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Finite-Difference Time-Domain Simulation of
Ground Penetrating Radar on Dispersive,

Inhomogeneous, and Conductive Soils
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Abstract—A three-dimensional (3-D) time-domain numerical
scheme for simulation of ground penetrating radar (GPR) on dis-
persive and inhomogeneous soils with conductive loss is described.
The finite-difference time-domain (FDTD) method is used to
discretize the partial differential equations for time stepping of
the electromagnetic fields. The soil dispersion is modeled by mul-
titerm Lorentz and/or Debye models and incorporated into the
FDTD scheme by using the piecewise-linear recursive convolution
(PLRC) technique. The dispersive soil parameters are obtained
by fitting the model to reported experimental data. The perfectly
matched layer (PML) is extended to match dispersive media
and used as an absorbing boundary condition to simulate an
open space. Examples are given to verify the numerical solution
and demonstrate its applications. The 3-D PML-PLRC-FDTD
formulation facilitates the parallelization of the code. A version
of the code is written for a 32-processor system, and an almost
linear speedup is observed.

Index Terms—Absorbing boundary conditions, dispersive me-
dia, electromagnetic underground propagation, finite-difference
time-domain (FDTD) methods.

I. INTRODUCTION

L INEAR dispersive media are often encountered in nature,
such as in rocks, soils, ice, snow, or plasma [1]–[7].

In rocks and soils, dispersive phenomena can result from
dielectric relaxation in the media. This could be, for instance,
a consequence of the geometrical effect of insulating rock
platelets immersed in a conductive host [6]. Moreover, it
could be the result of the interaction of electromagnetic
fields with the double layer around colloidal suspensions
in a saline solution [7]. When the permittivity varies as a
function of frequencies, the conductivity varies as a function
of frequencies, as dictated by the causality requirement of the
Kramers–Kronig relations [8].
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At the operating frequency range (50–1000 MHz) of ground
penetrating radar (GPR), soil materials can exhibit strongly
dispersive properties. For example, experimental data [1] show
that effective permittivity and effective conductivity of wet
soils can vary over 20% and by factors greater than two
at frequencies of 30 and 500 MHz, respectively. In such
media, broadband electromagnetic waves will propagate and
attenuate in a frequency-dependent manner. Therefore, to have
a realistic model of propagation of electromagnetic waves on
the lossy earth, it is prudent to include the effect of dispersion
in the media. Understanding of these effects is useful for the
correct interpretation of radargrams. For the model, either a
Lorentz relaxation model or a Debye relaxation model will
be assumed [9]–[11]. Both are causal models, so that the
Kramers–Kronig relations are automatically satisfied. Because
of this, the permittivity value will be complex, having both a
frequency-dependent real and imaginary part. The imaginary
part can be thought of as frequency-dependent loss or con-
ductivity in addition to the static conductivity. Throughout
this paper, the term dispersion will refer to dispersion in
the sense of a Lorentz–Debye model (i.e., finite relaxation
times), although, rigorously speaking, any media with static
conductivity (infinite relaxation time) is already dispersive (in
the sense of having a frequency-dependent response).

The amount of interest devoted to time-domain numerical
methods to solve electromagnetic problems have been increas-
ing dramatically in recent years. This is due partly to its
conceptual simplicity and great flexibility to treat practical
problems. Along with the continuous progress of the available
computational resources, two recent algorithmic developments
in the finite-difference time-domain (FDTD) method make
even more attractive the direct numerical simulation of the
time-domain electromagnetic field propagation in complex,
dispersive media in open space.

The first one is the family of techniques developed to
incorporate dispersion effects into existing FDTD schemes,
which can be roughly characterized into three types:

1) -transform method [4];
2) auxiliary differential equation (ADE) method [12]–[14];
3) recursive convolution (RC) technique [9], [10], [15],

[16].

The former two are usually more accurate, while the latter
is usually more efficient in terms of CPU time and storage
requirements. In addition, the RC technique provides easier
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treatment for the case of dispersive media with multiple poles
in the susceptibility function, an important aspect for treatment
of more complex media. A recently proposed extension of
the RC technique [and demonstrated for one-dimensional
(1-D) problems] is the piecewise-linear recursive convolution
(PLRC) [17], which has an accuracy similar to the other
approaches and retains the advantages of the RC approach.
In this paper, we apply the PLRC technique to a three-
dimensional (3-D) simulation. Since the PLRC is alocal
modification on the update equations, there is no conceptual
difference between the PLRC as applied to 1-D simulations
and the PLRC for two-dimensional (2-D) and 3-D simulations.

The second recent development in the FDTD method con-
sisted in the introduction of the perfectly matched layer
(PML) as an absorbing boundary condition (ABC) [18]–[20]
to simulate open space on a finite computational grid. Apart
from its numerical efficiency, one of the major advantages of
the PML over the previously proposed ABC [21]–[24] is that
its absorption properties hold independently of the frequency
of the incident wave. Also, most previously proposed ABC’s
are not suited for dispersive media because they require
knowledge of the wave velocity near the grid boundary, a
quantity that is not well defined in the time domain for
dispersive media. Another advantage of the PML is that it
preserves the nearest-neighbor-interaction characteristic of the
FDTD method, making it ideally suited for implementation on
a single-instruction multiple-data (SIMD) massively parallel
computer.

However, the PML, as originally devised, also applies
only to nondispersive media. In order to apply it for GPR
simulations in dispersive media, it is necessary to extend
the PML to handle dispersive media. Very recently, the first
extensions of the PML to dispersive media for a 1-D PML
(single planar boundary) were considered in [25] and [26].
The extension proposed in [25] was based on the anisotropic
PML formulation [27]. A single-term Lorentz media was
considered. The dispersive modeling was implemented using
the ADE approach, making it difficult to extend for media
with multiterm dispersion models. On the other hand, the
extension in [26] was based on a modification of the original
PML approach of Berenger [18], and, as a result, a different
set of frequency-dependent constitutive parameters had to be
carefully derived for the PML media to achieve the perfect
matching condition for the dispersive media at all frequencies.
Moreover, this extension is dependent on the specific choice
of dispersion model being used (i.e., Lorentz, Drude, Debye,
etc.). Also, in [25] and [26], no indication is given on how to
treat, using these approaches, the PML corner regions of the
computational domain, which play a pivotal role in 2-D and
3-D simulations.

In contrast, this paper extends the PML to 3-D dispersive
media by using the complex coordinate stretching approach
[20]. Some advantages of using this approach for dispersive
media can be listed as follows.

1) There is no need to derive constitutive parameters for
the PML medium. This is because, to achieve the perfect
matching condition in this approach, thesameconstitu-
tive parameters can be assumedeverywhere(i.e., both

in the physical and PML regions). The PML region is
then simply defined as the region where the complex
stretching is enforced.

2) Treatment of corner regions poses no special difficulty
since it just corresponds to regions where simultaneous
stretching in different directions are enforced. Therefore,
2-D and 3-D simulations can be easily treated. To illus-
trate this point, all of the equations in the formulation
will be presented for a situation in which there are
simultaneous stretching on all three directions. Cases
with stretching only along some of the coordinates are
just special cases of the equations presented with the
complex stretching variables on the remaining coordi-
nates set equal to unity.

3) It is particularly suited to be combined with the disper-
sion modeling techniques based on recursive convolu-
tion, such as the PLRC, thus providing easier treatment
of multiterm Lorentz or Debye models.

4) Since the same set of equations is used both inside the
physical and PML regions (the physical region can be
considered as a special case of a PML region with all
complex stretching variables equal to unity), an easier
parallelization of the code is made possible.

Some previous numerical simulations of GPR using the
FDTD method or the closely related transmission-line matrix
(TLM) method were considered in [28]–[38]. In particular, the
recent 3-D analysis of [35] already included dispersion effects
and a detailed modeling of the receiving and transmitting
antennas. However, no ABC was used to truncate the compu-
tational domain, so that unwanted reflections due to the grid
termination were presented and had to be eliminated through
windowing the results in time (which required larger simula-
tion domains) combined with a subtracting procedure (which
required multiple simulations). Also, the dispersion model
used was a simplified one in the sense that a low-frequency
approximation was used for the single-term Debye model.

In this paper, the extension of the 3-D PML to dispersive
media outlined above is combined with the PLRC technique
in a unified numerical scheme to further enhance the accuracy
of FDTD simulations of electromagnetic wave propagation for
GPR applications. Multiterm second-order Lorentz and first-
order Debye dispersion models for the soils are explicitly
treated in this scheme. In the time-domain, the resultant 3-D
PML-PLRC-FDTD scheme is implemented based on a split
form of Maxwell’s equations. The dispersive soils model
parameters are obtained by curve-fitting reported experimental
data. Examples including the response of buried objects on
dispersive soils with conductive loss are given to verify
the numerical solutions and demonstrate its applications. To
illustrate the suitability of the proposed numerical scheme
to parallel simulations, a parallelized version of the code is
written for a 32-processor system and is shown to have an
almost linear speedup.

II. PML-FDTD FORMULATION OF DISPERSIVEMEDIA

The PML ABC can be related to a complex coordinate
stretching in the frequency domain [20]. This complex stretch-
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ing modifies the Maxwell’s equations by adding additional
degrees of freedom to achieve the reflectionless absorption
of the waves inside the PML region. In the time-domain,
the electromagnetic fields components need to be split into
subcomponents. This splitting generally doubles the memory
requirements of an FDTD simulation. When conductive loss is
added, this further increases the memory requirements because
of an added conductivity term in the PML equation. It will be
shown that the inclusion of dispersion further increases the
memory requirements.

The modified Maxwell’s equations in the complex coordi-
nate stretching PML formulation are [20]

(1)

(2)

for a conductive medium and in the frequency domain (
convention). In the above

(3)

where , , and are frequency-dependent complex stretch-
ing variables. To facilitate the solution in the time domain, (1)
and (2) are usually split as follows:

(4)

(5)

where the same is repeated forand replacing .
By letting , where and are

frequency independent, the above becomes

(6)

(7)

The variables and are the added degrees of freedom of
the modified Maxwell’s equations. The variable in-
duces the reflectionless absorption of propagating modes inside
the PML, and the variable enhances the attenuation
rate of evanescent waves, if they exist. In the physical domain,

and , so that the above equations reduce to the
usual Maxwell’s equations. Transforming the above back into
the time domain, we obtain

(8)

(9)

In the above, for a dispersive medium, we let
while

(10)

An -species Lorentzian dispersive medium is characterized
by a frequency-dependent relative permittivity function given
by

(11)

where is the medium susceptibility, is the resonant
frequency for the th species, is the correspondent damp-
ing factor, and , are the static and infinite frequency
permittivities, respectively. In the time domain, a complex
susceptibility function [10] can be defined

(12)

where

(13a)

(13b)

and

(13c)

so that the time-domain susceptibility function is
and . For a

Debye model, the frequency-dependent permittivity function
is written as

(14)

In this formula, is the pole amplitude and is the
relaxation time for the th species. Note that the complex
susceptibility function for the Debye relaxation model can
be considered as a special case of (12) when and

. Hence, the expression (12) applies toboth
models through a proper choice of parameters.

The electric flux is related to the electric field via

(15)

Using (12) in (15), we have, for both models

(16)

When and using a piecewise-linear approximation for
the electric field in the time-discretization scheme, such that

(17)

(16) then becomes

(18)
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where

(19)
In the above, and are constants, which depend on the
parameters of the particular model, given by

(20a)

(20b)

can be calculated recursively through

(21)
where .

The above equations allow the computation ofgiven
as the input. However, we would like to computegiven
as the input in an FDTD scheme, as we shall see later. To this
end, we substitute (21) into (18) to obtain

(22)

or that

(23)

where

(24a)

(24b)

(24c)

depends only on .

III. T IME-STEPPING SCHEME

We need to devise a time-stepping scheme for (8) and (9).
The space discretization is done according to the usual Yee
staggered-grid with central differencing scheme [39] so that

we will not discuss it here. The time discretization for them
is as follows:

(25)

(26)

where . Equation (25) can be easily rear-
ranged for time stepping

(27)

(28)

However, the left-hand side of (28) depends on both and
, making it unsuitable for time stepping. To remove this

problem, we substitute (23) into the left-hand side of (28) so
that we have

(29)

The above equation is now suitable for time stepping and
updating . After is updated and hence
is updated, it is used in (29) to update . On the right-
hand side of (29), the other pertinent quantities are updated
as follows:

(30a)

(30b)

(30c)

(30d)

The above scheme is repeated forreplaced with and
. Hence, (27), (29), and (30) constitute the complete

PML-PLRC-FDTD updating scheme for the electromagnetic
fields. Note that, due to the use of a backward Euler’s method
(forward difference in time) in the time-update scheme of (25)
and (26) and the neglect of in (26) [which differs from

by ], the above scheme is only first-order accurate
in time. This is chosen mainly due to its simplicity and to
the fact that less arithmetic operations are required at each
time step. Another advantage is that this is a conditionally
stable scheme in the diffusion regime. If needed, a second-
order accurate scheme can be easily derived through parallel
lines, by employing, for example, a trapezoidal rule time-
update scheme (leapfrog scheme). However, this last scheme,
when combined with the central-differencing scheme in space
characteristic of the FDTD method, is not stable anymore in
the diffusion regime [8].
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Storage is required for , , , ,
, , and since each has two

vector components, we need to store values
where is the number of simulation nodes and is the
number of species in the relaxation model. The added storage
cost of simulating a PML dispersive medium is 6 , while
the added cost of a PML conductive medium is to store

, which is 6 . A nondispersive, nonconductive PML
medium will require 12 storage as opposed to the 6
needed in the plain Yee scheme. Although (29) and (30)
seem to suggest the need to store the electric field at two
successive time steps, this can be avoided in the numerical
algorithm by storing, at each time step, the electric field
at the previous time step in a temporary variable [17].
Therefore, the use of a piecewise-linear approximation (17)
in the constitutive relation does not incur
additional storage requirements in comparison to a piecewise-
constant approximation. It should be pointed out that arbitrary
susceptibility functions can, in principle, be modeled as a
sum of Lorentz and/or Debye terms. This can be done, e.g.,
by first evaluating the dielectric permittivity and the effective
conductivity for various frequencies and then curve fitting
the result by a meromorphic function expanded as a partial
fraction expansion [40] with (possibly) single poles (Debye
terms), complex conjugate poles (Lorentz terms), and a pole
at (static conductivity term), plus a constant term
standing for the permittivity at infinite frequency. This will
be illustrated in the next section.

IV. NUMERICAL SIMULATION RESULTS

An FDTD code has been written using the formulation of
previous sections. A PML medium is assumed everywhere so
that the code can be easily parallelized, allowing operation in
the SIMD (single-instruction multiple-data) mode.

To first validate the formulation, the results from the FDTD
simulation for a homogeneous dispersive half-space problem
with conductive loss are compared against a pseudoanalytical
solution. The pseudoanalytical solution is obtained by first nu-
merically integrating the frequency-domain Sommerfeld inte-
grals of the half-space problem for many excitation frequencies
[8]. The result is then multiplied by the spectrum of the source
pulse and, subsequently, inverse Fourier transformed to yield
the time-domain solution. Fig. 1 compares the results for the
FDTD simulation using both the PML-RC (piecewise-constant
electric field) approach and the PML-PLRC (piecewise-linear
electric field) in a dispersive half-space against this pseudo-
analytical solution. The half-space dispersion parameters are
obtained by fitting a two-species ( ) Debye model [33] to
the experimental data reported by Hipp [1] for the Puerto Rico
type of claim loams, as given in Table I. The experimental and
model data are plotted in Figs. 2 and 3. As seen, the model data
fit the experimental data reasonably well. The specific curve
taken for the comparison of Fig. 1 is the 5% moisture content
case with the model parameters given in Table I. The PML
for this example is set with ten layers with a quadratic taper
[18]–[20]. The source pulse is the first derivative of a slightly
different version of the Blackmann–Harris pulse [41] so that

Fig. 1. Sommerfeld solution (solid line) versus PML-FDTD solution using
RC (dotted line) and PLRC (dashed line) for an infinitesimal vertical electric
dipole radiating on top of a dispersive half-space modeled by a two-species
Debye model. The PLRC approach presents a better agreement against the
pseudoanalytical Sommerfeld solution.

TABLE I
DEBYE-MODEL PARAMETERS OF THEPUERTO RICO-TYPE CLAY LOAMS

Fig. 2. Dielectric permittivity of the Puerto Rico type of clay loams versus
frequency [1]. The solid lines indicate the experimental data, and the dashed
lines indicate the model-fitting data. The numbers indicate the content of
moisture.

the pulse vanishes completely after a time period .
The central frequency is at MHz. Note that with this
frequency of operation (typical of GPR applications) and with
the relaxation times presented in Table I, we have ,
so that it is not possible to use a low-frequency approximation
for the Debye model. The half-space occupies 60% of the
vertical height of the cubic simulation region. The simulation
is done with a grid with
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Fig. 3. Same as Fig. 2, except for the effective conductivity.

a space discretization size cm and a time step
ps. Assuming that the origin is at a corner of

the cube, the source is a vertical electric dipole (-directed)
located at and the -component
of the electric field is sampled at .
The field is deliberately sampled inside the half-space so that
it is more sensitive to its dispersive properties.

The results show an agreement between the formulations. In
particular, this figure illustrates the improvement in accuracy
by using the PLRC against the RC scheme. Also, no noticeable
reflection due to the grid termination is present.

In what follows, a series of examples of the numerical
simulation of the GPR response of a pipeline buried on the
Puerto Rico type of claim loams with different moisture
contents will be presented. The pipe is either metallic or
plastic, buried 2 m deep, and has a diameter of 6 in. Both
the transmitter and receiver dipoles are parallel to the metal
pipe. Note that this is a 2.5 problem [30]; i.e., there is
invariance of the geometry in one direction (meaning the
inhomogeneity is 2-D), but the field distribution is 3-D due to
the source configuration. In this kind of problems, we can take
advantage of thespatialinvariance in one dimension and apply
a Fourier transformation in that direction to eliminate one of
the spatial derivatives in Maxwell’s equations. This allows a
properly modified 2-D FDTD scheme to solve the full-wave
3-D problem [30], [33]. In our simulations, however, it will be
solved using the full 3-D code. The simulation is done with a

grid. The space discretization
is m, and the time step is ps. The
air–ground interface is located at . The pipe points
in the direction and is centered at . The
transmitter and receiver are located just above the ground. The
transmitter is fixed at , and the re-
ceiver moves in a straight line in thedirection (perpendicular
to the pipe), from the point to the
point so that the source-receiver
offset varies from 0.1 to 2.5 m. Fig. 4 illustrates this common-
source configuration. Since the emphasis is on the wave
propagation modeling aspect, both the transmitter and receiver

Fig. 4. Common-source configuration of the GPR. See text for details.

considered are just point electric dipoles. For an example on a
direct incorporation of a more realistic antenna modeling using
the FDTD scheme, refer to the approaches described in [34]
and [35], where bowtie antennas are considered. Alternatively,
we can also incorporate aperture antennas directly in the model
by using an array of equivalent point dipoles positioned on the
antenna aperture, with the strength parameters (weights) of
each dipole being determined by a calibration procedure [38].

For these examples, the source pulse used is again a deriva-
tive of the Blackmann–Harris pulse centered at 200 MHz. The
PML absorbing boundary condition is set with ten PML with a
quadratic taper increasing from the physical domain interface
toward the grid ends.

Fig. 5(a)–(c) compare the numerical simulation, with and
without dispersion included, of the common-source radar
traces for a metal pipe in soils with 2.5, 5, and
10% of moisture. The model parameters for the simulation
with dispersion are taken from Table I, and the constitutive
parameters of the simulation without dispersion are taken
from Figs. 2 and 3 at the center frequency of 200 MHz. The
simulated traces are normalized to the maximum field value
at the receiver for each receiver position. From Fig. 5 (a)–(c),
we first note that, for increased moisture content, the simulated
echo appears later and is subjected to a stronger attenuation,
in agreement with Figs. 2 and 3, where it is seen that both
the effective conductivity and the effective dielectric constant
increases with increasing moisture contents.

To better illustrate the effects of the dispersion on the
reflected pulse, Fig. 6(a)–(c) single out a view of the simulated
traces obtained with the simulation with and without dispersion
[same cases of Fig. 5(a)–(c)] at a specific offset of 2.0 m.
Despite the insignificant differences on the first arrival times, it
is seen that the dispersion may distort the pulse shape against
the nondispersive simulation. For example, in Fig. 6(a), the
reflected pulse in the presence of dispersion becomes less
symmetric with respect to its main lobe than in the simulation
without dispersion.
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(a)

(b)

(c)

Fig. 5. Simulation of the radar traces (common-source configuration), cal-
culated with and without dispersion, of a metal pipe on a soil with: (a) 2.5%,
(b) 5.0%, and (c) 10.0% of moisture. The dielectric constant and conductivity
for the simulation without dispersion are picked from Figs. 2 and 3 at the
central frequency of 200 MHz. Increased moisture contents tend to slow and
increase the attenuation of the reflected pulse from the pipe.

Fig. 7 presents the simulated radar traces of a plastic pipe
on a soil with 2.5% of moisture, with

dispersion modeling included and model parameters taken
from Table I, against a simulation without dispersion with
constitutive parameters taken from Figs. 2 and 3 at 200 MHz.

(a)

(b)

(c)

Fig. 6. Radar trace simulation taken from Fig. 5(a)–(c) at an offset of 2.0 m,
calculated with and without dispersion, in soils with: (a) 2.5%, (b) 5.0%, and
(c) 10.0% of moisture.
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Fig. 7. Simulation of the radar trace (common-source configuration), calcu-
lated with and without dispersion, of a plastic pipe on a soil with 2.5% of
moisture. The dielectric constant and conductivity for the simulation without
dispersion are picked from Figs. 2 and 3 at the central frequency of 200 MHz.
Due to the less-reflective nature of the plastic material, the reflected trace is
less visible.

Fig. 8. Radar trace simulation taken from Fig. 7 at an offset of 2.0 m,
calculated with and without dispersion.

The geometry is the same as in the metallic pipe example.
Due to the less-reflective nature of the plastic material, the
reflected trace is now much weaker.

Fig. 8 singles out the simulated response of the plastic
pipe response taken at an offset of 2 m for the dispersive
and nondispersive cases. The difference between the reflected
pulses for the dispersive and nondispersive cases is less
apparent than in the metallic case.

It should be emphasized that the above observations are
made based on the specific choice of the nondispersive soil pa-
rameters and on the kind of soil and buried object considered.
The details may vary for different choices of the parame-
ters and soils. It is not the intention here to exhaust these
scenarios.

A version of the code has been parallelized to run on a
32-processor SGI R10000. Fig. 9 shows the speed of the code
(running a two-species dispersive model) for 1000 time steps
as a function of the number of active processors. The speed

Fig. 9. Speed of the code as a function of the number of processors on a
32-processor SGI R10000 machine. The problem size is 50� 50� 50. An
almost linear speedup is observed up to 12 active processors, but performance
deteriorates for this problem size as the number of processors further increases.

is defined as the inverse of the real CPU time on an empty
machine (single-user). The problem size is 5050 50. An
almost linear speedup to 12 processors is observed. For this
problem size, not much more speedup past 12–15 processors
is expected due to the communication overhead and load im-
balance between the processors. However, for larger problems
sizes, increased speedup can be expected with a larger number
of active processors.

V. CONCLUSIONS

A 3-D FDTD numerical simulation of the GPR response
on dispersive media with conductive loss is described. The
dispersive effect is modeled by a multiterm Lorentz and/or
Debye model. The electric field convolution is implemented
by the PLRC. The PML is extended to match dispersive
media and used as an absorbing boundary condition. By a
proper choice of the parameters, the media can exhibit the
dispersive effects observed in some soils and rocks. The 3-D
PML-PLRC-FDTD numerical simulations with buried metal
and plastic pipes buried on dispersive soils show that the
reflected pulse (and, hence, the GPR response) can be affected
by dispersive effects. In addition to its inherent numerical
efficacy, the use of the PML allows the easy parallelization
of the code. However, the use of the PML and dispersive
media modeling comes with the added cost of more memory
requirements and computational time. A version of the code
was paralleled and shown to have an almost linear speedup.
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