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1. INTRODUCTION 

F o r m a l  d i f f e r e n t i a t i o n  was  d e v e l o p e d  b y  P a i g e  [33] as  a g loba l  p r o g r a m  o p t i m i -  

z a t i o n  m e t h o d  t h a t  c a p t u r e s  a c o m m o n l y  o c c u r r i n g  y e t  d i s t i n c t i v e  m e c h a n i s m  of  

p r o g r a m  c o n s t r u c t i o n  in  w h i c h  r e p e a t e d  cos t l y  c a l c u l a t i o n s  a r e  r e p l a c e d  b y  

i n e x p e n s i v e  i n c r e m e n t a l  c o u n t e r p a r t s .  W h e n  f o r m a l  d i f f e r e n t i a t i o n  is a p p l i e d  to  

a l g o r i t h m s  e x p r e s s e d  as  h igh- leve l ,  luc id ,  b u t  ine f f i c i en t  p r o b l e m  s t a t e m e n t s ,  t h e  

t r a n s f o r m e d  a l g o r i t h m s  m a t e r i a l i z e  as  m o r e  c o m p l e x  b u t  e f f ic ien t  p r o g r a m  ver-  

s ions.  T h i s  m e t h o d  gene ra l i z e s  J o h n  C o c k e ' s  m e t h o d  of  s t r e n g t h  r e d u c t i o n ,  a n d  

p r o v i d e s  a c o n v e n i e n t  f r a m e w o r k  w i t h  w h i c h  to  i m p l e m e n t  a h o s t  of  p r o g r a m  

t r a n s f o r m a t i o n s ,  i n c l u d i n g  E a r l e y ' s  " i t e r a t o r  i n v e r s i o n "  [13]. 

H o w e v e r ,  we p r e f e r  to  r e p l a c e  t h e  t e r m s  " f o r m a l  d i f f e r e n t i a t i o n "  a n d  " r e d u c t i o n  

in  s t r e n g t h "  b y  t h e  m o r e  a c c u r a t e  t e r m  " f in i t e  d i f fe renc ing ."  As  we see  be low,  t h e  
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Finite Differencing of Computable Expressions 403 

use of the term "finite differencing" places our method in proper historical 

perspective, and establishes an interesting link between modern program opti- 
mization and finite difference techniques developed by sixteenth-century math- 

ematicians to reduce the amount of manual labor in performing calculations {e.g., 

Napier used finite difference techniques to construct a table of logarithms, a task 

that  still took him a lifetime) [21]. 

In [33] language-independent algorithms are provided to implement finite 

differencing both automatically and semiautomatically, and these algorithms are 

adapted to FORTRAN and SETL. However, since the greatest success is achieved 

for very high-level languages, Paige's investigations focus on set theoretic finite 

differencing, which extends and formalizes Earley's transformations. Provisions 

are made to accommodate these transformations within a semiautomatic imple- 

mentation design for a subset of SETL, and this proposed system is illustrated by 

considering and improving eight sample SETL programs. 

In contrast to other program transformations, finite differencing is unusual in 

many respects; for example, 

(1) finite differencing may be applied over a large spectrum of language levels 

and in wide-ranging contexts within these languages; 

(2) finite differencing can realize swift convergence from a very high-level ineffi- 

cient form of an algorithm to a much lower level, and more efficient, imple- 

mentation version; 

(3) finite differencing can be implemented systematically; 

(4) finite differencing can be shown to yield asymptotic speedup. 

In this paper, we extend and formalize the treatment of finite differencing 

found in [33] in order to illuminate the issues involved in an efficient implemen- 

tation. Section 2 describes the historical development of our method; Section 3 

presents basic definitions and notations; Section 4 develops a formal specification 

of finite differencing in terms of a small collection of program transformations; 

andSections 5 and 6 discuss applications to algorithm development and improve- 

ment. 

2. HISTORICAL PERSPECTIVE 

It is interesting to note that the origins of our method may be traced back to the 

finite difference techniques introduced by the English mathematician Henry 

Briggs in the sixteenth century [21]. His method, which can be used to generate 

a sequence of polynomial values p(xo), p(xo + h), p(xo + 2h), . . . ,  hinges on the 
following idea. For a given polynomial p(x)  of degree n and an increment h, the 

first difference polynomial 

pl(x)  = p ( x  + h) - p(x)  

is of degree n - 1 or less, the second difference polynomial 

p2(x) = pl (x + h) - pl (x) 

is of degree n - 2 or less . . . . .  and, finally, p. (x )  must be a constant. Thus, 

to tabulate successive values of p(x)  starting with x = x0, we can perform 
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these two steps: 

L Calculate initial values for p(x0), pl(x0) . . . .  , pn(XO) and store them in t(1), 

t(2), . . . ,  t ( n  + 1). 

2. Genera te  the desired polynomial  table by iterating over the following code 
block" 

print x, t(1); 
t(1) := t(1) + t(2); 
t(2) := t(2) +- t(3); 

$ print x andp(x) 
$ place new values for 
$ p(x), p, (x ) ,  

$ . . . .  pn-I (X) in to  

t(n) := t!n) + t(n + 1); $ t(1), t(2) . . . . .  t(n) 
x : = x ~ h ;  $ 

Note  tha t  Briggs's me thod  requires only n additions in step 2 to compute  each 

new polynomial  value, while Horner ' s  rule to compute  a fresh polynomial  value 

costs n additions and n multiplications. 

In an a t t e mp t  to cut  down fur ther  on the manual  effort  needed to produce 

accurate  mathemat ica l  tables, Charles Babbage designed his analytic difference 

engine to perform step 2 automatical ly  once its registers (analogous to t) were set 

manual ly  as in step 1. Digital computers  were designed to perform this same 

limited task of finite differencing through World War  II when accurate gunnery 

tables were critically needed by the armed forces. When  the von Neumann  

computer  was finally developed just  af ter  the war, it allowed, among other  things, 

bo th  steps of Briggs's finite difference me thod  to be programmed [22]. 

However,  in the 1960s John  Cocke discovered a program optimization method  

he called "redqct ion in opera tor  s t rength"  tha t  revealed the greater  significance 

of finite differencing as applied to the speedup of F O R T R A N  programs. His 

original techniques  have since been generalized and implemented with various 

improvements  (for which see [3, 8-10, 26-30]). 

We illustrate Cocke's me thod  with the following simple example. Suppose tha t  

an expression i * c occurring in a strongly connected program region R cannot  be 

moved out  of R because of redefinitions to i. (We assume here  tha t  c is a region 

constant  of R.) Suppose also tha t  the variable i is defined before each entry  to R 

and tha t  all redefinitions to i within R are of the form i = i +_ d e l t a  where d e l t a  

is a region constant  of R. Then  we can use the following idea to move all 

calculations of i * c out  of R. Since i is defined on entrance to R, we can insert  an 

assignment T = i • c to a unique compiler-generated variable T just  prior to each 

en t ry  point  qf R. Within R, immediate ly  before each redefinition i = i +_- d e l t a  to 

i, we can preserve the value of i * c in T by executing the update  assignment 

T = T +_- .delta * c (whose form follows from the distributive law). Note  tha t  

d e l t a  * c is invariant,  and its calculation can be moved out  of R. Finally, we see 

tha t  all ca]culati0ns of i * c are redundan t  in R and can be replaced by uses of T. 

If  the tinge cost of the addit ion operations inserted into R by s t rength  reduct ion 

is less t han  the cost of the multiplications i * c removed  from the original text, 

then  a constant , fac tor  improvement  in running t ime should be obtained. 

Although Cocke's technique does not  t rea t  polynomials as special objects, 

s t rength  reduct ion is sufficiently powerful to t ransform a program involving 
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repeated calculations of a polynomial according to Horner's rule into an equiva- 

lent program that  essentially uses the more efficient finite difference method of 

Briggs. Indeed, this is a surprising and important result that  demonstrates that  

the success of polynomial evaluation by differencing results from properties of 

the elementary operations used to form polynomials rather than from properties 

exclusive to polynomials. In other words, Cocke's method works because the 

following distributive and associative laws hold for sums and products: 

(i +_ d e l t a )  * c ~ i * c +. d e l t a  * c; 

(i +_ de l ta }  + c ~ (i + c) +. d e l t a .  

In [10] Cocke and Schwartz extend this idea to show how reduction in strength 

(which we call finite differencing) applies to a wide range of arithmetic operations 

that  exhibit appropriate distributive properties. Application of the idea of finite 

differencing in a set theoretic context was initiated by Earley, and has been 

pushed further by Fong and Ullman [15-17], who made the interesting observa- 

tion that  finite differencing in a set theoretic milieu Could actually improve the 

asymptotic behavior of an algorithm, and that  this fact could be used to develop 

a theoretical characterization of the situations in which this technique applied. In 

[33] finite differencing is generalized further so that the method can be applied 

directly to an extensive collection of expressions involving a variety of operations 
and data types. 

3. DEFINITIONS AND NOTATIONS 

3.1 Language 

Although finite differencing can be applied to a variety of programming languages, 

we illustrate our transformations throughout this paper using SETL [41], a 

programming language that  incorporates dictions ranging from the concrete level 

of FORTRAN up to the abstract level of set theory. The distinctive data types of 

SETL are its heterogeneous tuples, sets, and maps. Tuples are ordered from the 

first to the last component; sets are unordered and cannot contain repeated 

elements; maps are represented by sets of pairs Ix, y] each of which associates a 

domain value x with a corresponding range value y. Table I lists some of the 

operations that  can be used to form expressions in SETL. 

Like C, SETL allows assignment statements of the form 

x := x op exp; 

to be abbreviated 

x op:= exp; 

SETL also has an APL reduction operation, binop/Q, that  extends a binary 

associative operator binop to an operation over all the elements xl, x 2 , . . . ,  x, of 
a set or tuple Q; that  is, 

binop/Q = xl binop x2 binop . . .  binop x,. 

Much of the power of SETL is due to its iterators, which provide mechanisms 

for constrained search through sets and tuples. These iterators can be combined 
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Table I. Expression Forms in SETL 

Primitive 

operat ions Remarks  

X + y  

x - y  
x * y  

x E  y, x ~ y  

# x  

a r b  x 

x i n c s  y 

x w i t h  y 

x l e s s  y 

{x,y . . . .  } 
[x,y . . . .  ] 

Integer and real addition; set  union; string and tuple 

concatenat ion 

Integer  and real subtraction; set  difference 

Integer  and real multiplication; set  intersection 

Membersh ip  tests  on sets and tuples 

Cardinali ty of sets; length of  tuples and strings 

An arbitrary e lement  selected from set x; the  value of 

a r b  { } is the  undefined atom, denoted  ora  

Boolean-valued test  whe ther  the  set  x includes the  set  y 

Same as x + {y} when x is a set; same as x + [y] when x 

is a tuple 

Same as x - { y} 

Set  with specified e lements  

Tuple  with specified components  

with each o ther  and used as arguments  to various " i terat ive"  operations. We can 

il lustrate i terators  using the following most  basic example, called a f o r a l l  loop or 

V-loop: 

(Vx E s i x  mod 2 = q) 
block(x) (1) 

e n d  V; 

T h e  control  s t ructure  (1) performs an execution of "block" for each even 

number  contained in the set s. I t  is implemented  by  a search through s in which 

every value belonging to s is selected wi thout  repet i t ion and stored into the 

bound variable x. Each  t ime tha t  a new value is s tored in x, the predicate 

x m o d  2 = 0 ~s executed; if the predicate  is true, then  the block is executed. Since 

s is a set, the  search th rough  s is unordered.  However,  the f o r a l l  loop (1) also 

permits  s to be a tuple, in which case the search through s would be ordered from 

the first to the last component  of the tuple. 

f o r a l l  loops can be used to implement  various high-level expressions tha t  

involve i terators.  One such expression is the set former, which computes  the 

subset  of a set satisfying a predicate• An example of this is 

{x E s [ x  rood 2 # 0}, (2) 

which computes  the set of all odd elements  of s. To  compute  the set of squares of 

the  odd e lements  of s, we use the following var iant  of (2): 

{x2:x E s i x  rood 2 # 0}. 

S E T L  also allows sets and tuples to be formed using range specifications• Thus,  

[ 2 . .  n - 1] computes  a tuple whose first component  is 2, second component  is 3, 

• . . ,  and whose last component  is n - 1. The  expression {1, 3 . .  11} computes  all 

the  odd numbers  be tween 1 and 11 inclusive. 

S E T L  includes bounded existential and universal  quantifiers. To  determine 

whe ther  a natural  number  n is prime, we can execute the universal quantifier  

VjE [2 .. n -  1 ] [ n m o d j #  0, 
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which will have the value t rue if no value j between 2 and n - 1 divides evenly 

into n. If  n is not  prime, j will be assigned a value for which n ro o d  j ~ 0 is false 

as a side effect. 

S E T L  has three  kinds of map retrieval operations: 

1. f ( a )  denotes  function application and computes  the value of f a t  a. If a does 

not  belong to the domain of f or if f is not  single valued at  a, the value of f ( a )  is 

o m  (ore denotes  the undefined atom). 

2. f { a }  denotes  the image set of {a} under  f. If  a does not  belong to the 

domain of f, the  image set is { }. 

3. f [S]  denotes  the image of the set S under  f and is equivalent  to 

+ / { f ( a )  : a  E S}. 

Maps  can be modified dynamically by indexed assignment. Th e  operat ion 

f (a)  := o m  removes  the value a from the domain of f. Th e  indexed assignment 

f (a)  := z is equivalent  to 

f(a) := ore; 
fw i th :=  [a, z]; $ f(a) = z afterward 

The  image set of a mult ivalued map f at  a domain point  a can be modified by 

the operat ions 

f{a} +-:= delta; $ delta is a set (3) 

o r  

f{a) := s; $ s is a set (4) 

where (4) is equivalent  to 

f(a) := ore; $ remove a from the domain o f f  
(Vx ~ s) 

f{a} with:= x; $ add the pair [a, x] to f 
end V; 

Note  tha t  n -parameter  maps are also represented by sets of pairs each of whose 

first component  is an n-tuple. As a notat ional  convenience, the map retrieval 

t e rm f (x ,  y, z} can be used to abbreviate f([x,  y, z]). 

As in mathematics ,  S E T L  uses copy value semantics. 

3.2 Verification 

To suppor t  verification, we extend S E T L  by allowing programs to be annota ted  

with two statements ,  

assume cond; 

and 

asser t  cond; 

where cond is any S E T L  predicate.  During execution, a s s u m e  and a s s e r t  

s ta tements  are no-ops. However,  whenever  an a s s u m e  or a s s e r t  s ta tement  is 

encountered  during execution, if the condition holds, we say tha t  the encounter  
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is satisfied. We say tha t  an execution of a program is valid if 

(1) whenever  the execution includes an unsatisfied a s s e r t  encounter,  the first 

such encounter  is preceded by an unsatisfied a s s u m e  encounter;  

(2) whenever  all a s s u m e  encounters  are satisfied, execution terminates  normally. 

A program is defined as valid if all of its possible executions are valid. The  

domain  of a valid program P is the set of input  values tha t  yield executions in 
which every  assumption encounter  is satisfied. 

In order  to develop a suitable character izat ion of correct  program transforma- 

tions, we require tha t  every  program P include special ou tput  assertions placed 

at  the normal  exit points of P. A program transformat ion T is said to be validity 

preserving if, whenever  T maps  a valid program P into a new program P '  = T (P ) ,  

T leaves the ou tpu t  assertions of P intact  and P '  is valid. A validity-preserving 

program t ransformat ion T is said to be semantics  preserving if, whenever  T maps 

a valid program P into a new program P '  = T (P) ,  the  domain of P '  includes the 
domain  of p.1 

I t  is f requent ly  useful to consider t ransformations applied to single-entry, 

single-exit regions of code tha t  we call blocks. Whenever  the replacement  of a 

block B within a program P by another  block B '  is validity (respectively, 

semantics) preserving, we say tha t  B '  preserves the validity (respectively, seman- 
tics) of B within P.  

One of the t ransformations to be discussed operates  on a c h i e v e  s ta tements  

achieve E = f(xl . . . . .  x,); 

t ha t  have the same semantics as assignment s ta tements  

E := f(xl . . . . .  x,); 

3.3 Complexity 

In order  to demons t ra te  tha t  finite differencing results in program speedup, we 

must  utilize some measure of expected efficiency. Our heuristic complexity 

measure  is suppor ted  by  the most  basic storage s t ructures  implemented within 

the run- t ime envi ronment  of S E T L  (cf. [18]). Sets are implemented by expandable 

hash tables tha t  permit  a unit- t ime membership  test  and a l inear-t ime search 

th rough  all e lements  of a set. Such an implementat ion also permits  unit- t ime 

e lement  addit ion and deletion whenever  these operations can be performed 

direct ly on the body of a set wi thout  copying. Maps are implemented using a 

similar hash table for storing their  domains, and range elements  are accessed 

rapidly via thei r  corresponding domain elements. This  permits  various kinds of 

functional  application and change to be done in t ime proport ional  to a map's  

arity, and permits  i terat ion through a map's  domain to be done in l inear time. 

On the basis of the preceding measure,  it is easy to verify the t ime est imates 

shown in Table  II for set theoret ic  operations. 

3.4 Miscellaneous Definitions 

In order  to discuss the notion of finite differencing systematically,  it is convenient  

to introduce some definitions and notat ional  devices tha t  we have borrowed (with 

1 For a more comprehensive study of transformational correctness, see [4, 5]. 
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Table  II. Complexi ty  of S E T L  Operat ions 

Opera t ion  Es t ima ted  cost 

s w i t h : =  x; O(1) a 

s l e s s : =  x; O(1) a 

x ~ s O(1) 

s + :=  delta; O(#del ta)  a 

f (x)  := y; O(1)" 

f (x l  . . . . .  x . )  O(n) 

(Vx E s) 1 
Block(x)~ O(#s x cost(Block)) 

end  V; J 
{x ~ s lk(x) } O(#s x cost(k)) 
3x E s I k(x) O(#s x cost(k)) 
Vx E s lk(x) O(#s x cost(k)) 
s + t O(#s + #t) 

f[s] O(#{[x, y] ~ f i x  e s}) 

a These  es t ima tes  hold when set  copy opera- 

t ions are avoided. 

slight modifications) f rom program optimization l i terature (for which see [1, 2, 

10, 23, 25]}. We sometimes use the mathemat ical  function notat ion 

C = f ( x l  . . . . .  x , )  

to uniquely associate a text  expression f involving n distinct free variables xl, 

. . . .  x ,  with a variable C (which we call the v i r tua l  variable associated with f).  

We assume that ,  whenever  f is executed, its value, calculated from the values of 

its free variables X l , . . . ,  x ,  and constants, is placed in C. We also assume tha t  f 

and all of its subexpressions are appl icat ive;  tha t  is, f behaves like a finite map. 

We say tha t  C is ava i lab le  on exi t  from a program point  p if C is equal to the 

value tha t  the expression f would have if evaluated immediately after  the 

s ta tement  at p is executed; C is ava i lab le  on en t rance  to p if C is available on exit 

f rom all predecessor points o fp .  If  C is available on entrance to p, and if C is not  

available on exit from p (which will happen when execution of the s ta tement  at  

p changes the value of a parameter  xi upon which the value of f depends), then 

we say tha t  C is spoi led  at  p. If  C is available on entrance to a program point  p 

at which there  is an occurrence of a retrieval expression f, we say tha t  the 

occurrence of f i s  r e d u n d a n t  at  p. When this is the case, program semantics will 

be preserved by replacing the occurrence o f f  by the variable C. (Such replacement  

is commonly called r e d u n d a n t  code e l iminat ion . )  

Expression f is wel l  de f ined  at  a program point p if, for every valid execution 

tha t  passes through p and satisfies every assumption encounter  prior to p, the 

values of xl . . . . .  Xn at  the point  p belong to the domain of f. 

A contro l  f low p a t h  is a sequence of program points representing a logical 

sequence of primitive operations tha t  might  be performed, under  the assumption 

that ,  every t ime a predicate Q is encountered during execution, the value of Q is 

in terpre ted  as being ei ther  t rue or false. 

Within the text  of a program we distinguish between two kinds of variable 

occurrences: uses and def ini t ions .  A use of a variable v is an occurrence at which 

the value of v is re t r ieved but  not  modified. A definition of v is an occurrence in 
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which v is modified, as, for example, at the left of an assignment statement, within 

a r e a d  statement, and as the bound variable of an iterator. We say that a 

definition d of a variable v reaches  a program point p if there exists a control flow 

path from d to p that contains no definitions to v other than d. A use u of a 

variable v is live at a program point p if there exists a control flow path from p to 

u that  is free of definitions to v. 

On the basis of "reaches" and "live" relations, we can construct the two 

standard data flow maps, u s e t o d e f  and deftouse,  which have the following 

meaning. If d is a definition to a variable v, then def touse  {d} is the set of uses of 

v reached by d; if u is a use of v, then u s e t o d e f { u }  is the set of definitions to v 

that  reach u. In Section 5 we show how to use the data flow maps to perform 

dead-code  e l imina t ion ,  a semantics-preserving transformation that  eliminates 

code not contributing either directly or indirectly to the value of any program 

variables used within pr in t ,  sequential read ,  assume,  and a s se r t  statements. 

4. FINITE DIFFERENCING OF APPLICATIVE EXPRESSIONS 

4.1 Basic Concepts 

In [10] reduction in strength (which we call finite differencing) is viewed as an 

extension of code motion whereby the major cost of evaluating an expression 

E = f ( x l  . . . .  , Xn) 

is moved outside a program region R despite modifications to its parameters xl, 

. . . .  Xn occurring within R. The basic idea of this technique can be expressed as 

follows: by making E available on entry to R (by evaluating f and storing its 
value in E immediately prior to R), and keeping E available within R (by 

appropriately modifying E each time one of the parameters Xl . . . . .  x, is modified), 

we can avoid full calculations of fwi thin  R (by replacing redundant occurrences 

of f within R by the variable E).  For this approach to be useful, the cost of 

keeping E available in R must be less than the cost of calculating f anew each 
time it is referenced. 

We formulate finite differencing in terms of a small but powerful collection of 

semantics-preserving program transformations that  generalize the three separate 

tasks implied by Cocke's schema just above. 

1. The Init transformation Ini t (P)  replaces each contiguous sequence of 

ach i eve  statements 

achieve E = f(x~ . . . . .  x,); 

within a program P by a code block B that computes and stores the values of the 

expressions f ( x l  . . . . .  x , )  into their respective virtual variables E. 

2. The Differential transformation, denoted O J ( R ) ,  inserts code within a 

program region R in order to keep each expression E = f(x~ . . . . .  x , )  belonging 

to a sequence of expressions J available at points in R after which redundant 

uses of f(x~ . . . .  , Xn) are replaced by E. 

3. Clean is a transformation that  eliminates dead code; it is the last step of 
finite differencing. 
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Although we only illustrate finite differencing for SETL,  this me thod  can be 

extended to o ther  procedural  languages tha t  have a rich supply of applicative 

expressions. 

4.2 The Differential Operator and the Chain Rule 

Since the Differential t ransformation is fundamental  to finite differencing, a 

comprehensive description of this t ransformation is essential to an understanding 

of the example of algori thm derivation by finite differencing given in Section 5. 

However,  in order  to move as rapidly as possible toward this full case study, we 

postpone a full specification of the ancillary transformations,  Init  and Clean, until  

Sect ion 6. 

In this section we formally specify the differential with respect  to a single 

applicative expression and a single-entry, single-exit code block and prove tha t  it 

is a semantics-preserving program transformation.  Next, we extend the differen- 

tial so tha t  it can be applied to sequences of expressions by means of a "chain 

rule." Finally, we state conditions under  which the differential may  be expected 

to improve the running t ime of programs. 

Recall  that ,  in calculus, the differential operator  uses the value of a function 

y = f ( x )  and its derivative at  a point  Xold to obtain an approximate value of f at  

a new domain point  Xnew tha t  lies a "slight" distance away from Xo~d. Our 

differential program transformat ion serves a purpose similar to tha t  of its coun- 

t e rpar t  in calculus, and is defined in terms of analogous components.  These  

components  include 

(1) an applicative expression E = f ( x l  . . . . .  x , )  where E is a variable uniquely 

associated with the value of f ( x l  . . . . .  Xn); 

(2) a single-entry, single-exit code block B tha t  can modify the values of the 

variables x l , . . . ,  Xn on which E depends; 

(3) a computable  "derivat ive" tha t  allows us to determine the new value Enew of 

E from its old value Eold when the old value is spoiled by an assignment dxi 

to a variable xi on which E depends. 

T h e  computable  der iva t i ve  is defined formally as follows: 

Def in i t i on  1. Le t  E = f (xl ,  . . . ,  x , )  be an applicative expression tha t  depends 

on the variables xl . . . .  , x~, and let  dxi  be an assignment to the variable xi. The  

code block pair  [B1, Be] is said to be a derivative of E with respect  to dxi if 

(1) the only variables modified by B1 or B2 are E and variables local to B1 and 

B2; and 

(2) the code block 

achieve E = f(xl  . . . . .  x,); 
B1 
dxl 
B2 
asser t  E = f(xl  . . . . .  Xn) 

preserves the semantics of dx~ and contains only redundant  uses of 

f (x~ . . . . .  x . ) .  

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



412 • R. Paige and S. Koenig 

/ f 

Note  that ,  when no uses of E within the derivative code (either B1 or B2) are live 

on entry  to B1, we can omit  the a c h i e v e  s ta tement  in the code block above, in 

which case we say tha t  [B1, B2] is a strong derivative. 

Whenever  [B1, B2] is a derivative of E with respect  to dxi, we say tha t  B1 is a 

prederivative of E with respect  to dxi and tha t  B2 is a corresponding post- 

derivative of E with respect  to dxi, for which we write 

B1 = O-E ( dxi ) 

and 

B2 = O + E ( dxi ) , 

respectively. Note  tha t  occurrences of the variable xi within BI refer  to the old 

value of xi prior to the change d x ,  while occurrences of x~ within B2 refer to the 

new value. 

Note  tha t  the derivative code is not  unique, and it can always be defined for an 

applicative expression E -- f ( x l , . . . ,  x , )  relative to pa ramete r  modifications using 

an empty  prederivat ive and a postderivative tha t  evaluates f (x l ,  . . . ,  x , )  from 

"scra tch"  (i.e., wi thout  reference to the old value of f s t o r e d  in E )  and stores this 

value into E. Also, if the variable x~ modified by an assignment dx~ is not  among 

the free variables xl . . . . .  x , ,  the derivative of E with respect  to dx~ is empty.  

To  illustrate derivatives further,  consider the set former  

E =  ( x E A ] x m o d 2 = 0 }  (5) 

where A is a set of integers. A derivative of E with respect  to the s ta tement  

A with:= i; 

is given by the empty  postderivat ive and the computat ional ly  inexpensive pre- 

derivative 

if  i rood 2 = 0 then  
E with:= i; (6) 

e n d  if; 

A strong derivative of E with respect  to the s ta tement  

A : = { } ;  

is given by  the empty  postderivat ive and the prederivative 

E := { }; (7) 

In practice, expression (5) and derivatives (6) and (7) would be par t  of a finite 

collection of basic applicative expressions tha t  we call Forms and associated 

derivative rules tha t  we call Derivs. We represent  a derivative rule as a quadruple 

[E = f (x l  . . . . .  x~), dxi, O-E (dx~ ), O+E (dx~ )] (8) 

associating a basic expression belonging to Forms and a pa ramete r  modification 

dxi with a unique pre- and postderivative pair. Although Derivs only contains a 

finite number  of rules, each rule (8) represents  an equivalence class of rules 

formed from (8) by substi tut ing n distinct variables for the parameters  Xl, . . . ,  
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Xn. (We call such substitutions d-substitutions.) Thus, Derivs gives rise to 

derivative rules for all expressions transformed by parameter d-substitutions of 

the basic expressions belonging to Forms; we call these expressions elementary 

expressions. To ensure that  no more than one derivative rule is applicable for a 

given elementary expression and parameter modification, we require that no 

expression belonging to Forms can be transformed by d-substitutions into a 

subexpression of any other expression belonging to Forms. 

On the basis of the two sets Forms and Derivs, we can proceed to specify the 
differential fully. 

Definition 2. Consider an applicative expression E = f ( x l , . . . ,  Xn) that is well 

defined within a single-entry, single-exit code block B occurring in a valid program 

P. Suppose that no uses of E in P are live within B. Suppose, also, that within 

our collection Derivs of derivative rules are rules giving derivatives for E with 

respect to every assignment dxi occurring in B to a variable xi on which E 

depends. Suppose, finally, that, if f is not well defined on entry to B, the first 

statement of B is an update statement with respect to which the derivative of E 

is a strong derivative. Then E is said to be differentiable with respect to B. The 

differential of E with respect to B, denoted OF, (B) ,  is a new code block formed 
from B in the following way: 

1. Derivative Code Insertion. Replace each statement dxi that  modifies a 
variable xi on which E depends by 

O-E ( dxi ) 
dxi 
O+E (dxi) 

2. Redundant Code Elimination. Replace all uses of f (xl  . . . . .  Xn) within the 

code block that  results from step 2 with uses of the variable E. 

We illustrate the differential using the applicative expression (5), differer~tiable 

with respect to the following code block: 

a:-- {}; 

(while eof = false) 
read(i); (9) 
a with:= i; 

end while; 
print({x E a lx rood 2 = 0}); 

This code reads a sequence of integers and prints the set of even integers in the 

sequence. The differential of E with respect to code block (9) can be expressed 

with our operator notation as 

OE(a :-- { }; 
(while eof = false) 

read(i); (10) 
a with:= i; 

end while; 
print({x ~ alx rood 2 = 0});) 
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I f  we temporar i ly  neglect  the  redundant -express ion  el imination task of the  

differential operator ,  code block (10) can be wri t ten more  concretely as 

O - E ( a  := { );) 
a:---- {}; 

(while eof  = fa l se )  
read(i);  (11) 
O - E ( a  with:= i;) 
a with:= i; 

end while; 
print({x E a l x  mod 2 = 0}); 

Since (11) resul ts  f rom insert ing dead code into (9), (11) is semant ica l ly  

equivalent  to (9). By  definit ion of the  derivative,  we can t r ans form (11) into the  

following equivalent  code: 

E : =  {}; 
a:---- {}; 

a s s e r t E =  { x E a l x m o d 2 = 0 } ;  
(while eof  = fa l se )  

read(i);  
ach ieve  E = {x E a ] x rood 2 = 0}; 
i f  i rood 2 = 0 then  (12) 

E with:= i; 
end if; 
a with:-- i; 
a s s e r t E =  { x E a l x m o d 2 = 0 } ;  

end while; 
print({x E a I x rood 2 = 0}); 

By  using a par t ia l -correctness  inference sys tem similar  to Hoare ' s  [24] and 

based  on G e r h a r t  [20] and Schwartz  [38], we can p ropaga te  assert ions th roughou t  

(12) and  el iminate  r edundan t  a c h i e v e  s t a t emen t s  to obta in  the  following code: 

E : =  (}; 
a : =  {}; 

a s s e r t E =  { x E a l x m o d 2 = 0 } ;  
(while eof  = fa l se )  

a s s e r t E =  { x E a l x m o d 2 = 0 } ;  
read(i); 
a s s e r t E - -  { x E a l x m o d 2 = 0 } ;  
if  i m o d  2 = 0 then  

a s se r t  E = {x E a I x mod  2 = 0}; (13) 
E with:--- i; 

end if; 
a with:= i; 
a s s e r t E =  { x E a l x m o d 2 = 0 } ;  

end while; 
a s s e r t E - -  { x E a l x m o d 2 = 0 } ;  
print ({x E a I x m o d  2 = 0}); 
a s s e r t E =  { x E a l x m o d 2 = 0 } ;  

Note  finally t ha t  the  use of  {x E a Ix  m o d  2 -- 0} within the p r i n t  s t a t emen t  

of (13) is r edundan t  and can be replaced by  the var iable  E. 

T h e  a rgumen t  used to prove  tha t  (13) preserves  the  semant ics  of (9) m a y  be 

generalized to prove  the  following theorem,  which formal ly  justifies the  correct-  

ness  of  the  differential  operator .  
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THEOREM 1. Let E -= f (x l  . . . . .  x,) be an applicative expression that is 
• ? . ' .  

differentiable with respect to a code block B (occurring wtthm a valid program 
P).  Then, if  any use of E occurring within OE (B ) is live o[t entry to OE (B ), the 

code block 

achieve E = f(xl . . . . .  Xn); 
RE(B) 

preserves the semantics of  B; otherwise, aE iB ) presenfes the semantics of B. 

Furthermore, E is available on exit from OE (B ). 

PROOF. The  proof  follows from the fact tha t  the differential Can be defined in 

te rms of semantics-preserving transformations.  Wi thout  loss Of generality, sup- 

pose tha t  there  is a use of E within 8E (B) tha t  is live on ent ry  to a E ( B  ). T h e n  

it mus t  be the case tha t  f is well defined on ent ry  to B. Since E is not  live on 

ent ry  to B, insertion of 

achieve E = f(xi . . . . .  x,); 

on ent ry  to B is a semantics preserving dead-code  insertion transformation.  By  

definition of derivatives, replacing each modification dxi to a variable xi on which 

E depends by 

achieve E = f(xl . . . . .  x,); 2 
O-E (dxi) 
dxi (14) 
O+E ( dxi) 
a s s e r t  E = f(xl . . . . .  x . ) ;  

is also semantics preserving. Since, by def'mition of derivatives, all uses of 

f (x l  . . . . .  X,) occurring within (14) are redundant ,  replacement  of such uses (in 

code o ther  than  a c h i e v e  or a s s e r t  s tatements)  by uses of E is semantics 

preserving. A simple inductive argument  can be Used to show tha t  propagat ion of 

the assertion E = f (x l  . . . . .  Xn) will justify elimination of all a c h i e v e  s ta tements  

inserted within the derivative blocks (14) as redundant .  A similar argument  can 

be used to show tha t  all remaining uses of f ( x l , . . . ,  Xn) (outside of the a c h i e v e  

s ta tement  inserted just  prior to B)  are redundant  and can be replaced by uses of 

E.  Moreover ,  E will be available on exit f rom OE (B).  [] 

COROLLARY 1.1 The differential transformation is a linear operator with 
respect to sequential blocks; that is, OE (B~ B2) = OE (Bi) OE (B2). 

Suppose tha t  f (x)  and g(y) are elementary  expressions, tha t  E1 = f (x)  is 

differentiable with respect  to dx, and tha t  E2 = g (E~) is differentiable with respect  

to modifications to E1 within the block OEI (dx). Th e  following nested application 

of the differential indicates tha t  the expression g(f(x))  is also differentiable with 

respect  to dx: 

OE2(OEl(dx) ) = OE2(O-E~(dx) ) 
O-E2(dx) 
dx 
O+E2(dx) 
OE2(O+E~(dx) ). 

2 The  a c h i e v e  s ta tement  is omitted for strong derivatives. 
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This observation allows us to extend our class of differentiable expressions to 

"nonelementary" expressions formed by composition of elementary expressions 

and parameter d-substitutions. More generally, the following definition and 

theorem show how to differentiate collections of expressions using a chain rule. 

Defini t ion 3. Consider n elementary expressions E1 = fl . . . . .  En = f ,  and a 
single-entry, single-exit code block B occurring in a valid program P. Suppose 

that  E1 is differentiable with respect to B, that  E2 is differentiable with respect to 

OEI(B ) . . . . .  and that  En is differentiable with respect to O E , - I ( . . .  (OE~(B)) 

• . .  ). Suppose also that  i > j  implies that  fj does not involve the variable Ei (i.e., 

f~ . . . .  , fn preserve an inner-to-outer subexpression ordering). Then the list of 

virtual variables E . . . . . .  E1 is said to form a dif ferent iable chain, and the 

extended differential of this chain with respect to B is defined recursively by the 
following "chain rule": 

OE,, En-1 . . . .  , E~(B)  = OF,,, En-1 . . . . .  E 2 ( O E d B )  ). (15) 

It is important to further restrict the chain ordering (15) to prevent derivative 

code for Ei from introducing any expression/~, j < i, since such an occurrence of 

/~ might not be eliminated as redundant within the extended differential (15). 

THEOREM 2 (C~AIN RULE). Let  E ,  = f ,  . . . .  , E~ = f~ be a chain  o f  n appl icat ive  

express ions  di f ferent iable  wi th  respect  to a code block B occurring wi th in  a 

va l id  p r o g r a m  P. Le t  S be the set  o f  indices i = 1 . .  n for which  there are uses 

o f  Ei  wi th in  B '  = OE . . . . .  , E ~ ( B )  live on entry to B ' .  Then  the code block 

achieve  Ales Ei = fi; 
aE . . . . . .  E l (B )  

preserves  the semant i c s  o f  B a n d  keeps  E~ . . . .  , E ,  avai lable  on exit. Further-  

more,  i f  g is any  express ion f o r m e d  f rom some fj, j = 1 . .  n, by subs t i tu t ing  fi for  

Ei, i = 1 . .  j - 1, then  any  use o f  g occurring wi th in  B or in t roduced  wi th in  

der ivat ive  code by the chain  rule wi l l  be m a d e  r e d u n d a n t  a n d  replaced by Ej  

wi th in  aE . . . . . .  E~ (B) .  

PROOF. Using Theorem 1 and the definition of differentiable chains (and 

especially taking account of the ordering of chains), the theorem follows easily 

from induction on the number of expressions in the differentiable chain. [] 

COROLLARY 2.1 The  ex t ended  di f ferent ial  is a l inear  operator  wi th  respect  to 

sequent ia l  code blocks; tha t  is, 

OE . . . . .  , E , ( B ,  B2} = 8E . . . . .  , E~(B, )  OE~, . . . ,  El(B2}.  

To illustrate the chain rule, we consider two abstract elementary expressions 
f ( x )  and g(x ,  y)  that  are differentiable with respect to various modifications to 

their parameters. The following three cases demonstrate how "nonelementary" 

expressions formed from f and g by composition and parameter substitution are 
also differentiable: 

h(x ,  y)  = g ( f ( x ) ,  y)  is seen to be differentiable by applying the chain rule to 
E ,  = f (x) and E2 = g(E~, y); 

s (y )  = g ( f ( y ) ,  y)  is handled similarly by using the chain rule on E1 = f ( y )  

and E2 = g(E1, y); 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



Finite Differencing of Computable Expressions 417 

t (x)  = g ( x , x )  is also differentiable since the identity expression 

E1 = x is differentiable; just apply the chain rule to E1 and 
to E2 = g(E1, x).  

The chain rule leads to a calculus of computable derivatives for collections of 
differentiable expressions based on the following three rules: 

OE . . . . . .  E l ( d x )  = O-En . . . . .  El(  dX) 

dx  

o+E . . . . . .  E~<dx); 

O-E . . . . . .  E,<dx)  = OE, . . . . .  E2(O-E, (dx)  ) 

O-E . . . . . .  E2(dx)~ 

O+E . . . . .  , E , ( d x )  = O+E, . . . .  , E2( dx)  

O E  . . . . . .  E2( O+E,( dx)  ). 

4.3 Speedup 

In order for finite differencing to improve program perforinance, the overall 

computational cost of calculating derivative code in a differentiated program 

must be less than the cost of calculating differentiable expressions in an unopti- 

mized program. Such improvement will only be possible if differentiation is 
restricted to those expressions f relative to code blocks B for which 

(1) each derivative code block for f is computationaUy less expensive than the 
cost of a fresh recalculation of f; and 

(2) within B, the number of times in which a modification to an argument of f is 
executed relative to each time that f is executed is reasonably small. 

Ever since Cocke's original formulation of automatic strength reductiori [10], 

the various approaches to finite differencing have satisfied condition (1) a priori 
for all derivative rules, and have satisfied condition (2) using control and data 

flow analysis to constrain the regions B where differentiation can be applied. 

Cocke, Allen, Kennedy, Schwartz, and Markstein [3, 8=i0] have presented deriv- 
ative rules for various elementary numerical expressions (e.g., for replacing costl3t 

products and quotients by less expensive additions and for replacing exponentia- 

tions by less costly products). Cocke and Schwartz used different program analysis 
techniques based on linear nested regions and on intervals to restrict differentia- 

tion to those expressions f occurring in loops L (i.e.~ single-entry, strongly 

connected regions) in which no proper subloop could contain any modifications 
to any arguments of f without also containing f [10, pp. 408-462]. We call this 
restriction the boundedness  requirement ,  because it implies that every control 
flow cycle within L contains a bounded number of modifications to arguments of 

f On the basis of the assumption that execution frequency of code occurring 

within program loops is greater than that of code occurring in regions immediately 

containing these loops, they were able to expect a constant-factor speedup. They 
recognized that differentiated code might not be "safe" but did not find a 

reasonable solution other than avoiding differentiation of quotients (for which 
division by zero is a serious problem) in favor of products (for which the problem 
of overflow can be accepted as a necessary evil). 

Profitable successive differentiation of assorted set expressions was first dis- 
cussed informally by Earley [13], who presented examples that exhibited order- 
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of-magnitude speedup. Earley's ingenious technique of"iterator inversion" rested 

on highly efficient set theoretic derivative rules. For example, he gave derivatives 

for set formers {x E s l k ( x ) }  with various kinds of predicates k, and for quantifiers 

3 x  E s Ik(x)  and V x  E s I k (x ) .  However, he lacked a general method of combining 

these rules and did not elaborate on special control flow considerations for 

recognizing contexts where profitable differentiation was ensured. 

An implementation design for the differentiation of "nonelementary" set 
expressions with respect to program loops that satisfied the boundedness require- 

ment was first given serious treatment by Fong and Ullman [16, 17], who 

considered differentiable expressions built up from set union, intersection, and 

difference, as well as certain kinds of set formers. Fong and Ullman adapted 

several of Earley's efficient derivative rules and developed a theoretical charac- 
terization of conditions under which their method would yield asymptotic 

speedup. Their method differed from previous work in that derivative code to 

maintain the availability of expressions was deferred to the point at which the 

expressions were used instead of at points where arguments of these expressions 
were modified. 

Their deferred differencing approach is based on the following idea. Let 
E = f ( A )  be a set-valued expression involving a set argument A and occurring at 

a program point p in a program loop L. Let A,ew and Ao~a represent the new and 
old values of A between any two consecutive times that control reaches p along 

any path contained within L. To differentiate E, two auxiliary sets d + = A n e w  - 

Aola and d -  = Aola - Anew must be maintained by updating them whenever A is 
modified along each cycle within L containing p. Then, at point p, d ÷ and d -  are 
used to update E (so that E = f(A)) and are reassigned to the empty set. 

Among many other results Fong and Ullman proved were general conditions 
under which differentiation of set formers (x E A [k(x)} and quantifiers 
3x E A [k(x) and Vx E A [ k ( x )  would result in asymptotic speedup; that is, after 
differentiation, these expressions could be maintained with work proportional to 

#.4 + cost(k(x)} instead of the straightforward #,4 × cost(k(x)) [15, 17]. 

Using a different program analysis technique than Cocke, Allen, et al., Fong 
presented implementation algorithms for reducible programs that could detect 

differentiable expressions within loops satisfying the boundedness requirement 

[16]. Improvements to her algorithms have since been presented by Rosen [36] 
and Tarjan [46]. 

In contrast to the theoretical approach of Fong and Ullman, Paige and Schwartz 

initiated a pragmatic investigation of Earley's "iterator inversion" by generalizing 

Earley's transformations and stating pragmatic rules for the discovery and 
treatment of reasonably general cases in which their technique could be applied 
[35]. On the basis of this study, Paige developed a finite difference method [33, 
pp. 71-89] that generalized both strength reduction and iterator inversion within 

a unified framework. He presented an extensive collection of new, efficient set 
theoretic derivative rules (some of which are reformulated in Appendix B) and 

stressed application of these rules to algorithm derivations. Like Cocke, Allen, et 

al., Paige mainly treated differencing as a loop optimization, in which efficient set 
theoretic derivatives and the loop boundedness requirement promised speedup 
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under the standard assumption that code is executed more frequently inside loops 
than outside. 

Further development of the differencing mechanism found in [33] has led to 

the chain rule (Theorem 2), which gives rise to a calculus of computable deriva- 

tives for handling more general classes of expressions belonging to a variety of 

data types (in addition to set expressions) than before. In this section, we analyze 

the chain rule and the attendant speedup that our finite difference method yields. 

We emphasize set theoretic illustrations of profitable derivative rules and state 

conditions under which application of these and other rules (presented in Appen- 
dix B) can yield asymptotic speedup. 

However, before presenting examples of efficient derivative rules for set expres- 

sions, it is useful to state a few guiding principles. The computational cost of 

derivative code for a set-valued expression E = f ( x l  . . . . .  Xn) depends on the 
overall cost of executing set unions and deletions 

E +_:= delta; (16) 

We can minimize these costs by ensuring that  the modifications (16) represent 

disjoint unions and subset deletions. It is also worthwhile to define derivatives for 

E with respect to changes in set-valued parameters xi only when the modifications 

xi - : =  eps  to xi also represent disjoint unions and subset deletions. In this way, 

we can prevent the chain rule from propagating unnecessary computations. 

It is convenient to further regularize our treatment of set modifications by 

expressing these modifications in terms of element additions s with:= z and 
deletions s less:= z for which the respective preconditions z ~ s and z ~ s hold. 

We call these specialized element operations s t r i c t  and assume that throughout 

this paper all occurrences of element additions and deletions are strict operations. 

This poses no undue restrictions, since any program can be preprocessed by 

turning set additions and deletions into repeated element operations that can 
then be rewritten as strict operations. 

Using the measure of computational cost described in Table II, we can observe 

a variety of set theoretic expressions for which differentiation could be profitable. 

The set union E1 = S + T is differentiable with respect to an element addition, 

S wi th :=  y, and element deletion, S less:= y, since the prederivative code blocks 

if y ~ T then $ for S with:= y 
El with:= y; (17) 

end if; 

and 

ify ~ T then $ for S less:= y 
E1 less:= y; 

end if; 

take unit time, while computing the full union can be expected to cost 
O ( # S  ÷ # T )  units of time. 

Another differentiable set theoretic expression is the set former 

E2 = (x  E S I K ( x ) }  

in which S does not occur free within K. The prederivatives for E2 relative to the 
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changes S w i t h : =  y and S less := y are 

if  K(y) then  
E2 with:= y; 

end if; 

and 

if  K(y) then  
E2 less:= y; 

end if; 

(18) 

respectively. Note tha t  (18) requires O(1) elementary steps to compute. 

The  set cardinality expression E3 - # S  is also differentiable with respect to 

S w i t h : =  y and S less := y. The prederivatives O-E3(S with:--  y;) and 

O-E3(S less :=  y;)  are 

E3 - :=  1; (19) 

As was observed in Section 4.2, profitable differentiation of a nonelementary 

expression is supported by differentiation of its subexpressions according to the 

chain rule. As an example of this, consider 

E3 = # { x  ~ (S + T) I K(x)} 

where S and T do not  occur free within K. In order to differentiate E3 with respect 

to element additions S w i t h : =  y (for arbitrary values of y), we must  first 

decompose E3 into its e lementary subexpressions, 

E1 = S + T; 

E2 = {x E E1 I K(x)}; 

E3 = #E2. 

Using derivative rules (17)-(19) and the chain rule, we compute the differential 

aE3, E2, EI(S w i t h : =  y;) according to the following steps: 

0E3, E2, El( S with:= y;) --* 0E3, E2(if y ~ T then 
E1 with:= y; 

end  if; 
S with:= y; ) 

--* aE3(ify ~ T then 
i f  K(y) then  

E2 with:= y; 
end  if; 

end if; 
S with:= y;) 

--. i fy  ~ T then 
if  K(y) then  

E3 +:= 1; 
E2 with:-- y; (20) 

end  if; 
end if; 
S with:= y; 
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Observe that  the outermost i f  statement within (20) forms the extended 

prederivative a-E3, E2, El( S with:-- y;), whose cost is determined by summing 

the constant-factor costs of the prederivative rules for El, E2, and E3. Thus, 

calculating E~ differentially by (20) represents a considerable speedup over a 

straightforward calculation of E3 by three separate assignments 

E1 := S + T; 
E2 :-- {x E E1 ] K(x)}; (21) 
E3 := #E2; 

Note finally that  the incremental approach (20) results in greater data and 

operational independence than (21). Consequently, there can be more dead code 

and more opportunity for parallel execution occurring in (20) than (21). In this 

example, it may be possible to eliminate all assignments to E1 and E2 within (20) 

as dead. 

Profitable differentiation of an expression f can sometimes be supported by 

differentiating f together  with a chain of auxiliary expressions (as in Briggs's first, 

second, . . ,  difference polynomials discussed in Section 2). Thus, the prederivative 

a-E(x  +:= delta; ) of the nth  degree polynomial E = P(x) is 

E +:= Pl(x) 

where Pl(X) is the first difference polynomial. However, for the prederivative 

code above to be inexpensive, we must also differentiate the second, third, . . . ,  

n th  difference polynomials, denoted Ei = Pi(x), i = 2 .. n. To realize Briggs's 

efficient technique, we consider the extended prederivative (of expressions or- 

dered carefully into a "differentiable chain") a-En-1 . . . .  , El, E ( x  +:= delta;) 
that expands into 

E +:= El ;  

E1 +:= E2; 

En-1 + : =  En; 

The preceding example, with its use of auxiliary expressions, has interesting 

analogues among set theoretic expressions. Consider the image set 

E = {e(x) : x E s} (22) 

where s does not occur free in the subexpression e. When e behaves like a one-to- 

one map, the prederivatives a-E(s  with:= z) and O-E(s less:= z) are given by 

E with:= e(z); 

and 

E less :=  e(z); 

An important subcase of (22) is the set former 

E '  = {[e(x), x] : x E s}, (23) 

which represents the restriction of e -1 on its range to s (observe that [e(x), x] is 

one-to-one). The inverse map (23) can be used as an auxiliary expression to 
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differentiate (22) even when e is not one-to-one. To see this, consider the case 

when e is many-to-one. Then a - E ( s  with:= z;) is 

if #{x E s [ e(x) = e(z)} = 0 t h e n  
E with:= e(z); (24) 

end if; 

and a - E ( s  less:= z;) is 

i f # (x  E s le(x) = e(z)} = 1 t h e n  
E less:= e(z); (25) 

e n d  if; 

However, (24) and (25) do not represent efficient derivatives, because they 

contain occurrences of the costly set former 

E l  = {x  ~ s l e (x )  = e(z)}. 

Moreover, any hope of differentiating E1 together with E, as Briggs did with his 

difference polynomials, would seem unfeasible, because E1 is not directly differ- 

entiable with respect to arbitrary modifications to z. However, from (23) we know 

that E ' { e ( z ) }  = E l ,  so that differentiation of E '  will keep E~ available regardless 

of how z is modified. Differentiation of E '  together with E will be profitable, 

since the extended differential a -E ' ,  E ( s  with:= z; ), for example, is just 

if #E ' {e ( z ) }  = 0 then 
E with:= e(z); 

e n d  if; 
E' with:= [e(z), z]; 

which executes in O(1) steps. The computational cost of O-E' ,  E ( s  less:= z;) is 

also O(1). 
Of course, it is important to bound the number of auxiliary expressions that 

must be differentiated to differentiate each elementary expression. In Appendix 
B, we present a variety of elementary expressions that require further differen- 

tiation of costly subexpressions introduced within derivative code (these costly 

subexpressions are underlined). However, in the worst case only three additional 

auxiliary expressions must be differentiated (see Rule E2 of Appendix B). 
Our method of handling E~ by differentiation of the auxiliary expression E '  

illustrates a general technique (called "discontinuity removal" in [33, pp. 7, 
91-107, 155-157]) based on Earley's technique of iterator inversion [13] for 

handling expressions that are not directly differentiable with respect to changes 
in some of their parameters. The basic idea is captured in the following obser- 

vation about the example just presented: the set De,z) = {e(y) : y E s} includes all 

values of e(z)  for which the set E~ = {x  E s I e(x)  = e(z)} is nonempty. Conse- 
quently, we can store all the significant values of E~ corresponding to each value 

c --- e(z)  belonging to De<z) within the expression 

E "  = {[c, x] : c E De,z), x E {w E s l e(w)  = c}}. 

Since E "  computes the same set as the computationally more efficient differen- 

tiable expression E ' ,  we can keep all potentially nonempty expressions E1 = 
E ' { e ( z ) }  available by profitable differentiation. More generally, whenever an 
expression E3 -- f ( x l ,  . . . ,  Xn, q) is not directly differentiable with respect to 
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modifications to a parameter q, we can often profitably differentiate a simplified 

variant of another expression E4 = {[c, f (x l  . . . .  , x , ,  c)] : c E Da} where Dq is a 

set of all q values outside of which E will be equal to some constant (such as the 

empty set). For additional examples of this technique, see Appendix B, Rules C1, 
C2, D2, E2, and H2. 

We have already observed that  the set formers 

E~ = {x  ~ s l k (x ) }  

and 

E2 = {e (x ) :x  E s} 

are differentiable with respect to changes in s. More interestingly, these expres- 
sions are even differentiable relative to indexed assignments 

f ( y )  := z; (26) 

to dynamic maps f that  appear only as retrievals occurring within k and e, and 

when each such retrieval depends on x. Presentation of these derivative rules 
also illustrates the importance of postderivatives. 

In the case of El,  let all of the distinguishable f retrieval terms occurring within 
k be denoted 

f (p l ( x ) )  . . . .  , f(pr(X)) 

where pi(x) represents the argument expression of the ith retrieval term. We 
note, f'wst of all, that the set 

E3 = {x E s l y  E {pl(x) , . . . ,pr (x)}}  

contains all those elements of s for which the value of the Boolean subpart k(x) 

occurring within E1 can change from true to false or from false to true as a result 

of the indexed assignment (26). We refer to E3 as the "tunnel set" of E1 with 

respect to (26) and use it in the following lemmas to derive a derivative rule 
for El.  

LEMMA 1. E3 is not  spoiled by (26). 

PROOF. Let d be the maximum depth of nesting of f terms contained within 

other f terms occurring within an expression e (e.g., the f depth of the term 

f ( g ( f ( x  + f(0)))) is 3). Let w belong to E3 just prior to the change (26). Then w 
belongs to s, and y = pk(w) for some k = 1 . .  r. If we choose this k such that 

pk(w) has a minimal f depth, then y must equal pk(w) after (26) is executed. For 
otherwise, an f term f (p j (w))  occurring within pk(w) would be spoiled by the 

assignment (26). And this implies that, for some i different from k, pi(w) equals 

y prior to (26) and has smaller f depth than pk(w)--a contradiction. [] 

LEMMA 2. The fol lowing code block can be used to represent the differential 
OE~(f(y) := z;): 

O-EI(s -:-- {x ~ s l y  ~ {pl(x) . . . . .  pr(X)}};) 
f(y) := Z; (27) 
O-E,(s +:= {x ~ s l y  E {p,(x) . . . . .  pr(x)}};) 
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PROOF. Follows immediately from Lemma 1. [] 

Because the set former 

E3 -- {x E s l Y  E {pl (x) ,  . . . , pr(X)}} 

appearing in (27) requires O ( # s  × cost(k)) steps to compute (which is the same 

as the cost of a full calculation of El), the differential code (27) does not look 

promising. Furthermore, because the value of y used in (27) is not predictable, it 

appears at first glance that  a full calculation of E3 (which is not differentiable 

with respect to modifications of y) cannot be easily avoided within (27). Fortu- 

nately, however, we can make all full calculations of E3 redundant within (27) (so 

that  these calculations can be eliminated) by maintaining the auxiliary expression 

Ao = {[w, x] :x E s, w E { p l ( x ) , . . . ,  pr(X)}} 

differentially (note that  Ao{y} equals E3(y) for all y). Lemma 3, below, gives 
conditions under which Ao will be differentiable with respect to indexed assign- 

ments (26) and supports Theorem 3, which asserts that  the differential 

aE1, Ao(f(y) := z; ) can be performed efficiently. 

LEMMA 3. W h e n e v e r  # { x  E s lp i (x )  = Y} = O(1) for  i = 1 . .  r a n d  al l  y, 

3 n  > 0 such tha t  the set  former  

Ao = {[w, x] : x E s, w E {p l (x )  . . . . .  pr(X) } } 

is di f ferent iable  relat ive to modi f icat ions  o f  the form s with:-- z, s less:= z, a n d  

f(y) :-- z for al l  values  # s  > n. 

PROOF. By easy generalization of the derivative rules (18), we see that  

O-Ao(s with:ffi z;) = (Yw E (pl(z) . . . . .  pr(z)}) 
A0{w} with:= z; 

end  V; 

and 

O-Ao(s less:--z;) = (Vw E {pl(z) . . . . .  pr(z)}) 
A0{w} less:= z; 

end  V; 

in which both of the derivative code blocks above require O(r + cost(k)) steps to 

execute (where k is the Boolean-valued subpart of the expression El). 
To handle OAo(f(y) :-- z;), we first note that  the expression Ao is formed from 

E1 in such a way that, for every retrieval term f ( p ( x ) )  occurring within the 

subexpressions pi(x),  i ffi 1 . .  r, of Ao, there exists some j, j = 1 . .  r, for which the 

terms p(x)  and pj(x)  are identical. Among other things, this implies that, when r 

equals 1, the expression 

Ao ffi {[w, x ] : x  E s, w E {pl(x)}} 

has an f depth of 0. Otherwise, if f ( p ( x ) )  were a term occurring within p~(x), the 

terms p(x)  and pl (x) would be identical; and this is clearly impossible. 
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Let  t(r) be an upper  bound on the est imated cost of computing the differential 

O.40(f(y) := z;) .  By preceding remarks,  when r equals 1, Ao does not  involve f, so 

tha t  the derivative of Ao with respect  to (26) is empty  and t(1) = 0. Also, when A0 
has f depth  0, t(r) = 0 for any r. 

To  determine t(r) for the case when r > 0 and Ao has an f depth  d > 0, we first 

suppose tha t  the distinguishable f terms occurring within Ao are f (p~(x))  . . . .  , 

f ( p q  (x)). By a minor  extension of Lemma 2, the differential OAo( f ( y )  := z;)  can 
be realized by 

O-Ao{s - :=  (x E s l y  E (p,(x) . . . . .  pr,(x))}) 
f (y)  := z; (28) 
O-Ao(s +:= {x E s l y  E (pl(x) . . . . .  pr,(x)}}) 

Since (by Lemma  1) the two tunnel  sets Ao ( y )  and 

E~ = (x  E s l y  e (pl(x) ,  . . . ,  pr, (X) ) } 

are not  spoiled by (26), and since E3 is contained in Ao (y}, the differential code 
(28) can be rewri t ten 

O-Ao(s -:= Ao (y};) 
f (y)  := z; 
O-Ao(s +:= Ao { y}; ) 

which expands into the following code: 

(Vw E Ao(y}, u E {pl(w) . . . . .  pr(w)} I u ~ y) 
Ao(u} less:= w; 

end V; 

f (y)  := z; (29) 
(Vw E Ao{y),  u E {pl(w) . . . . .  pr(W)} l U # Y) 

Ao (U) with:= w; 
end V; 

The  computat ional  cost of (29) is 

t(r) = O(r 2 + r x cost(k)), 

while a fresh calculation of A0 costs O ( # s  x cost(k)). Thus,  Ao is differentiable 

with respect  to indexed assignments to f for sufficiently large #s.  [] 

THEOREM 3. W h e n e v e r  # { x  E s Ipi(x) = y) = O(1) for i = 1 . .  r a n d  all  y, 

3 n  > 0 such that  E1 is di f ferentiable wi th  respect  to indexed  ass ignments  (26) 
for  al l  values  # s  > n. 

PROOF. It follows from Lemma  2 and Lem m a  3 tha t  the differential 

0El, A o ( f ( y )  := z;)  

can be realized by the  block 

O-E~, Ao ( s - : =  Ao ( y}; ) 
f ly )  := z; 
O-E1, Ao(s +:= Ao{y};) 

represent ing the following S E T L  code block: 
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(Vw E A0{y}, u E {pl(w) . . . . .  pr(w)} l u # y) 
A0{u} l ess :=  w; 

end  V; 
(Vw E A0{y}) 

ifk(w) t h e n  

El  less :=  w; 

end  if; 
end  V; 
f(y) := z; (30) 
(Vw E Ao{y}) 

if k (w) t h e n  

E1 with:-- w; 
end  if; 

end  V; 
(Vw E Ao[y}, u E {pl(w) . . . . .  pr(W)} ]U ~ y) 

A0{u} with:= w; 
end  V; 

Since the computational cost of (30) is O(r 2 + r × cost(k)), while the cost of a 

fresh calculation of E1 is O (#s × cost(k)), E1 is differentiable relative to indexed 

assignments to f when #s  is sufficiently large. [] 

The preceding arguments demonstrating that  E1 is differentiable with respect 

to (26) can also be applied to E2. Generalization of Theorem 3 to the case of 

indexed assignment f ( y l , . . . ,  y,) :-- z to multiparameter maps f can be found in 

[33, pp. 46-48]. 
We have now given quite a number of illustrative examples of efficient deriv- 

atives and can proceed to analyze conditions under which finite differencing can 

improve code. As in Fong and Ullman's earlier work [15, 17], we require set 

theoretic finite differencing to yield asymptotic speedup. However, our differenc- 
ing technique, the required speedup, and the theoretical characterization of 

conditions (enforced on both preprocessing and differentiation) under which this 

speedup can be obtained are different from, yet also complementary to, theirs. 

Without loss of generality, consider differentiation of a single nonelementary 

expression f occurring within a program loop L restricted by the boundedness 

requirement. Suppose that a chain J of expressions differentiable with respect to 

L are used to reduce f. Then, if we assume that  f is calculated more frequently 

within L than in code occurring outside L, the following preprocessing conditions 

must hold: 

1. Under the most favorable condition, the initial evaluation of all the expres- 

sions within J on entry to L should require the same asymptotic cost as a single 

initial calculation of f within L. 
2. When initialization costs are higher than this, as can happen when Jinvolves 

auxiliary expressions, asymptotic speedup can still be expected when the prepro- 

cessing costs do not exceed the asymptotic costs of code in the region just 

outside L. 
3. Finally, when large loop iteration is expected, we can sometimes perform 

more costly preprocessing without sacrificing speedup; for example, the initiali- 

zation for Rule J1 Method 2 in Appendix B involves sorting and was used 

effectively to obtain a logarithmic speedup of the bankers algorithm (see Appen- 

dix A3). 
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While the preceding conditions prevent preprocessing operations from retard- 

ing the asymptotic running time of a program, either of the following two 

conditions on the differential OJ(L ) will ensure asymptotic speedup for the work 

involved in computing f within L: 

1. Ideally, when each derivative code block (associated with an elementary 

expression within J)  used to form the differential of J with respect to L requires 

only a constant factor to compute (as is the case with most of the derivative rules 

found in Appendix B), the cost of computing each extended pre- and postde- 

rivative O-J(dx) and O+J(dx) for every modification dx (occurring in L) to a 

variable x on which J depends will also be just a constant factor. 

2. When the asymptotic cost of computing f is greater than this, then our 

assumptions about loop boundedness and relative execution frequency of f will 

ensure that  the cost of maintaining the value of f within the differential OJ(L ) 
will be asymptotically less than the cost of calculating fwithin L. 

3. When the preceding condition does not hold, asymptotic improvement can 

still arise if another, more powerful condition holds. Suppose that f is formed by 

composition and parameter substitution from the elementary expressions given 

in Appendix B. Suppose also that, within L, only a single variable s on which f 

depends is modified; suppose, finally, that  within L each modification ds to s, 

and, hence, each derivative block pair O-J(ds ) and O+J(ds ), is of the same form 

(e.g., s could be set-valued and monotonically increasing (respectively, decreasing) 
within L). Then the overall cost of maintaining all of the expressions of J along 

any path from entry to exit of L and lying entirely within L will often be of the 

same asymptotic order as a single full computation of all the expressions within 

J at either the initial or final value of s (we call this cost worst-case-cost(J)). In 

this case asymptotic improvement will occur when worst-case-cost(J) = O (worst- 

case-cost(f)) or worst-case-cost(J) = O(preprocessing cost for J) ,  and such 

improvement will occur even without the boundedness requirement. 

Since all of our derivative rules can be adapted to Fong's deferred update 

approach, it is useful to make a few comparative remarks. Fong handles the issue 

of safety better than we do, since her expressions, differentiated with respect to 

a loop L, are only kept available at points where they are used in L. However, 

both methods face the same safety problems in handling preprocessing. Mainte- 

nance of the difference sets allows Fong to deal with interesting copy optimiza- 

tions that seem infeasible for us. Nevertheless, for contexts where our approach 

applies, the chain rule ordering serves to eliminate potentially costly copy 

operations on sets and tuples. Neglecting the cost of maintaining difference sets, 

her deferred derivatives should be expected to cost no more, and in many cases 

less, than our derivatives. However, maintenance of the difference sets requires 

additional space and time costs that could make differencing twice as expensive 
for her as for us. There are also situations where the maintenance of difference 

sets will be relatively easy, and Fong's method can work better than ours, as, for 

example, when loops allow branching to exit before differentiable expressions are 
encountered but after modifications to parameters on which they depend are 

encountered. However, since we intend to write our code at a high level of 

abstraction, a great deal of explicit branching can be avoided. Of course, appli- 
cation of the chain rule will introduce more complicated branching, and further 
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t ransformation can be expected to produce even greater  complexity of control  

flow as the program becomes progressively more efficient. 

5. ALGORITHM IMPROVEMENT 

5.1 Generalities 

Before presenting a full case s tudy of algorithmic improvement  by finite differ- 

encing, we note  tha t  there  exists a whole class of transit ive closure algorithms 

tha t  are amenable to our transformations.  Th e  main par t  of such transit ive 

closure algorithms typically consists of w h i l e  loops tha t  i terate a block of code 

until  an existential quantifier becomes false, tha t  is, tha t  have the following 

general form: 

$ initialize variables 
(while 3x ~ s [ k (x)) $ k is a Boolean expression (31) 

block(x) 
end while; 

where "block" involves definitions of the forms s w i t h : =  x and s l e ss :=  x to sets 

s, indexed assignments f ( y l  . . . . .  y , )  :--- z to maps f tha t  also have occurrences 

within k, and perhaps  other  kinds of changes to variables on which k depends (we 

also assume tha t  block contains uses of x). Based on the informal measure of 

computat ional  cost given in Table  II, the expense of evaluating the existential 

quantifier 

3x ~ sl k(x)  

within (31) is O(#s x cost(k)  x n) where n is the number  of loop iterations. 

The  me thod  of differencing will often be able to t ransform (31) into a faster 

"workset"  version, 

$ initialize variables 
workset := {x E s I k (x)); 
(while 3x E workset) (32) 

block'(x) 
end while; 

where block '  is the differential of workset with respect  to block. We expect  tha t  

the cost of executing a single cycle of block'  will differ f rom the cost of executing 

block by only a constant  factor. Moreover,  the potential ly costly search through 

s within the whi le - loop  predicate of (31) can be avoided in (32) at  a cost of 

O(#s x cost(k))  or sometimes O(#s x log # s  x cost(k))  in preprocessing (i.e., 

evaluation of workset on entrance to the w h i l e  loop). Th e  cost of keeping workset 

available in block is thus 

O (#s  x cost (k) + n x cost (k)) 

o r  

O(#s x log # s  x cost(k)  + n x cost(k)) ,  

which generally represents  improvement .  (We assume tha t  the pa ramete r  # s  in 

the cost est imate just  above is some worst-case value.) 

As is shown in [33, pp. 114-152], various sorting, parsing, graph, and general 

problem-solving algorithms can be wri t ten in the form (31) and t ransformed by 

our method  into the form (32), in which the text  of block'  will often be ten t imes 
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larger than block and much more complex. Some examples of high-level algori- 

thms (31) that we have differentiated are found in Appendix A. 

The finite difference techniques described in this paper allow algorithms to be 

written in a "high style" in which complicated manipulation of worksets can be 

avoided at no cost, since these methods can directly generate faster algorithms 

from these "high style" versions. The perfection of our methods will therefore 

enable programmers to use powerful high-level dictions to write clear high-level 

programs that can be transformed routinely into more efficient low-level versions. 

This will facilitate, among other things, correctness proofs of programs, since, for 

example, we can expect to prove undifferentiated programs of form (31) correct 

more easily than their more complicated workset counterparts (32}. 

5.2 Extended Example: An Algorithm to Find the Center of a Free Tree 

The connection between differencing and an efficient version of an algorithm to 

find the center of a free tree was first observed by Sridharan [44]. In this section 

we use our finite differencing rules to transform an inefficient version of an 

algorithm to find the center of a free tree into a highly efficient variant. 

A free tree T is defined as a connected, undirected, acyclic graph. A leaf of T 

is a node having only one adjacent node. If T consists of a single node n, then the 

center of T is n; if T consists of only two nodes, nl and n2, then the center of T 

is the set {nl, n2}; if T consists of more than two nodes, its center is the same as 

the center of a tree T' formed from T by removing all the leaves of T. 

Our initial algorithm specification represents T as a symmetric edge set E and 

a set of nodes S. E maps each node n of S into the set E{n)  of adjacent nodes. 

The algorithm proceeds by repeatedly searching for the leaves of T and removing 

these leaves from T as long as the number of nodes in T is greater than 2. 

Speeding up this initial algorithm entails differentiating the search for the leaves. 

To begin the algorithm development, we consider SETL Program 1. In order 

to prepare this program for finite differencing, we apply two syntactic transfor- 
mations, 

E{x}*S---)  {y E E ( x }  lY E S )  

and 

S - : =  { x e  S l # ( y e  E{x} l y e  S} = 1} ---) (Vne ( x e  S l # { y e  E{x) l y e  S} = 1}) 
S l e s s :=  n; 

e n d  V; 

which places Program 1 into the canonical form shown as Program 2 (i.e., a form 

for which all set intersections and deletions have been turned into set formers, 

and set additions and deletions are implemented at a lower level in terms of set- 
element additions and deletions). 

Analysis of Program 2 can detect three expressions differentiable within the 
whi le  loop. These are 

enew{x} = {y E E{x} l Y E S} 

numnew(x) = #enew{x}  

leaves = {x E S I numnew(x) = 1} 

of the form of Rule D2 

in Appendix B; 

of the form of Rule M2 

in Appendix B; 

of the form of Rule C1 Method 2 
in Appendix B 
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Line 

no. 

r e p r  E: s y m  map; 

1 read(E) ;  

2 S : =  d o m a i n E ;  

3 (while # S >  2) 

4 S - : =  {x E SI#(E{x} * S) = 1}; 

5 end  while; 

6 print(S);  

$ declaration: E is symmetric 

$ read the free tree 

$ compute the nodes of the tree 

$ remove leaves from S 

Program 1 

Line 

no. 

repr  E: s y m  map; 

1 read(E) ;  

2 S := d o m a i n  E; 

3 (whi le  # S  > 2) 

4 (VnE { x E S I # { y E E { x } I y E S  } =1})  

5 S less:= n; 

6 end  V; 

7 end  while; 

8 print(S);  

$ read the free tree 

$ compute the nodes of the tree 

Program 2 

where we define e n e w  and n u m n e w  in the following way: 

e n e w =  ( [ x , y ]  E E l y E  S } ;  

n u m n e w  = {Ix, # e n e w { x }  ] : x E d o m a i n  e n e w } .  

If we let B stand for the whi le  loop forming the main body of Program 2, then 

our final efficient version of the algorithm should be generated by first transform- 

ing B into the code represented by 

achieve  enew = {Ix, y] E E I Y E S}; 
achieve numnew = {[x, #enew{x}  ] : x ~ domain  enew) ; 
a c h i e v e  leaves = (x E S I numnew(x )  = 1}; 

aleaves, numnew,  enew( B ) 

and then transforming the program P which results into a final form 

Clean (Init ( P ) ) 

Based on the static performance analysis for differencing presented in the 

preceding section, it is easy to predict at this point that  the differentiated tree 

center algorithm will run in O ( # E )  steps. Preprocessing costs (determined by 

treating the three achieve statements above as three separate assignments) are 

clearly O ( # E ) .  Because the set S is monotonically decreasing within the whi le  

loop of Program 2, the cumulative costs of executing derivative code within this 

loop will be asymptotically the same as the preprocessing costs. The remaining 

statements 1, 2, 5, and 8 of Program 2 can contribute no more than O ( # E )  steps 

to the cost of its differentiated form. 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



Finite Differencing of Computable Expressions 431 

Line 

rio. 

r e p r  E: s y m  m a p ;  

1 r e a d ( E ) ;  

2 S := d o m a i n  E ;  

3 a c h i e v e  enew = {[x, y] ~ E lY E S}; 

4 a c h i e v e  numnew = {Ix, #enew{x}]:x E d o m a i n  enew}; 

5 a c h i e v e  leaves = {x E S lnumnew(x) = 1}; 

6 (wh i l e  # S  > 2) 

7 ( V n E  { x E S l # e n e w { x  } = 1}) 

8 (Vu E E{n})  

9 enew{u} l e s s : =  n;  

10 e n d  V; 

11 S l e s s :=  n; 

12 e n d  V; 

13 e n d  wh i l e ;  

14 p r i n t ( S ) ;  

P rog ram 3 

Recall that the chain rule transformation aleaves, numnew, enew (B)  is defined 

recursively as a leaves, numnew (a enew (B)  ). To produce a enew (B)  we only need 

to insert the prederivative code, a-enew(S  less:= n;),  just before line 5 of 

Program 2. According to Rule D2 in Appendix B, this prederivative is 

(Vu E {x E domain E [ n E E(x)))  
enew{u} less:= n; (33) 

end V; 

Note, however, that, since E is a symmetric relation, we can replace the set 

former {x E d o m a i n  E I n ~ E(x}) appearing within (33) by E ( n ) .  This follows 

from the fact that  E equals its inverse when it is symmetric. At this point we can 

also replace the occurrence of ( y  E E{x} [y  E S} within Program 2 by the 

retrieval enew(x}. The algorithm now has the transitional form shown as Pro- 
gram 3. 

Next, we differentiate numnew relative to the whi le  loop B1 at lines 6-13 of 

Program 3. Then, to determine anumnew{B1),  we only need to introduce 

a-numnew(enew(u}  less:= n; ) just before line 9 of Program 3; by Rule M2, this 
code is just 

numnew(u) -:= 1; 

At this point the occurrence of #enew {x} at line 7 of Program 3 can be replaced 

by an occurrence of numnew(x).  The tree center algorithm that results from the 
preceding transformational steps is Program 4. 

The final step of the chain rule involves differentiation of leaves. Note that  this 

entails transforming the whi le  loop (which we designate B2) at lines 6-14 of 

Program 4 into the code implied by aleaves(B2 ). It is easy to see that  differen- 
tiation of leaves depends on determining a-leaves(numnew(u) - : =  1;) and 

a-leaves{S less:-- n;). By Rule C1 Method 2, the code implied by 
a-leaves(S less: = n; ) is 

if numnew(n) = 1 then 
leaves less: = n; 

end if; 
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Line 

n o .  
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r e p r  E:  s y m  m a p ;  

r e p r  numnew: s m a p (  ) 1' 0; $ declares: x ~ d o m a i n  numnew ~ numnew(x)  = 0 

1 r e a d ( E ) ;  

2 S := d o m a i n  E ;  

3 a c h i e v e  enew = {[x, y] E E lY E S}; 

4 a c h i e v e  numnew = {[x, # e n e w { x } ] : x  E d o m a i n  enew}; 

5 a c h i e v e  leaves = {x E S Inumnew(x)  = 1}; 

6 ( w h i l e  # S  > 2) 

7 (Vn E {x E S I numnew(x)  = 1}) 

8 (Vu E E{n})  

9 numnew(u)  - : =  1; 

10 enew{u} l e s s : =  n; 

11 e n d  V; 

12 S l e s s : =  n;  

13 e n d  V; 

14 e n d  wh i l e ;  

15 p r i n t ( S ) ;  

P rog ram 4 

Line 

nO.  

repr E: s y m  m a p ;  

repr numnew: s m a p (  ) ~ 0; 

1 r e a d ( E ) ;  

2 S := d o m a i n  E; 

3 a c h i e v e  enew = {Ix, y] E E l y  E S}; 

4 a c h i e v e  numnew = {[x, # e n e w { x } ] : x  E d o m a i n  enew}; 

5 a c h i e v e  leaves = {x E S I numnew(x)  ffi 1}; 

6 ( w h i l e  # S  > 2) 

7 (Vn E leaves) 

$ m a k e  a copy of leaves on en t rance  to loop, and  i tera te  over the  copy 

8 (Vu E E{n}  ) 

9 i f  u E S t h e n  

10 i f  numnew(u)  = i t h e n  

11 leaves l e s s : =  u; 

12 e l s e i f  numnew(u)  = 1 + i t h e n  

13 leaves w i t h : =  u;  

14 e n d  if; 

15 e n d  if; 

16 numnew(u)  - : =  1; 

17 enew{u} l e s s : =  n;  

18 e n d  V: 

19 i f  numnew(n)  = I t h e n  

20 leaves l e s s : =  n;  

21 e n d  if; 

22 S l e s s : =  n;  

23 e n d  V; 

24 e n d  w h i l e ;  

25 p r i n t ( S ) ;  

P rog ram 5 
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while the code implied by  O-leaves(numnew(u)  - :  = 1; ) is 

if  u • S then  
if numnew(u) = 1 then  

leaves less: = u; 
elseif numnew(u) -- 1 + 1 then  

leaves with:-- u; 
end if; 

end if; 

After  this, the occurrence of {x E S ] numnew(x)  = 1} within P rog ram 4 is 

r edundan t  and can be replaced by  the occurrence of leaves. T h e  resul t  is Pro- 

g ram 5. 

Note  tha t  the f o r a l l  loop L at  lines 7-23 of P rog ram 5 involves an i terat ion 

over  the  set  leaves, and leaves is also modified within the body of L. In  accordance 

with S E T L  semant ics  [41], we assume tha t  a copy of leaves is made  on ent rance  

to L; i terat ion proceeds  over  this copy (which cannot  be modified within the  body 

of L). Any occurrences of the  variable leaves within the body  of L refer  to the 

original instance of leaves and not  to the copy. 

At  this point  initialization can be worked out  on all of P rog ram 5. T h e  Ini t  

t ransformat ion  replaces the sequence of a c h i e v e  s t a t ements  a t  lines 3-5 by  a 

valid code block tha t  makes  enew, numnew,  and leaves available on exit. A full 

implementa t ion  of Ini t  is presented  in the next  section; the  actual  block produced 

by  Ini t  is as follows: 

numnew := { }; 
enew := { }; 
(V[x, y] • E) 

if  y • S then  
numnew(x) +:= 1; 
enew{x} with:= y; 

end if; (34) 
end V; 
leaves := { }; 
(Vx • S) 

if  numnew(x) = 1 then  
leaves with: = x; 

end if; 
end V; 

Note  tha t  the initialization block (34) first evaluates  n u m n e w  and enew to- 

gether. Afterward,  leaves is constructed by  itself. Note,  also, tha t  construct ion of 

the three  vir tual  variables  is incrementa l  and can actual ly be defined in t e rms  of 

our differential operator;  tha t  is, (34) can be genera ted by 

Onumnew(O-enew(E := { };) 
(V[x, y] • E) 

O-enew(E with:-- Ix, y];) 
end V; ) 

O-leaves(S := { };~ 
(Vx • S) 

O-leaves(S with: = x; ) 
end V; 
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Line 

no. 

repr E: s y m  m a p ;  

repr n u m n e w :  smap(  ) 1' 0; 

1 r e a d ( E ) ;  

2 S := d o m a i n  E ;  

3 numnew := { }; 

4 (V[x, y] E E )  

5 i f  y ~ S then  

6 numnew(x) +:=  1; 

7 e n d  if; 

8 e n d  V; 

9. leaves := { }; 

10 (Vx E S) 

11 i f  numnew(x) = 1 then  

12 leaves w i t h : =  x; 

13 e n d  if; 

14 e n d  V; 

15 (wh i l e  # S  > 2) 

16 (Vn E leaves) 

17 (Vu ~ E{n})  

18 i f  u E S then  

19 i f  numnew(u) = 1 then 

20 leaves l e s s : =  u; 

21 e l s e i f  numnew(u) = 1 + 1 then 

22 leaves w i t h : =  u; 

23 e n d  if; 

24 e n d  if; 

25 numnew(u) - : =  1; 

26 end V; 

27 i f  numnew(n) = 1 then  

28 leaves l e s s : =  n;  

29 e n d  if; 

30 S less:= n; 

31 e n d  V; 

32 e n d  wh i l e ;  

33 p r i n t ( S ) ;  

P rog ram 6 

At this point, dead-code elimination can be performed. Our dead-code elimi- 

nation procedure will regard the output statement print(S) at line 25 and the 

input statement read(E)  at line 1 of Program 5 as "essential" statements. Any 

statement that can contribute to the value of S used in this p r in t  statement is 

also considered essential. Observation shows that  all assignments to e n e w  are  

unessential and thus can be eliminated as dead code. The result of all these 

transformational steps is Program 6, the final form of our algorithm. 

It seems likely that  current technology exists to mechanize finite differencing 

sufficiently to carry out the development of the tree center algorithm from 
Program 1 to Program 6 automatically. This full transformation yields a consid- 

erable speedup, since Program 1 runs in O (#S × #E)  steps, while Program 6 runs 

in O ( # E )  steps. Moreover, the soundness of our transformations, along with a 

standard correctness proof of Program 1, proves the correctness of Program 6, a 

less perspicuous but more efficient equivalent algorithm. 
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The reader will note that several obvious minor improvements to Program 6 

can be made. For example, we can place the statement 

a s s e r t  y E s; (35) 

just prior to line 5 in order to reduce the conditional statement at lines 5-7 to 

numnew(x)  +:= 1; 

Based on value flow analysis [40], a high-level optimizer can even perform this 

transformation automatically. Likewise, standard constant folding can replace 
the term 1 + 1 at line 21 by the constant 2. 

More significant, if we provide input assumptions that  E is a free tree within 
Program 1, it is also possible to justify the assertions 

a s s e r t  numnew(u) ~ 1; 

prior to line 19 and 

assert numnew(n) = 1; 

just before line 27; and this allows us to simplify the conditional statements at 

lines 19 and 27. Consequently, l eaves  can be represented as a queue, and the copy 

of l eaves  required on entry to the foral l  loop at line 16 can be avoided. 

Unfortunately, the current state of correctness technology is not sufficiently 
advanced to make these additional improvements completely automatic. 

Further automatic improvement by a large constant factor may be achieved by 

a combination of techniques, the most plausible of which is Schwartz's method of 

data-structure selection (see [12, 37]). This final transformation will produce a 
tree center program at about the level of PASCAL. 

6. IMPLEMENTATION ALGORITHMS 

In order to complete our description of finite differencing, we need to specify the 
transformations Init and Clean. 

6.1 Init (Initialization Transformation) 

If B is a code block, then B '  = Init(B) is a new code block formed from B by 

transforming every contiguous sequence of achieve statements of the form 

achieve c = f (x l  . . . . .  x,); (36) 

into a code block that evaluates each expression f in the sequence and stores its 
value into c. 

The Init transformation, as discussed in [33, pp. 43, 102-104], uncovers a new 

way of handling a particular kind of loop jamming in a programming language 

setting. To illustrate this idea, we first consider the problem of initializing the 
two expressions 

cl = ( x  ~ s I k l ( x ) ) ;  

c2 = {x  E cl I k2(x) ) .  (37) 
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A straightforward way to initialize (37) is to execute the ass ignments  

cl := (x E s I kl(x)}; (38) 
c2 := (x C c, L k2(x)}; 

where the order of execution within (38) conforms to the obvious rules of 

dependency.  However ,  the  computa t ion  (38) requires  two full i terat ions th rough  

possibly large sets. 
A be t te r  approach  arises af ter  we consider initializing el in the  following 

incrementa l  way: 

ci:= (}; 
(Vx ~ s) 

i f  kl(X) then  (39) 
Cl with: = x; 

end if; 
end V; 

since differentiation of c2 with respect  to code block (39) yields an efficient 

initialization of c2 j a m m e d  into the  loop used to initialize cl. Using our  differential 

operator ,  we can specify the collective differential initialization of c~ and c2 as 

follows: 

Oc2(O-Cl(S := ( ) ; ) )  
(Vx ~ s) (40) 

0C2 ( 0--Cl ( S with: = x; ) ) 
end V; 

which is the same as 

c2:= ( ) ;  
el . '= ( ) ;  
(Vx ~ s) 

if  kl(X) then  
if  k2(x) then  (41) 

c2 with: = x; 
end if; 
cl with: = x; 

end if; 
end V; 

We say t ha t  (39) represents  an expans ion  of cl abou t  s. I t  is convenient  to 

abbrevia te  (39) as O-cl(s := s;) ,  f rom which (39) can be derived using the 

following identities: 

O--Cl(S := S;) -~ O--Cl(S :-~- ( ) ; )  

O-c,(s +:= s;) 

O-cl(s +:= s;) = (Vx E s) 

O-cl(s with :=  x;) 
end  V; 

We call (40) an example  of vertical jamming.  Another  kind of j amming  is 

i l lustrated by  initialization of the two independent  expressions 

C3 -'--- (X E c2 ] k3(x)); (42) 

C4 m- (X ~ C2 ] k 4 ( x ) ) ,  
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together  with the previous two expressions (37). Suppose tha t  c2 does not  occur 

free in ei ther  ka or k4. Then  c3 and c4 may  be initialized in any order  following or 

in concert  with the initialization of c2. In the case where there  are also no free 

occurrences of cl in k3 or k4, it is worthwhile to initialize cl, c2, c3, and c4 

collectively. This  is achieved by executing the following differential code: 

0c3, c4, c2(a-cl(s  := s;)) (43) 

However,  for the case when cl occurs free in ks and k4, the code (43), though 

correct,  will require execution of differential code for c3 and c4 with respect  to 

modifications to c2 and c~. In this case, (43) will not  offer the same speedup as in 

the previous case, and it is preferable to initialize c3 and c4 by executing 

O-c~(c~ := { };) 

o-c,(c~ :=  ( ] ; )  

(Vx ~ c2) 
a-c3(c2 with:= x;) (44) 
a-c4(c2 with:= x;) 

end V; 

(which can be abbreviated a-c4,  c3 (c2 := c2; )) just  after  executing code block (40). 

Note tha t  initialization of c3 and c4 within (43) and (44) represents  an initialization 

of independent  expressions, a phenomenon  we denote  h o r i z o n t a l  jamming. Fur- 

ther  insight into our notion of jamming by differential initialization may  be gained 

from consideration of a more complicated example tha t  is taken from the case 
s tudy of the last section: initialization of 

e n e w  = {Ix, y] E e [ y E s}; 

n u m n e w  = {Ix, # e n e w { x }  ] : x E d o m a i n  e n e w }  ; (45) 

l e a v e s  = { x  E s I n u m n e w ( x )  = 1}. 

As in the previous examples, jamming succeeds after  e n e w  is expanded about  
its parameter  e; tha t  is, 

enew := { }; 
(V[x, y] E e) 

i fy  E s then  (46) 
enew with: = [x, y]; 

end if; 
end V; 

which is a realization of 

O-enew(e  :-- e;) (47) 

Observe tha t  it is possible to differentiate n u m n e w  with respect  to code block 

(47) and obtain the following efficient initialization of e n e w  vertically j ammed  
with n u m n e w  in a single loop: 

n u m n e w  := { }; 
enew := { }; 
(V[x, y] ~ e) 

if  y E s then  
n u m n e w ( x )  +:= 1; (48) 
enew with: ffi [x, y]; 

end if; 
end V; 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



438 R. Paige and S. Koenig 

Note tha t  l e a v e s  can also be constructed differentially with respect  to (48). 

Unfortunately,  in this case, the differential code will force an e lement  x to be 

added to l e a v e s  whenever  n u m n e w ( x )  is set to 1; but, after  n u m n e w ( x )  is 

incremented to 2, x will be removed from l eaves .  To avoid such extraneous 

operations we will initialize l e a v e s  (by expansion around its pa ramete r  s) by itself 

immediately after  (48). 
Aside from the constant-factor  speedup tha t  can result  f rom jamming,  there  is 

another  aspect tha t  is equally important:  vertical jamming can eliminate expres- 

sion dependency.  Note,  for example, tha t  in the initialization code (48) n u m n e w  

does not  depend on e n e w ,  al though there  would be dependency  if n u m n e w  and 

e n e w  were initialized separately by the straightforward assignments, 

enew := {[x, y] E e I Y ~ s} (49) 
n u m n e w  := {Ix, # e n e w { x }  ] : x E domain  enew} 

Consequently,  if n u m n e w  is essential to a program, in the case of (49) the 

dependency of n u r n n e w  on e n e w  wi l l  force e n e w  to be essential also. However,  in 

the case of (48) the lack of dependency permits  e n e w  to be removed  f rom (48) as 

dead code whenever  it is not  essential beyond its initialization block. 

The  preceding examples lead to the following general rule: 

R u l e  1. Differential initialization costs for an expression 

E = f ( x l , . . . ,  x , )  

j ammed  together  with other  expressions should be no worse than  those of a full 

separate  evaluation of f ( x l ,  . . . ,  x , ) .  

Adherence to Rule 1 is facilitated by following two part icular  "rules of thumb":  

R u l e  2. We only initialize an expression differentially with respect  to a single 

parameter .  

R u l e  3. For  each e lementary  expression f ( x l ,  . . . ,  Xn) we only allow f to be 

initialized differentially (or by separate expansion) with respect  to certain of its 

parameters ,  called "expandable"  parameters ,  for which the technique is most  

likely to be profitable. 

Having said all this, we can now go on to specify the Init  t ransformation.  

Consider initialization for a chain of differentiable expressions E i  = fi, i = 1 . .  n.  

The  following steps will produce a block B tha t  makes  Ei ,  i = 1 . .  n, available on 

exit. The  block B will consist of a sequence of subblocks each of which is used to 

fully construct  expressions incremental ly with respect  to a single expandable 

parameter .  

(1) Let B start out as an empty code block. 
(2) For each Ei = fi, i = 1 . .  n, let b be the last subblock of B that is used to initialize a 

virtual variable Ek on which ~ depends (and let k = 0 if there is no such subblock). 
Then the following three cases arise: 

(a) Vert ical  J a m m i n g .  Suppose that k > 0 and that Ek is an expandable 
parameter of Ei {according to Rule 3). Suppose, also, 
that the code subblock b that initializes Ek includes no 
code that initializes any other parameter on which Ei 
depends (according to Rule 2). Then to initialize Ei we 
replace b with OEi { b ). 
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(b) Horizontal Jamming. If case (a) does not apply, let b be the first subblock of 
B that occurs after all of the subexpressions of 1~ are 
initialized, and that is formed by expansion around an 
expandable parameter x of]~; that is, b is of the form 

. . .  O-J(x := x;) . . . )  

where J is a sequence of virtual variables all jammed 
horizontally around x. Then to initialize Ei we replace b 
with 

. . .  O-El, J ( x  := x;) . . . ) .  

(c) Separate Expansion. When neither of the other cases applies, we separately 
initialize Ei by expansion around one of its expandable 
parameters x and append the subblock O-Ei (x := x; ) to 
the end of B. 

We note with regard to the "approximation" procedure just above that a more 

general procedure that produces an initialization block with the fewest number of 

loops (and also obeys Rules 2 and 3) is equivalent to an NP-hard DAG covering 

problem where the DAG reflects expression dependency. In fact, in the simplest 

case in which all expressions to be initialized are independent, the problem 

reduces to one of finding optimal horizontal jamming. This is equivalent to the 

NP-complete "hitting set" problem (cf. [19, p. 222]). Although the algorithm we 

have presented can result in a suboptimal solution, the solution will never be 

worse than a straightforward unjammed solution. Also, our algorithm can be 
made to run in time proportional to the size of its output. 

The idea of horizontal and vertical expression jamming has been studied before 
in the contexts of programming languages by Burstall, Darlington, and Burge [6, 

7], file processing systems by Morgenstern [32], and system construction by 

Feather [14, pp. 5-2-5-5], although the transformations found in those references 

are expressed and implemented differently than here. Morgenstern's work is 

particularly noteworthy, since the overhead costs involved in iterating through 

files stored on secondary storage are much greater than those involved in cycling 

through program loops residing in main memory. Thus, whenever Morgenstern's 

jamming techniques can eliminate a full iteration through a file, the constant- 

factor speedup in systems performance can be considerable. Morgenstern uses a 

dynamic programming algorithm to obtain profitable loop jamming. 

6.2 Clean(P) (Cleanup Transformation) 

The Clean transformation is applied to a full program P as the final step of finite 

differencing. It functions to sweep up the transformational debris that the 

differential operator leaves in its wake. Surprisingly, the major part of this 

cleanup procedure can be accomplished by standard dead-code elimination. This 

is because, whenever the differential operator is used to keep available an 
expression 

c l = e l ( e 2 )  

which depends on an inner expression 

C2 ~ e 2 ,  
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C2 will also be kept  available. However ,  it is often the case tha t  the  diferential  

code used to main ta in  cl has  no uses of  c2, which allows us to pe r fo rm dead-code 

el imination on the differential code t ha t  main ta ins  c2. 

Our Clean t ransformat ion  can be specified using a var ian t  of an a lgor i thm given 

by  Kennedy  [25]. This  a lgor i thm uses a negat ive s t ra tegy  in which all "essent ial"  

s t a t ements  within a p rog ram P are determined.  All o ther  s t a t emen t s  are consid- 

ered dead and can be eliminated.  

T h e  Clean procedure  begins by  locating (within P)  a small  set  crit of p rog ram 

points  containing essential  s t a t emen t s  of P f rom which all o ther  essential  state-  

men t s  of  P can be determined.  Initially, crit will include all of  the p r i n t  and  

sequential  r e a d  s t a t emen t s  3 of P t ha t  are reachable  f rom the p rog ram ent ry  

point.  T h e  a lgor i thm proceeds  by  adding new essential  s t a t emen t s  to crit accord- 

ing to a s tandard  t ransi t ive closure process. When  crit can no longer grow, the  

procedure  halts.  

New essential  s t a t emen t s  t ha t  are added to crit are de te rmined  using the  

usetodefmap (cf. Sect ion 3.4) and three  "local" maps ,  iuses, instof, and compound, 

defined as follows: 

1. iuses. I f  i is a p rog ram  point  containing a s t a t e m e n t  q, then  iuses{i} is the  

set  of  var iable  uses contained within q. T h e  value of iuses{i} is clear when  q is a 

s imple s ta tement .  W h e n  q is a condit ional s t a t e m e n t  

i f  c~ t h e n  

B1 
e l s e i f  c2 t h e n  

e l s e i f  c. t h e n  

B .  
e l se  

Bn+l 
end  if; 

iuses{i} is the set  of uses occurring within cl . . . . .  Cn. When  q is a w h i l e  loop, 

iuses{i} contains only those uses within the condit ion of the  loop. W h e n  q is a 

f o r a l l  loop, iuses(i} is the set  of all uses within the  loop i terator.  

2. instof. I f  d is a definition, then  instof(d)  is the  p rog ram point  of  the  

s t a t e m e n t  q t h a t  contains  d. 

3. compound. I f  a s t a t emen t  q is contained within an  immedia te ly  enclosing 

compound  s t a t emen t  r, t hen  compound(q) = r. 

T h e  Clean procedure  is based on the  following condition, under  which a 

s t a t e m e n t  j t h a t  does not  belong to crit can be added  to crit: 

:~i E crit, u E iuses(i} ,  d E usetodef(u}  [ j  E h s t o f { d }  o r j  = compound(i).  

(50) 

3 The observation that sequential read statements must be included in the initial value of crit is due 
to Richard King. Consider this example: read(a); read(a); print(a); 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



Finite Differencing of Computable Expressions 441 

For predicate (50) to hold, cri t  must  contain a s ta tement  i tha t  ei ther  

(1) contains a use u tha t  is linked (via the u s e t o d e f  map) to a definition d 

contained in the s ta tement  j or 

(2) is immediately contained in a compound s ta tement  j .  

The  following high-level S E T L  program carries out  the essential code detect ion 

phase of the Clean transformation: 

(while 3i E ( instof[ usetodef[ iuses[ crit ]]] + compound[ crit ]) - crit ) 
crit with:= i; (51) 

end while; 

6.3 Finite Differencing Algorithm 

We now sketch an algori thm tha t  could actually au tomate  all of the transforma- 

tional steps given in our case s tudy of Section 6.2. Certain implementat ion-level  

details (such as matching operations, macro expansion procedures,  e lementary  

expression form and derivative tables) are absent, however, and the reader  is 
asked to refer to [33, pp. 71-114]. 

We assume that,  before the finite differencing procedure can be applied, the 

code pres t ructure  is in parse tree form, over which a control  flow graph is 

imposed. Data  flow analysis is worked out  so tha t  the u s e t o d e f a n d  de f touse  maps 

are defined, and type analysis is also performed (by the method  of T e n e n b a u m  
[47]}. 

Algorithm: Automatic Finite Differencing 

(1) Apply preparatory transformations (cf. [33, pp. 235-236]). 
(2) Decompose the program into its loop structure L1, L2 . . . .  , L,  with the property i < j 

Li is contained in L] or Li N Lj = ( ) (cf. [2]). 
(3) For i = 1 .. n determine a chain Ji of differentiable expressions to be reduced within 

Li, but not in any region enclosing Li. 
(4) For i = n, n - 1 . . . .  ,1 transform Li into 

achieve  A(E~f)eJi E = f 
OJi(Li) 

(5) If P is the program that results from step (4), transform P into the final program 

Clean ( Init (P) ) 

7. CONCLUSION 

Finite differencing of applicative expressions extends an old mathemat ica l  idea to 

the general problem of algori thm optimization and, hence, to high-level-language 

implementat ion and design. The  techniques we have discussed in this paper  are 

likely to have an impact  on a number  of pragmatic issues related to both  

programming languages and databases. Many  of these issues have yet  to be fully 
explored. 

Application of finite differencing to languages such as APL, SNOBOL, and 

even P L / I  (whose string handling operations may  be receptive to differencing 

techniques) should be worthwhile. Similarly, it should be useful to consider 

dictions for specification of derivative rules for user-defined operations and 

procedures. Such a capability would extend the utility of finite differencing to the 
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larger area of software development by facilitating the construction of large, 

modular, incremental programs. 

Our techniques have been seen to offer new and efficient implementations of 
very high-level programming language dictions. In [33, pp. 157-159] it is shown 

how finite differencing can be used to implement fixed-point iterators that cause 

a code block to be executed repeatedly until there is no change of state. Finite 

differencing opens up new opportunities to implement exception handling. We 

have observed that generalized "on" conditions may be implemented efficiently 
by extending the differential to apply to conditional transfers as well as to 

applicative expressions. 

Most applications of finite differencing that we have studied are based on the 

paradigm of differentiating costly expressions executed repeatedly within program 

loops L. Another paradigm discussed in [33, pp. 164-165] that has only recently 

been explored has to do with restructuring a program loop L containing uses of 
an expression e (that is not differentiable with respect to L) in order to make e 

differentiable with respect to L. This second paradigm suggests a useful strategy 

for improving the speed of a search through a power set in the following context: 

3s E pow(e) [ k(s).  

Whenever k has subexpressions that are differentiable relative to element 

additions to and deletions from s, we can restructure the iteration through the 

power set by performing a depth-first search (through a tree in which the root 

represents { }, the successors of the root are all the singleton sets, etc.). This 

backtrack approach is still inefficient, but  it avoids construction of pow(e) and 
allows subexpressions of k to be differentiated with respect to the incremental 
construction of s. This should represent an improvement. 

Recently, the preceding idea has been pushed further by Sharir [43], who has 

developed a strategy based on Schwartz's s in i s ter  a s s i g n m e n t  [41] in which the 

depth-first search can be performed through a tree that has been pruned signifi- 
cantly. Sharir's methods provide a backtracking optimization which can speed up 
a nondeterministic algorithm that runs in somewhere between 2" and n n steps to 

an algorithm that runs in polynomial time. 

In [31] finite differencing is applied to database view maintenance, integrity 
control, and exception handling. Some preliminary ideas concerning database 

systems that adapt their physical structures dynamically via finite differencing 

are discussed in [33, pp. 160-163]. 

Ultimately, the success of installing finite differencing as part of a conventional 
optimizing compiler may rest on the efficiency of the implementation. We have 

already implemented a semiautomatic finite differencing system (Rutgers Ab- 
stract Program Transformation System, or RAPTS) for a subset of SETL, and 

have used RAPTS to derive the tree center algorithm discussed here, as well as 
several more complicated algorithms. The results of our implementation will be 
reported in the near future. 

Currently, we see two viable and complementary approaches to finite differ- 
encing, one that has been developed by Fong and Ullman [15, 17] and the other 
initiated in [33, 35] and developed further in the present paper. We believe that 

a unified approach to finite differencing that incorporates both methods should 
lead to conceptual and pragmatic improvements. 
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APPENDIX A. BASE FORM RUBBLE ALGORITHMS 

In [39, 42] Schwartz coins the term "base form rubble" to denote the most concise 

form of an algorithm from which a concrete implementation-level variant may be 

derived without difficulty by manually selected "routine" transformations. In this 

appendix we present a sampling of rubble programs whose more complex opti- 
mized forms can be derived automatically by finite differencing. We provide the 

necessary insight into how speedup can be achieved for these algorithms, but to 

obtain the details involved in the actual transformational steps the reader should 
refer to [33, pp. 114-152]. 

A1. Knuth's Topological Sort 

Perhaps the first example of a nontrivial algorithm transformed semimechanicaUy 

by finite differencing is the topological sort case study given by Earley [13]. Many 

of the steps which Earley applied manually were later applied more systematically 

and also without manual intervention in [33, pp. 114-119] to the base form SETL 

algorithm given below. The input assumed by this algorithm is a set s and a set 

of pairs s p  representing an irreflexive transitive predecessor relation defined on 

s; as output, it produces a tuple t in which the elements of s are arranged in a 
total order consistent with the partial order sp .  

t:=[];  
(while 3a  E s I ( sp{a}  • s) = { }) $ find a minimal element 

t with:= a; $ add it to the end of t 
s less:= a; $ obtain a new poset 

end while; 

Finite differencing will improve the algorithm above by differentiating the set 
of minimal elements 

m i n s e t  = { x E s I ( sp  ( x } * s) -- ( }} 

so that  the costly search involved in executing the existential quantifier can be 

avoided. Maintenance of the successor relation (which is the inverse of s p )  is 

crucial to maintenance of m i n s e t  and contributes to the order-of-magnitude 
speedup which the method yields. 

A2. Transitive Closure 

Another example closely related to topological sort is an algorithm to compute 

the image of a set s under transitive closure of a relation f. A succinct SETL 
version of this algorithm is 

(while f [ s ]  + s ~ s) $ while image(s) under fis not a subset of s, 
s +:= f[s]; $ augment s 

end while; 

Finite differencing will improve the running time of transitive closure by 
differentiation of 

o u t s e t  = { x  E s I # ( f { x )  - s) > 0}, 

which denotes the set of elements x E s in which the image set f ( x }  has values 

outside of s. But, in order to keep o u t s e t  available, f-~ must also be kept available. 
The final optimized version will run in O (# f )  steps. 
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A3. Habermann's Bankers Algorithm 

While the previous two examples illustrate algorithm optimization by an order of 

magnitude in running times, finite differencing applied to the base form of the 

bankers algorithm given below will yield a logarithmic speedup in general, and an 

order-of-magnitude improvement if the preprocessing costs (dominated by a sort) 

can be neglected. 

The general bankers algorithm can be used to detect deadlock among concur- 

rent processes competing for resources in an operating system environment. This 

algorithm models resource allocation by bank "loans" to customers who make 

known demands. Different kinds of resources are represented by a set R of 

currency types. The concurrent processes are represented by a set cus of bank 

customers. For each kind i of currency R,  cash(i  ) represents the total amount of 

this currency still unallocated by the bank; loan( i ,  c ) is the loan of type i currency 

owed by a customer c; and claim(i ,  c)  is a customer's additional demand for 

currency type i. Once a customer's total demand is met, he will repay the bank 

his entire borrowed amount within a finite amount of time. If the bank can satisfy 

the demands of all of its customers, one at a time, then the initial state represented 

by cash, cus, claim, and loan  is "safe"; that is, a deadlock can be avoided. 

The algorithm follows a strategy in which the bank will try to meet the 

demands of any customer c whose claims can all be satisfied; that is, the condition 

Vi  E R I c laim(i ,  c) <_ cash( i )  

holds. The bank will then wait until c makes full repayment and is no longer a 

customer before scheduling any more customers. If all customers have been 

eliminated when the algorithm terminates, the original configuration of loans is 

"safe"; otherwise, it is not. 

A base form version of the bankers algorithm can be written as follows: 

(while 3c E cus I (Vi E R I claim(i, c) <_ cash(i)) 
(Vi E R) $ customer c pays back 

cash(i) +:= loan(i, c); $ all of his loans 
end V; 
cus less:= c; $ and goes away 

end while; 

This algorithm executes in time proportional to 

( # c u s )  2 x # R .  

Differentiation of the set of good customers 

(c E cus I # ( i  E R I c laim(i ,  u) > cash(i)} = O} 

will speed up the algorithm, so that the main whi le  loop will run in time 

proportional to # R  x # c u s ;  the preprocessing costs that  result from sorting the 

claims for each research type incur a computational expense proportional to 

# R  x # c u s  x log # c u s .  

APPENDIX B. FINITE DIFFERENCING RULES 

The following is a small portion of a basic derivative table for set theoretic finite 

differencing. A more complete table may be found in [34], which is a longer 
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version of this paper. The  Init  code given for each basic form is an expansion 

around a single expandable parameter .  Within the derivative code, potential ly 

expensive subexpressions tha t  must  be reduced are underlined. 

In the table below, all modification entries for set variables are expressed as 

"str ict"  operations, tha t  is, s w i t h : =  z (for which we assume the precondit ion 

tha t  z does not  belong to s) and s less := z (for which we assume the precondit ion 

tha t  z belongs to s). Within derivative code entries, all set modifications are also 
strict. 

To  use the rules below for general S E T L  code, it is first necessary to apply 

prepara tory  t ransformations to this code so tha t  set unions and differences 

s +_:= d e l t a  are  expressed first as disjoint unions s +:-- ( d e l t a  - s) and subset 

deletions s - : =  ( d e l t a  • s),  which must  subsequently be rewri t ten in the lower 
level forms 

(Vz E delta I z ~ s) 
s with:-- z; 

end  V; 

and 

(Vz E delta I z E s) 
s less:=  z; 

end  V; 
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