexagonal ice
crystals.7–10 However, the geometric optics approxima-
tion is valid only when the particle size is much larger
than the incident wavelength. It has been shown by the
present authors11 that the localization of geometric rays
in the ray-tracing procedure can lead to significant errors
in scattering calculations if the size parameters are
smaller than approximately 20 and 15 for the computa-
tions of phase function and cross sections, respectively, in
the two-dimensional (2-D) case. The errors cannot be cir-
cumvented for small size parameters even by the novel
geometric optics/integral equation hybrid method devel-
oped by the present authors11 in which the shortcomings
in the conventional geometric optics approach are largely
removed.
Moreover, it is well known that the Rayleigh theory12

can be applied to the scattering by a nonspherical particle
with the size parameter much smaller than 1. There is a
0740-3232/96/1002072-14$10.00
significant gap between the Rayleigh theory and the geo-
metric optics approximation for the region of size param-
eters known as the resonant region.13 Although numer-
ous promising approaches, including the method of
moments,14,15 the discrete-dipole approximation,16–18 the
digitized Green-function technique,19 the integral equa-
tion technique,20 the T-matrix or extended boundary-
condition method,21,22 and the multiple-scattering
approach,23 have been developed for the solution of light
scattering by small nonspherical particles, they are usu-
ally applicable to size parameters less than approxi-
mately 15 in practice and/or to specific shapes with
smooth and continuous surfaces as a result of numerical
stability requirements.
Small hexagonal ice crystals of less than 10 mm exist in

cirrus clouds. There is a practical necessity to study the
scattering of light by small ice crystals of various shapes
illuminated by solar and thermal infrared radiation. In
this paper the finite-difference time domain (FDTD)
method, pioneered by electrical engineers,24–28 and devel-
oped for a 2-D scattering problem by the present
authors,11 has been extended to a general three-
dimensional (3-D) configuration, with specific applica-
tions to hexagonal ice crystals of various shapes. The
FDTD technique solves the Maxwell equations in the time
domain by using the finite-difference analog and is flex-
ible for applications to light scattering by irregular par-
ticles. In Section 2 we first briefly summarize the con-
ceptual basis for the FDTD method. In order to
incorporate effectively the absorption, we have developed
an efficient algorithm for the computation of the near field
© 1996 Optical Society of America
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and the transformation of the near field to the far field in
3-D space. Numerical validations of the FDTD solutions
against the Mie results for spheres are presented in Sec-
tion 3, where representative sample calculations for the
scattering by solid and hollow hexagonal columns, plates,
and bullet rosettes are also illustrated and discussed. Fi-
nally, conclusions are given in Section 4.

2. FINITE-DIFFERENCE TIME DOMAIN
METHOD IN THREE-DIMENSIONAL SPACE
A. Conceptual Basis for the Finite-Difference
Time Domain Technique
The FDTD technique is a direct implementation of Max-
well’s time-dependent curl equations to solve the tempo-
ral variation of electromagnetic waves within a finite
space that contains an object of arbitrary geometry and
composition. In practice, the space is discretized by a
grid mesh, and the existence of the scattering particle is
defined by properly assigning the electromagnetic con-
stants including permittivity, permeability, and conduc-
tivity over the grid points. The Maxwell curl equations
are subsequently discretized by using finite-difference ap-
proximations in both time and space. At the initial time
a plane-wave source, which does not require the harmonic
condition, is turned on. The wave excited by the source
will then propagate toward the scattering particle and
eventually interact with it. The propagation and the
scattering of the electromagnetic field are simulated by
using the finite-difference analog of the Maxwell equa-
tions in the manner of time-marching iterations. Infor-
mation on the convergent scattered field can be obtained
when a steady-state field is established at each grid point
if a continuous sinusoidal source is used, or when the field
decreases to a significantly small value if a pulse source is
used.
As stated above, the FDTD technique is used to solve

the near field in a finite space within which the particle is
embedded. However, the actual scattering processes of
electromagnetic waves by a particle are in an unbounded
space. Thus one must truncate the unlimited spatial re-
gion by introducing artificial boundaries in the applica-
tion of the FDTD technique. In order that the simulated
field within the truncated region be the same as that in
the unbounded case, the artificial boundary must have
the condition known as the absorbing or transmitting
boundary condition28,29; otherwise, the spurious reflection
of the boundary would contaminate the near field within
the truncated domain. The construction of an efficient
absorbing boundary condition is an important aspect of
the FDTD technique and is still an active research topic.30

The accuracy of the simulated results will be greatly af-
fected by the performance of the absorbing boundary con-
dition.
The near field computed by the finite-difference analog

of the Maxwell equations is in the time domain. In order
to obtain the frequency response of the scattering par-
ticle, we must transform the field from the time domain to
the frequency domain. As pointed out in our previous
study,11 one can input a Gaussian pulse as an initial ex-
citation and apply the discrete Fourier transform tech-
nique to obtain the frequency spectrum of time-dependent
signals. In order to avoid numerical aliasing and disper-
sion, one must correctly select the width of the pulse and
properly consider the available frequency spectrum pro-
vided by the pulse.
The scattering phase matrix, the single-scattering al-

bedo, and the extinction cross section are determined by
the scattered far field. Therefore it is required to trans-
form the frequency response of the scattering particle
from the near field to the far field. To achieve this goal,
the common approach in applying the FDTD method is to
invoke a surface-integration technique25 on the basis of
an equivalence principle that involves the tangential com-
ponents of the electric and magnetic fields on a surface
enclosing the particle.
The preceding four areas for the implementation of the

FDTD technique have been extended to the numerical
computation in the 3-D case. In addition, we also include
particle absorption in the formulation, which was not
done in our previous study. When a scatterer is absorp-
tive, a direct discretization of the basic Maxwell equations
for the computation of the near field will require complex
calculations because of the nonzero imaginary part of the
permittivity (or the refractive index) of the particle.
Moreover, the transformation of the near field to the far
field by the use of a surface-integration equation suffers
from a number of shortcomings when absorption is in-
volved, as will be discussed in Subsection 2.C. In order
to circumvent these disadvantages, we have developed an
efficient algorithm for the computation of the near field
and for the transformation of the near field in 3-D space
with the inclusion of particle absorption.

B. Finite-Difference Equations for Computing the Near
Field in Three-Dimensional Space
Because ice is nonferromagnetic, we shall take the perme-
ability, m, as 1 throughout this investigation. Thus the
source-free Maxwell time-dependent curl equations can
be expressed by

¹ 3 H~r, t ! 5
e

c
]E~r, t !

]t
, (1a)

¹ 3 E~r, t ! 5 2
1
c

]H~r, t !
]t

, (1b)

where e is the permittivity of the dielectric medium, usu-
ally a complex variable, and c is the speed of light in
vacuum. We should select a harmonic time-dependent
factor of exp(2ivt) for the electromagnetic wave in the
frequency domain so as to have a positive imaginary part
of the refractive index. Thus we have

e 5 er 1 ie i , (2a)

er 5 mr
2 2 mi

2, e i 5 2mrmi , (2b)

where i 5 A21 and mr and mi are the real and imagi-
nary parts of the refractive index, respectively. When
the medium is absorptive, i.e., mi is nonzero, the complex
calculation is required for Eq. (1a). It is well known that
a complex operation is two times more expensive than a
real operation in terms of the computer CPU time and
memory requirement. To circumvent the complex opera-
tion, it is desirable to have an equivalent expression for
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Eq. (1a) in which the complex permittivity can be avoided.
For this reason we introduce an effective real permittiv-
ity, e8, and conductivity, s, and rewrite the first Maxwell
curl equation in a source-dependent form as follows:

¹ 3 H~r, t ! 5
e8

c
]E~r, t !

]t
1

4p

c
J~r, t !, (3a)

where the second term on the right-hand side of the equa-
tion comes from the contribution of the effective electric
current, which is given by

J~r, t ! 5 sE~r, t !. (3b)

Transforming Eqs. (1a) and (3a) to the equivalent equa-
tions in the frequency domain yields

¹ 3 H~r! 5 2ikeE~r!, (4a)

¹ 3 H~r! 5 2ik~e8 1 i4ps/kc !E~r!, (4b)

where k 5 v/c is the wave number of the electromagnetic
wave in free space. From a comparison of Eqs. (4a) and
(4b) it is clear that the two equations are equivalent if the
following conditions hold:

er 5 e8, (5a)

e i 5 4ps/kc. (5b)

Using Eqs. (3) and (5), one can write the equivalent coun-
terpart of Eq. (1a) as

¹ 3 H~r, t ! 5
er
c F]E~r, t !

]t
1 tE~r, t !G , (6a)

t 5 kce i /er . (6b)

At this point we can use Eqs. (1b) and (6) to construct the
finite-difference analog of the Maxwell curl equations,
which involves only real calculations. First, we need to
discretize the equation in time. To do this, we rewrite
Eq. (6a) in the form
]@exp~t t !E~r, t !#
]t

5 exp~t t !
c
er

¹ 3 H~r, t !. (7)

Integrating Eq. (7) over the time interval of @nDt,(n
1 1)Dt], we obtain

exp@t ~n 1 1 !¹t#En11~r! 2 exp~t nDt !En~r!

5 E
nDt

~n11 !Dt

exp~t t !
c
er

¹ 3 H~r, t !dt

' Dt exp@t ~n 1 1/2!Dt#
c
er

¹ 3 Hn11/2~r!. (8)

It follows that

En11~r! 5 exp~2tDt !En~r! 1 exp~2tD/2!

3
cDt
er

¹ 3 Hn11/2~r!. (9)

Similarly, for the magnetic field we have

Hn11/2~r! 5 Hn21/2~r! 2 CDt¹ 3 En~r!. (10)

In the above equations the superscript n denotes that the
associated field is evaluated at the time step t 5 nDt.
As stated in Subsection 2.A, the space containing the

scattering particle must be discretized by a number of
grid cells. We use cubic cells in the 3-D case and evalu-
ate the components of electric and magnetic fields on a
cell at the staggered locations suggested by Yee,24 as
shown in Fig. 1. The advantage of such staggered posi-
tions is that the electromagnetic boundary conditions are
guaranteed at the interfaces of the cells, so that the tan-
gential components of the E field and the normal compo-
nents of the H field are continuous at the interfaces.
Next, we note that for an arbitrary vector, f, the following
relationship holds:
Fig. 1. Locations of the electric- and magnetic-field components on a cubic cell used in the numerical calculations.
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E E n̂ • ~¹ 3 f !ds 5 R f • d2l ~Stokes’ theorem!,

(11)

where n̂ is the unit vector normal to the surface on which
the integration is carried out and l is along the circumfer-
ence of the surface. Applying Eq. (10) along with Eq. (11)
to the top of the cell shown in Fig. 1, we obtain the follow-
ing equation:

E E
top
n̂ • Hn61/2~r!d2s ' ~Ds !2Hz

n61/2~I, J, K 1 1/2!,

(12a)

where Ds is the size of the cubic cell. We also have

E E
top
n̂ • @¹ 3 En~r!#d2s

5 R topEn~r! • d1

' Ds@Ey
n~I 1 1/2, J, K 1 1/2!

2 Ey
n~I 2 1/2, J, K !

1 Ex
n~I, J 2 1/2, K 1 1/2!

2 Ex
n~I, J 1 1/2, K 1 1/2!#, (12b)

where (I 1 1/2, J, K 1 1/2) denotes that the field compo-
nent is evaluated at the location of (x, y, z) 5 (I
1 1/2, J, K 1 1/2)Ds. Applying the above procedure to
Eqs. (9) and (10) for various field components, we can ob-
tain the finite-difference analog of the Maxwell time-
dependent equations. For example, the x components of
the E and H fields can be computed by

Ex
n11~I, J 1 1/2, K 1 1/2!

5 exp@2Dt t̄ ~I, J 1 1/2, K 1 1/2!#Ex
n~I, J

1 1/2, K 1 1/2! 1 exp@2Dt t̄~I, J 1 1/2, K

1 1/2 !/2#
cDt

Ds ēr~I, J 1 1/2, K 1 1/2!
@Hz

n11/2~I, J

1 1, K 1 1/2! 2 Hz
n11/2~I, J, K 1 1/2!

1 Hy
n11/2~I, J 1 1/2, K !

2 Hy
n11/2~I, J 1 1/2,K 1 1 !#, (13a)

Hx
n11/2~I 1 1/2, J, K !

5 Hx
n21/2~I 1 1/2, J, K ! 1

cDt
Ds

@Ez
n~I 1 1/2, J

2 1/2, K ! 2 Ez
n~I 1 1/2, J 1 1/2, K !

1 Ey
n~I 1 1/2, J, K

1 1/2 ! 2 Ey
n~I 1 1/2, J, K 2 1/2 !#, (13b)

where t̄ 5 kc ē i / ēr , in which ēr and ē i are the mean val-
ues of the real and the imaginary parts of the permittivity
evaluated at the grid points, respectively. The Maxwell–
Garnett rule is used to compute the mean permittivity in
this study in an attempt to decrease the errors produced
by the staircasing approximation.11 Because ice is an op-
tically thin medium in the visible and infrared wave-
lengths, the refractive index effect or the staircasing ap-
proximation for the scatterer is insignificant after the
Maxwell–Garnett rule is applied to evaluate the mean di-
electric constant over each grid size. Although the con-
struction of Eqs. (13) is based on approximating the con-
tinuous integration by a quadrature formula, the
derivation of these equations can also be made by apply-
ing the leapfrog difference quotients to discretize tempo-
ral and spatial derivatives in Eqs. (1b) and (6a). How-
ever, in the present approach the natural introduction of
the mean permittivity will somehow offset the error pro-
duced by the staircasing approximation. It can be proven
that the truncation error of the finite-difference analog of
the Maxwell curl equations is of the second order in both
time and space. Other schemes with truncation errors of
high orders have been suggested,31 but they are less prac-
tical. It is noted from Eqs. (13) that the E and H fields
are interlaced in both time and space. The equations are
in explicit forms in the time iteration; that is, once we in-
put the initial electromagnetic field values, the propaga-
tion of the wave can be simulated by updating the E and
H fields in a straightforward manner. For this reason
the time-marching iteration in the computation of the
near field by the FDTD technique is convenient and effi-
cient. The electromagnetic field involved in Eqs. (13) is
the total (incident 1 scattered) field. However, applica-
tion of the absorbing boundary condition at the artificial
boundary is required only to the outgoing induced or scat-
tered field produced by the existence of the scattering par-
ticle. Following Mur28 and Umashankar and Taflove,25

we introduce an inner surface in the computational do-
main in which inside and on the inner surface the total
field is evaluated, while, outside the surface, only the
scattered field is computed. Since the fields computed
in these two regions are not continuous, a connecting
condition must be imposed at the inner surface. Sup-
pose that the cells enclosed by the inner surface are those
with indices of I P [IA, IB], J P [JA, JB], and
K P [KA, KB]. From Eqs. (13) the connecting condition
at the surface can be obtained. For example, the x com-
ponent of the E field is as follows:

Ẽx
n11~I, JA 2 1/2, K 1 1/2!

5 Ex
n11~I, JA 2 1/2, K 1 1/2!

2
cDt
Ds

Ho,z
n11/2~I, JA 2 1, K 1 1/2!,

Ẽx
n11~I, JB 1 1/2, K 1 1/2!

5 Ex
n11~I, JB 1 1/2, K 1 1/2!

1
cDt
Ds

Ho,z
n11/2~I, JB 1 1, K 1 1/2!,

K P @KA 2 1, KB#, (14a)
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Ẽx
n11~I, J 1 1/2, KA 2 1/2!

5 Ex
n11~I, J 1 1/2, KA 2 1/2!

1
cDt
Ds

Ho,y
n11/2~I, J 1 1, KA 2 1 !,

Ẽx
n11~I, J 1 1/2, KB 1 1/2!

5 Ex
n11~I, J 1 1/2, KB 1 1/2!

2
cDt
Ds

Ho,y
n11/2~I, J 1 1/2, KB 1 1 !,

J P @JA 2 1, JB#, (14b)

where I P [IA, IB], and the second terms with subscript
o on the right-hand side of the above equations are the in-
cident field and the first terms are those evaluated by the
finite-difference equations given by Eqs. (13). In this
way the governing equations are the same for both the
scattered-field region and the total-field region except
that the connecting conditions are imposed at the inner
surface. The above connecting conditions, in principle,
are the application of Schelkunoff’s electromagnetic
equivalence theorem.32 As pointed out by Merewether
et al.,33 for the region inside the inner surface, the exist-
ence of the incident field can be defined by specifying the
equivalent electric and magnetic currents on the surface.
However, it is more straightforward to construct connect-
ing conditions directly from the finite-difference equation
given by Eqs. (13). In our previous study a global
scattered-field formulation is constructed throughout the
computational domain. It should be noted that the total-
field algorithm presented in this paper is more accurate
than the scattered-field algorithm, especially for the case
involving a heavily shielded cavity or a metal object. In
addition, the former is also more efficient because the
specification of the incident wave is required only at the
connecting surface. This is particularly significant in
3-D cases, since the CPU time is an important consider-
ation in numerical simulations. Finally, for simplicity,
we have used the same grid resolutions along the three
Cartesian coordinate axes in the numerical calculations,
although different ones can also be employed.34

C. Transformation of the Near Field to the Far Field in
Three-Dimensional Space
In order to compute the scattering and absorption quan-
tities, we must transform the near field obtained from the
FDTD algorithm and the discrete Fourier transform tech-
nique to the far field. In the past the electromagnetic
equivalence theorem has been invoked to yield the far
field, from which the equivalent electric and magnetic
currents are defined on a surface enclosing the particle.
These currents are subsequently employed to produce the
far field.25 Such an approach, however, is not efficient in
dealing with light scattering by an absorptive particle. It
is well known that the absorption (sa), scattering (ss),
and extinction (se) cross sections of a scatterer must sat-
isfy the energy conservation principle given by

se 5 ss 1 sa . (15)
Thus only two of the three quantities are required. Ac-
cording to the optical or extinction theorem,2 one can com-
pute the extinction cross section by using the scattering
matrix value in the forward direction. If the scattering
cross section rather than the absorption cross section is
selected as the second independent parameter, as in the
method based on the equivalence theorem, then the global
distribution of the scattered energy must be integrated.
For a nonspherical particle with relatively large size pa-
rameter the scattered intensity oscillates greatly in the
spatial directions. For this reason one must carry out
the integration of the scattered energy with a high angu-
lar resolution, which requires extremely expensive com-
putations for randomly oriented ice crystals because the
effect of the particle orientations must be averaged. To
economize the computational requirement, we have devel-
oped a method to evaluate the scattered far field and the
absorption cross section on the basis of the electromag-
netic transformation involving a volume integration in-
side the particle. It should be noted that the transforma-
tion of the near field to the far field based on the volume-
integration method has been used by other approaches in
the frequency domain.16–19

The electromagnetic wave equation in the frequency
domain can be written for a dielectric medium in the
source-dependent form as follows:19

~¹2 1 k2!E~r! 5 24p~k2I¢ 1 ¹¹! • P~r!, (16)

where I¢ is a unit dyad35 and P(r) is the polarization vector
given by

P~r! 5
e~r! 2 1

4p
E~r!. (17)

In the present investigation the dielectric medium is the
scattering particle; that is, P(r) is nonzero only within the
finite region inside the particle. On the basis of the vec-
tor analysis in terms of dyadic algebra35,36 the solution for
Eq. (16) is given by an integral equation in the form

E~r! 5 Eo~r! 1 4pE E E
v
G~r, j!~k2I¢ 1 ¹j¹j!

• P~j!d3j, (18)

where the first term on the right-hand side is the incident
wave. The domain of the integration, v, is the region in-
side the dielectric particle, and G(r, j ) is the 3-D Green
function in free space given by

G~r, j! 5
exp~ikur 2 j u!
4pur 2 j u

. (19)

For the radiation zone or the far-field region (kr → `) it
can be proven by using Eq. (18) that the scattered or in-
duced far field caused by the presence of the particle is

Es~r!ukr→` 5
k2 exp~ikr !

4pr E E E
v
@e~j ! 2 1#$E~j !

2 r̂@ r̂ • E~j!#%exp~2ikr̂ • j !d3j, (20)

where r̂ 5 r/uru is the unit vector in the observation direc-
tion. In order to compute the Stokes phase matrix, we
need to express the scattered field given by Eq. (20) in
terms of the amplitude scattering matrix. From the ge-
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ometry defined in Fig. 2 the scattered field can be decom-
posed into the components parallel and perpendicular to
the scattering plane in the form

Es~r! 5 âEs,a~r! 1 bEs,b~r!, (21)

where â and b̂ are the unit vectors parallel and perpen-
dicular to the scattering plane, respectively, and satisfy

r̂ 5 b̂ 3 â. (22)

Writing Eq. (20) in a matrix form, we have

SEs,a~r!

Es,b~r! D 5
k2 exp~ikr !

4pr E E E
v
@e~j ! 2 1#

3 S â • E~j !

b̂ • E~j ! D exp~2ikr • j !d3j

5
exp~ikr !

2ikr Fs2s4 s3
s1

G SEo,a

Eo,b
D , (23)

where si (i 5 1 to 4) are the elements of the amplitude
scattering matrix and Eo,a and Eo,b are the incident E
fields expressed with respect to the scattering plane. In
the FDTD method the incident wave is defined with re-
spect to the grid coordinate system oxyz given by Eo,x
and Eo,y . From the geometry shown in Fig. 2 we have

SEo,a

Eo,b
D 5 F b̂ • x̂

b̂ • ŷ
2b̂ • ŷ
b̂ • x̂ G SEo,y

Eo,x
D , (24)

where x̂ and ŷ are unit vectors along the x and y axes,
respectively. In order to obtain the scattering properties
of the particle with complete polarization information, we
need to select two incident cases: (1) Eo,x 5 1 and Eo,y
5 0 and (2) Eo,x 5 0 and Eo,y 5 1. With these selec-
tions we can define the following quantities:

SFa,x

Fb,x
D 5

ik3

4p E E E
v

@1 2 e~j !#S â • E~j !

b̂ • E~j ! D
3 exp~2ikr̂ • j !d3jU

Eo,x51,Eo,y50

, (25a)

Fig. 2. Incident and scattering geometries for the transforma-
tion of the near field to the far field.
SFa,y

Fb,y
D 5

ik3

4p E E E
v

@1 2 e~j !#S â • E~j !

b̂ • E~j ! D
3 exp~2ikr • j !d3jU

Eo,x50,Eo,y51

. (25b)

Using Eqs. (23)–(25) along with some algebraic manipu-
lations, one can prove that

F s2s4 s3
s1G 5 FFa,y

Fb,y

Fa,x

Fb,x
GF b̂ • x̂

2b̂ • ŷ
b̂ • ŷ
b • x̂G . (26)

After the amplitude scattering matrix is defined, the cor-
responding Stokes phase matrix can be determined and
numerically computed. It should be noted that for ice
crystals randomly oriented in space there are only six in-
dependent nonzero elements for the 4 3 4 phase matrix.2

To derive the integral equations for the absorption and
extinction cross sections, we start from the Maxwell equa-
tions. For a nonferromagnetic dielectric medium with an
incident harmonic wave whose time dependence is given
by exp(2ivt) the Maxwell curl equations in the frequency
domain can be written in the forms

c¹ 3 H 5 2iv~er 1 ie i!E, (27a)

c¹ 3 E 5 ivH. (27b)

Using these equations along with the vector algebra, we
obtain

2¹ • s 5
iv
4p

~er E • E* 2 H • H* ! 1
ve i
4p

E • E* ,

(28a)

s 5
c
4p

E 3 H* , (28b)

where an asterisk denotes the complex conjugate and s is
a complex Poynting vector for the electromagnetic wave.
Taking the real part of Eq. (28a) and integrating it over
the region inside the scattering particle leads to

2ReF E E E
v
¹ • s~j !d3jG 5 2ReF t n̂ • s~j !d2j G

5
v

4p E E E
v
e iE~j !

• E* ~j !d3j, (29)

where n̂ is the outward-pointing unit vector normal to the
particle surface. According to the physical meaning of
the Poynting vector,37 the surface-integration term in Eq.
(29) is the net rate at which electromagnetic energy pen-
etrates into the particle surface, that is, the energy ab-
sorbed by the particle. Further, the incident electromag-
netic flux is given by

Fo 5
c
4p

Eo • Eo* 5
c
4p

uEou2. (30)

Thus the absorption cross section of the particle can then
be expressed by
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sa 5 2ReF t n̂ • s~j !d2j G Y Fo

5
k

uEou2
E E E

v
e i~j !E~j ! • E* ~j !d3j. (31)

In conjunction with the derivation of the extinction cross
section we note that the Poynting vector can be decom-
posed into incident, scattered, and extinction components
as follows:

s 5 se 1 ss 1 si . (32)

The complex extinction component of the Poynting vector
is given by

se 5
c
4p

~Eo 3 H* 1 E* 3 Ho!. (33)

Using Eqs. (27) and (33), we can prove that the electro-
magnetic energy associated with the extinction is given
by

2ReF t n̂ • se~j !d2j G

5
v

4p
ImH E E E

v
@e~j ! 2 1#E~j ! • E* ~j !d3jJ .

(34)

Consequently, the extinction cross section can be obtained
from

se 5
v

4p
ImHE E E

v
@e~j ! 2 1#E~j ! • E* ~j !d3jJ Y Fo

5 ImH k

uEou2
E E E

v
@e~r! 2 1#E~j ! • Eo* ~j !d3jJ .

(35)

Thus, if the electric field inside the particle is given, the
scattered far field and various cross sections can be deter-
mined from Eqs. (25), (26), (31), and (35). Also, the elec-
tric field inside the particle can be obtained by using the
preceding FDTD method.
For the scattering by a nonspherical particle the ab-

sorption and extinction cross sections depend on the po-
larization of the incident wave. However, if the mean
values of the cross section (average of the cross sections
with respect to the two perpendicularly polarized incident
waves) are considered, they are independent of the plane
on which the polarization of the incident wave is defined.
Using Eqs. (23) and (35) along with integration by parts,
we can prove that the mean extinction cross section is

s̄e 5 ~se,i 1 se,'!/2

5
2p

k2
Re@s1~ ẑ ! 1 s2~ ẑ !#. (36)

The above equation actually is a particular form of the op-
tical or extinction theorem. Similarly, the mean absorp-
tion cross section is also independent of the scattering
plane and can be computed by using Eq. (31) with respect
to the two incident cases.
3. NUMERICAL RESULTS AND
DISCUSSIONS

A. Validation of the Finite-Difference Time Domain
Method in Three-Dimensional Space
The accuracy of the FDTD method has been comprehen-
sively checked with Mie results for metal objects by a
number of researchers.38 However, its accuracy has not
been verified for randomly oriented ice particles. In our
previous study for the 2-D scattering problem a fine grid
size (D 5 l/60) was used. Such a fine grid size, however,
will require considerable computer time and memory in
the 3-D case. In order to optimize numerical calculations
and to investigate the effect of the grid size on the accu-
racy of the FDTD results, we have selected three grid
sizes of Ds 5 l/10, l/20, and l/30 in comparison with the
exact Mie results for the scattering of light by ice spheres.
Since the FDTD method does not pose a preferential
treatment to any geometry (with the possible exception of
rectangular objects in a Cartesian grid), the solution for
spheres constitutes a representative test of the accuracy
of the FDTD method. Moreover, the objective of our
study is for ice crystals. Thus we have chosen two rep-
resentative refractive indices for ice at the visible (0.55-
mm) and thermal infrared (10.8-mm) wavelengths at
which negligible and strong absorption are involved.
Figure 3 shows comparisons of the phase function com-

puted by the FDTD method and by Mie theory for the size
parameter ka 5 5 at l 5 0.55 and 10.8 mm. Deviations
of the FDTD results from the exact Mie solutions are pre-
sented in terms of the absolute error, P11(FDTD)
2 P11(Mie), as well as the relative error, @P11(FDTD)
2 P11(Mie)]/P11(Mie). Errors in the FDTD results are
produced by the numerical dispersion of the finite-
difference analog, the approximation of a sphere by a
pseudosphere constructed by cubic grid cells (staircasing
effect), and the representation of the near field by the dis-
cretized data that do not account for the field variation
within each cell, all of which are associated with the grid
size used in the calculations. Compared with the Mie
theory, the FDTD method with a grid size of Ds 5 l/10
can produce significant errors in the phase function for
both nonabsorptive and absorptive wavelengths. Errors
in the FDTD results, however, decrease significantly as
the grid size is reduced to Ds 5 l/20 and l/30. In both
cases the FDTD results for the phase function essentially
converge to the Mie solutions. The results for the three
other phase matrix elements, not shown here, are similar
to those for the phase function.
Figure 4 shows comparisons of the nonzero elements of

the phase matrix computed by the FDTD technique and
by Mie theory for the size parameter ka 5 15 at the
0.55-mm wavelength. Differences between the FDTD
and Mie results for the phase matrix elements associated
with the polarization configuration are presented only in
terms of the absolute errors. This is because the defini-
tion of the relative errors is not meaningful when the
quantities are 0 or approaching 0. For the phase func-
tion the maximum absolute errors are noted in the for-
ward direction. However, maximum relative errors are
seen at the scattering angle of 135° and backscattering di-
rections. The error peak at 135° is associated with the
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Fig. 3. Comparison of the phase function computed by the FDTD method and by Mie theory for the size parameter ka of 5 at l
5 0.55 and 10.8 mm in terms of absolute and relative errors. The indices of refraction for ice at these wavelengths are 1.311 1 i3.11
3 1029 and 1.0893 1 i0.18216. Three grid sizes are used in the FDTD calculations.
artificial reflection that is due to the imperfect absorbing
boundary condition applied to the outer boundary of the
computation domain. The maximum spurious reflection
from the corners and the edges of the grid mesh will cause
a detectable error in the region near the 135° scattering
direction, where the scattered energy is small. The sec-
ond maximum near backscattering is associated with a
small amount of residual energy that remains inside the
particle when the time-marching iteration to compute the
near field is terminated. This small amount of energy
cannot be accounted for in the transformation of the near
field from the time domain to the frequency domain by a
discrete Fourier transform, leading to an underestimation
of the scattered energy when the far field is calculated on
the basis of the near field in the frequency domain. As
stated in Subsection 2.A and discussed in our previous
study,11 with the initial excitation using a pulse source,
the convergence for the near-field computation requires
that the field in the time domain reduce to 0. In our com-
putations the number of time-marching iterations is
50Nm , where Nm is the grid number along the maximum
dimension of the computational domain. However, the
temporal duration over which the near field decays essen-
tially to 0 is proportional to the particle size in a nonlin-
ear way. In the case of ka 5 15 a few percent of the in-
cident energy still remains inside the particle when the
time-marching iteration is terminated, and it is not ac-
counted for when the field in the frequency domain is
computed. Underestimation of a few percent will impact
the accuracy in computing the side and backward scatter-
ing, where the scattered intensity is much smaller than
the forward-scattered intensity. In this case relative er-
rors can be potentially large. The residual energy dis-
cussed above corresponds to the high-order multipole ra-
diation in the frequency domain and converges very
slowly. We find that the CPU time must be increased by
a factor of 2–3 in order to converge the residual energy to
less than 1% for ka 5 5. For ka 5 15 we anticipate a
substantial increase in the computational effort, although
numerical experiments have not been carried out in this
case because the enormous computer time required is be-
yond the resources available to us.
Comparing Figs. 3 and 4, we see that the accuracy of

the FDTD method depends not only on the grid size but
also on the size of the scattering object. The overall
agreement of the FDTD and Mie results for ka 5 15 ap-
pears reasonable when the grid size of l/20 is used. To
run this case, we have used approximately 10 h on the
Cray Y-MP computer. It is quite clear that in order to
produce reliable results for size parameters larger than
approximately 15 with the FDTD method, one must use
significant computer time.
Figure 5 shows the extinction and absorption efficien-

cies computed by the FDTD method and by Mie theory.
Also shown are the differences in terms of absolute and
relative errors. Since the absorption efficiency at the
0.55-mm wavelength is negligible, the absorption effi-
ciency is not plotted. When Ds 5 l/10 is used, signifi-
cant errors can be noted at both wavelengths for size pa-
rameters larger than 5. For ka 5 10 an ;212% error is
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noted for the extinction efficiency at l50.55 mm, while
;217% and ;216% are noted for the extinction and ab-
sorption efficiencies, respectively, at l 5 10.8 mm.
When the grid size decreases to Ds 5 l/20 and l/30, er-
rors reduce drastically. From Fig. 5 we also note that the
relative error at ka 5 0.2 is even larger than that at
ka 5 1 and 3. This is because only a few grid cells are
used to approximate the sphere when it is very small.
Furthermore, the roughness of the surface for the pseudo-
sphere in comparison with its radius is relatively larger
in the case of ka 5 0.2 than for ka 5 1 and 3. Thus, for
a very small particle, one should use small grid sizes in
order to reduce the inaccuracy caused by the staircasing
effect. Implementation of the fine grid size will not
significantly increase the computational burden for
very small particles. The results shown in Fig. 5 reveal
that errors decrease with decreasing grid size but
increase with increasing particle size. For size param-
eters smaller than 3 a very coarse grid (Ds ; l/10) can
be used to produce reasonable accuracy. However, for
ka . 5, the grid size must be smaller than ;l/20 in
order to produce reliable results.
From Figs. 3–5 it is evident that the grid size is the
dominating factor in determining the numerical errors as-
sociated with the FDTD technique. According to the pre-
ceding comparisons, we conclude that the overall agree-
ment between the FDTD results and the Mie solutions is
excellent for size parameters less than approximately 15
if the grid size of Ds 5 l/20 or l/30 is used. Formidable
computer time is required to produce reliable results for
size parameters larger than approximately 15 if the
FDTD method is used for the solution of light scattering
by spheres.

B. Finite-Difference Time Domain Method for Light
Scattering by Hexagonal Ice Crystals
In this subsection we apply the FDTD method to investi-
gate the scattering characteristics of hexagonal ice crys-
tals with specific and random orientations in 3-D space.
The orientation of the symmetric hexagonal ice crystal
with respect to the incident wave can be specified by the
elevation of the c axis (symmetric axis) and the rotational
angle around this axis, which ranges from 0° to 90° and 0°
to 30°, respectively. We find that 5° and 3° are sufficient
Fig. 4. Comparison of the phase matrix elements computed by the FDTD method and by Mie theory for the size parameter of 15 at
l 5 0.55 mm. The grid size used is l/20, and errors produced by the FDTD technique are also presented for this larger size parameter
(see the text for further discussion).
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Fig. 5. Extinction and absorbing efficiencies for ice spheres as functions of size parameter computed by the FDTD method and by Mie
theory at l 5 0.55 and 10.8 mm. Also shown are the absolute and relative differences between the two results.
angular intervals in the average of these two angles.
The average of the scattered intensity over the azimuthal
angle in our calculations was made by an angular resolu-
tion of 2° after considerable numerical experimentation to
produce an optimized value. It should be noted that
small ice crystals in the Earth’s atmosphere tend to be
randomly oriented. The results presented below are in-
tended to be representative rather than extensive.
Figure 6 shows the phase function and the degree of

linear polarization of a hexagonal column for l 5 0.55
mm with two specified incident configurations, as shown
in the plots. In this figure L and a denote the length and
the half-width of a column crystal, respectively. With a
specific orientation the scattering characteristics of ice
crystals depend not only on the zenith angle but also on
the azimuthal angle with respect to the scattering direc-
tion. The results are azimuthally averaged, viz.,
P~u! 5
1
2p E

0

2p

P~u, f!df. (37)

The scattering parameters depend significantly on the
particle orientation with respect to the incident direction.
The scattering cross section of an ice column with end-
facing incidence is approximately 2.5 times larger than
that with side-facing incidence. When the incident direc-
tion is perpendicular to the symmetric axis of the ice col-
umn, the scattered field is dominated by dipole radiation
because the scattering capacity of the particle is very
small. Thus oscillation does not occur in the phase func-
tion, and the scattering pattern is similar to Rayleigh
scattering, with a broad minimum occurring at the 90°
scattering angle. When the incident direction is toward
the end of the particle, the scattering capacity increases
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because of the significant contribution of higher-order
terms in the multipole expansion of the scattered field.
The phase interference becomes important for the in-
duced radiation from different parts of the particle, lead-
ing to the ripple structure in both phase function and po-
larization.
Figure 7 shows the nonzero elements of the phase ma-

trix for randomly oriented ice columns at two wave-
lengths: 0.55 and 3.7 mm. After averaging over all ori-
entations of the ice crystals, the phase matrix is
independent of the azimuthal angle of the scattering
plane. The results for these two wavelengths are similar
for the following reason. Absorption is approximately
proportional to the particle volume, so that its effect at
the 3.7-mm wavelength is not significant for small size pa-
rameters in the determination of the angular distribution
of the scattered energy and polarization. The element
2P12 /P11, the degree of linear polarization, for randomly
oriented ice crystals is positive in the middle scattering
angle region, in agreement with the conclusion presented
by Asano and Sato,39 who noted that the linear polariza-
tion of light scattered by nonspherical particles, in con-
trast to that scattered by spheres, tends to be positive in

Fig. 6. Phase functions and degrees of linear polarization com-
puted by the FDTD method for hexagonal ice columns with two
specified orientations at l 5 0.55 mm. L is the length of the ice
column, and a is the half-width.
these scattering angles. The matrix elements P22 /P11
are 1 for spheres. Thus the departure of P22 /P11 from 1
can be used as a measure of nonsphericity. It should be
pointed out that the present results are for small finite
hexagonal ice crystals in both width and length. For this
reason the phase functions do not display 22° and 46°
halo peaks, produced by the geometric optics approach.
A maximum at the 150° scattering angle is noted, how-
ever.
Shown in Fig. 8 are the extinction efficiencies computed

by the FDTD method for randomly oriented hexagonal ice
crystals. Also shown are the results for the equivalent-
volume and -surface spheres. The equivalent-surface
spheres have the same cross-sectional area perpendicular
to the incident direction as that of the randomly oriented
hexagons. Replacement of the small hexagonal ice crys-
tals by both equivalent spheres significantly overesti-
mates the extinction efficiency, revealing that the shape
effect is significant for small size parameters. From Fig.
8 we also see that deviations produced by the equivalent-
volume sphere approximation are less because the in-
duced radiation by the polarized dipole inside the par-
ticle, which contributes significantly to the scattered field
for small size parameters, is proportional to the particle
volume.
Comparisons of the phase functions computed by the

FDTD technique and by the conventional ray-tracing
method for randomly oriented ice crystals are presented
in Fig. 9 for kL 5 20 (equivalent to ka 5 10). For the
case of L/a 5 6, because of the small cross section for ice
columns the higher-order multipole radiation is insignifi-
cant. The scattering peaks corresponding to halo fea-
tures are not observable in the phase function. For the
case of L/a 5 2, where the cross section for ice plates is
increased by a factor of 3, a pronounced scattering maxi-
mum at the 22° scattering angle is generated in the
FDTD solution. We estimate that when the ice crystal
size parameter is smaller than approximately 20 in terms
of either length or diameter, the halo peaks cannot be pro-
duced. To demonstrate the flexibility of the FDTD tech-
nique for application to the scattering of light by irregu-
larly shaped ice crystals, we compute the phase function
for bullet rosettes and hollow columns. The results are
also presented in Fig. 9. Comparisons are made with the
results computed by using the Monte Carlo/geometric
ray-tracing method developed by Takano and Liou.40

The cross angle for the bullets is 90°, the tip length of a
bullet is t, the depth of the hollow pyramid is denoted by
d, and the other parameters defining the geometry of the
ice crystals are given in the figure. Significant deviations
of the phase functions for bullet rosettes given by the two
methods are found for scattering angles less than ;12°.
In addition, significant errors of the geometric optics so-
lution are noted near the backscattering direction. For
the case of hollow columns significant errors are noted for
scattering angles smaller than 20° and larger than 30°.
Similar to the hexagonal case of L/a 5 6, scattering
peaks corresponding to halos are not displayed in the
FDTD results because the size parameter is too small.
From Fig. 9 we note that the geometric optics method con-
siderably overestimates the backscattering for small size
parameters for both hexagonal and bullet rosette shapes.
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Fig. 7. Nonzero elements of the phase matrix computed by the FDTD method at two wavelengths, 0.55 and 3.7 mm (m 5 1.4005
1 i7.1967 3 1023), for randomly oriented hexagonal columns.
Overall, the conventional geometric ray-tracing technique
is inadequate in producing reliable phase function and po-
larization patterns for size parameters smaller than
;30–40.

4. CONCLUSIONS
We have extended the FDTD technique developed for a
2-D scattering problem to the general 3-D counterpart.
In this extension we have introduced a new way of defin-
ing the effective permittivity and conductivity to trans-
form the basic Maxwell equations to a source-dependent
form that governs the scattering process of a dielectric
particle so that the complex calculations can be avoided
when the scatterer is absorptive. Another new endeavor
includes the derivation of the finite-difference analog of
the transformed Maxwell equations in terms of the total-
field algorithm in which the connecting conditions are
given explicitly for applying the absorbing boundary con-
dition in the algorithm. We have also applied an integral
technique to compute the far field and the extinction and
absorption cross sections so as to avoid the high-
resolution requirement in the angular integration of the
scattered energy in determining the scattering cross sec-
tion, which has been done conventionally by a surface-
integration technique.
The accuracy of the FDTD results in 3-D space is
Fig. 8. Extinction efficiencies of randomly oriented hexagonal
ice crystals computed by the FDTD method and by the Mie
theory for equivalent-volume and -surface spheres.
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Fig. 9. Comparison of phase functions for hexagonal ice crystals computed by the FDTD method and by a geometric ray-tracing method
(GOM1) for solid and hollow columns, plates, and bullet rosettes.
checked with the results computed by the exact Mie
theory for spheres. We show that the FDTD technique is
an accurate and efficient method for size parameters less
than approximately 10–20, above which considerable com-
puter time is required. It becomes less accurate for size
parameters larger than approximately 20 because of the
numerical approximation of the particle shape and the
limitation of the absorbing boundary condition imposed.
The FDTD method is applied to the calculation of the

phase matrix and the extinction and absorption cross sec-
tions for ice crystals with size parameters less than 20.
Specific and random orientations for columns and plates
are used in the calculations. We illustrate that the scat-
tering patterns for small hexagonal ice crystals in terms
of phase function, polarization, and extinction efficiency
differ from those for large ice crystals and spheres. In
particular, we show that the geometric ray-tracing
method is not suitable for computing the phase function
for hexagonal ice crystals with size parameters less than
20 and that the approximation using equivalent spheres
(in terms of either volume or surface) for small ice crys-
tals leads to significant errors.
We also demonstrate that the FDTD method can be ef-

fectively applied to hollow columns and bullet rosettes,
two types of irregular ice crystal that frequently occur in
cirrus clouds. The application requires only the geomet-
ric definition of the irregular ice crystal shape, and no ad-
ditional computational effort is needed. The FDTD tech-
nique is thus an attractive numerical method for the
solution of light scattering and absorption by small ir-
regular particles (aerosols and ice crystals) with defined
geometries and known optical properties.
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