
KYUNGPOOK Math. J. 48(2008), 37-43

Finite Dimension in Associative Rings

Satyanarayana Bhavanari
Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar -
522 510, A.P, India
e-mail : bhavanari2002@yahoo.co.in

Nagaraju Dasari
Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar -
522 510, A. P, India
e-mail : dasari.nagaraju@gmail.com

Balamurugan Kuppareddy Subramanyam
Department of Mathematics, R. V. R and J. C. College of Engineering, Chow-
davaram, Guntur - 522 019, A. P, India
e-mail : muruganbalaks@yahoo.co.in

Godloza Lungisile
Department of Mathematics, Walter Sisulu University, Umtata, South Africa
e-mail : lgodloza@wsu.ac.za

Abstract. The aim of the present paper is to introduce the concept “Finite dimension”

in the theory of associative rings R with respect to two sided ideals. We obtain that if R

has finite dimension on two sided ideals, then there exist uniform ideals U1, U2, · · · , Un of

R whose sum is direct and essential in R. The number n is independent of the choice of

the uniform ideals Ui and ’n’ is called the dimension of R.

1. Introduction

The dimension of a vector space is defined as the number of elements in the
basis. One can define a basis of a vector space as a maximal set of linearly indepen-
dent vectors or a minimal set of vectors which span the space. The former when
generalized to modules over rings become the concept of Goldie dimension. Goldie
proved a structure theorem for modules which states that “a module with finite
Goldie dimension (FGD, in short) contains a finite number of uniform submodules
U1, U2, · · · , Un whose sum is direct and essential in M”. The number n obtained
here is independent of the choice of U1, U2, · · · , Un and it is called as Goldie dimen-
sion of M. The concept Goldie dimension in Modules was studied by several authors
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like Reddy, Satyanarayana, Syam Prasad, Nagaraju (refer [4], [5], [6]).
If we consider ring as a module over itself, then the existing literature tells about

dimension theory for ideals (i.e., two sided ideals) in case of commutative rings; and
left (or right) ideals in case of associative (but not commutative) rings. So at present
we can understand the structure theorem for associative rings in terms of one sided
ideals only (that is, if R has FGD with respect to left (right) ideals, then there exist
n uniform left (or right) ideals of R whose sum is direct and essential in R). This
result cannot say about the structure theorem for associative rings in terms of two
sided ideals. So to fill the gap, we prove the structure theorem for associative rings
with respect to two sided ideals.

Throughout the paper R denotes an associative ring (need not be commutative).
The paper is divided into three sections. In Secton-2 we introduce and study the
concepts: complement, essential with respect to two sided ideals of R. In Section-3,
we introduce the concept: uniform ideal and study few fundamental results which
are useful in Section-4. In Section-4, we introduce the concept “finite dimension”.
We obtain an equivalent condition for an associative ring R to have finite dimension,
which is used in the later part. Finally, we prove the main theorem: If an ideal H
has FDIR, then there exist uniform ideals U1, U2, · · · , Un of R whose sum is direct
and essential in H. The number is independent of the choice of the uniform ideals
Ui, 1 ≤ i ≤ n. This number n is called the dimension of H and we denote it by dim
H.

Let R be a fixed (not necessarily commutative) ring. We write K � R to denote
‘K is an ideal of R’. We use the term “ideal” for “two sided ideal”. The ideal
generated by an element a ∈ R is denoted by < a >. We do not include the proofs
of some results when they are easy or straight forward verification.

2. Essential ideals

We start this section with the following definition.

Definition 2.1. Let I, J be two ideals of R such that I ⊆ J.
(i) We say that I is essential (or ideal essential) in J if it satisfies the following
condition: K � R, K ⊆ J, I ∩ K = (0) imply K = (0).
(ii) If I is essential in J and I 6= J, then we say that J is a proper essential extension
of I. If I is essential in J, then we denote this fact by I ≤e J.

Definition 2.2. If K � R, A � R and K is a maximal element in {I / I � R, I ∩
A = (0)}, then we say that K is a complement of A (or a complement in R).

Note 2.3. Let I and J be ideals of R.
(i) I ≤e J ⇔ I ∩ K = (0), K � R ⇒ J ∩ K = (0).
(ii) B is a complement in R ⇔ there exists an ideal A of R such that B ∩ A = (0)
and K1 ∩A 6= (0) for any ideal K1 of R with B  K1. In this case B + A ≤e R.

[Verification: Suppose B is a complement in R ⇒ B is complement of an ideal A
of R ⇒ B is a maximal ideal of R with respect to the property B ∩ A=(0). Suppose
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that K1� R with B  K1. If K1∩ A = (0), then since B is maximal with respect to
B ∩ A=(0) we get K1 = B, a contradiction. Therefore K1 ∩ A 6=(0).The converse
is clear.
Now we show that B + A ≤e R. Let J � R such that (B + A)∩ J = (0). Let
x ∈ (B + J) ∩ A ⇒ x = b + j ∈ A where b ∈ B and j ∈ J ⇒ b - x = -j ∈ (B
+ A) ∩ J = (0) ⇒ j = 0 ⇒ x = b ∈ A ∩ B = (0). Therefore (B + J) ∩ A =
(0). Since B is maximal with respect to the property that B ∩ A = (0), we have
that B + J = B. Now J ⊆ B ⊆ B + A⇒ J = J ∩ (B + A) = (0). Thus B + A ≤e R].

(iii) If A ∩ B = (0), and C is an ideal of R which is maximal with respect to
the property C ⊇ A and C ∩ B = (0), then C ⊕ B is essential in R. Moreover, C is
a complement of B containing A. [Verification: Follows from (ii)].

Result 2.4. (i) The intersection of finite number of essential ideals is essential;
(ii) If I, J, K are ideals of R such that I ≤e J, and J ≤e K, then I ≤e K;
(iii) I ≤e J ⇒ I ∩ K ≤e J ∩ K;
(iv) If I ⊆ J ⊆ K, then I ≤e K if and only if I ≤e J, and J ≤e K; and
(v) If R1, R2 are two rings, f: R1 → R2 is a ring isomorphism, and A is an ideal
of R1, then A ≤e R1 ⇔ f(A) ≤e R2.

Proof. Proof for (i) to (iv) is a straight forward verification.
(v) Suppose A ≤e R1. We have to show that f(A) ≤e R2. Let B be an ideal of R2

such that f(A) ∩ B = (0). Now A ∩ f−1(B) = (0). Since A is essential in R1, we
have f−1(B) = (0) and so B = f(f−1(B)) = (0). Thus f(A)≤e R2. If f(A) ≤e R2.
The other part is similar. �

Note 2.5(Refer page 158 of [1]). If R is a ring, a ∈ R, then < a > = {ra + as +
na +

∑k
i=1 riasi / k ∈ Z, n ∈ Z, k ≥ 0, r, s, si, ri ∈ R }.

Remark 2.6. If a, b ∈ R and x ∈ < a >, then there exists y ∈ < b > such that x
+ y ∈ < a + b >.

[Verification: Since x ∈ < a >, by above Note 2.5, it follows that x = ra + as
+ na +

∑k
i=1 riasi. If y = rb + bs + nb +

∑k
i=1 ribsi ∈ < b >, then x + y = r(a

+ b) + (a + b)s + n(a + b) +
∑k

i=1 ri(a + b)si ∈ < a + b >.]

Lemma 2.7. (i) L1, L2, K1, K2 are ideals of R such that Li ⊆ Ki for i = 1, 2
and K1 ∩K2 = (0). Then L1 ≤e K1 and L2 ≤e K2 ⇔ L1 + L2 ≤e K1 + K2; and
(ii) Let K1,K2, · · · ,Kt, L1, L2, · · · , Lt are ideals of R such that the sum K1 + K2

+ · · · + Kt is direct and Li ⊆ Ki for 1 ≤ i ≤ t. Then L1 + L2 + · · · + Lt ≤e

K1 + K2 + · · ·+ Kt ⇔ Li ≤e Ki for 1 ≤ i ≤ t.

Proof. (i) Assume that L1 ≤e K1 and L2 ≤e K2. Write A1 = L1 + K2 and A2 =
K1 + L2. We show that A1 ≤e K1 + K2. Let 0 6= a ∈ K1 + K2. Then a = a1 + a2

for some a1 ∈ K1, a2 ∈ K2. If a1 = 0, then a ∈ A1 and hence < a > ∩A1 6= (0).
If a1 6= 0, then since L1 ≤e K1 and 0 6=< a1 >⊆ K1 there exists 0 6= x1 ∈ < a1 >
∩ L1. By Remark 2.6, there exists x2 ∈ < a2 > such that x1 + x2 ∈ < a1 + a2 >.
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Since x1 6= 0, 0 6= x1 +x2 ∈ < a1 +a2 > ∩ A1 = < a > ∩ A1. Thus A1 ≤e K1 +K2.
Similarly A2 ≤e K1 +K2. Since L1 +L2 = A1 ∩ A2 by Result 2.4(i), it follows that
L1 + L2 = A1 ∩ A2 ≤e K1 + K2.
Converse: Suppose that L1 + L2 ≤e K1 + K2 . To show L1 ≤e K1, take (0) 6= A
� R such that A ⊆ K1 and L1 ∩ A = (0). Now x ∈ A ∩ (L1 + L2) ⇒ x ∈ A and x
= l1 + l2 for some l1 ∈ L1 and l2 ∈ L2 ⇒ −l1 + x = l2 ∈ (L1 + A) ∩ L2 ⊆ K1 ∩
K2 = (0), l2 = 0 ⇒ x = l1 ∈ L1 ∩ A = (0). Therefore A ∩ (L1 + L2) = (0). Since
L1 + L2 ≤e K1 + K2 we have that A = (0). Thus L1 ≤e K1. In a similar way, we
can show L2 ≤e K2. The rest follows by using (i) and Mathematical induction on
t. �

Note 2.8. Consider ideals A, B, C of R as in Note 2.3 (ii) and (iii). Here A ⊕ B
≤e R and A ⊕ B ⊆ C ⊕ B ⊆ R. Using Result 2.4 (iv), we get that A ⊕ B ≤e C ⊕
B. By Lemma 2.7, it follows that A ≤e C. Note that C is a complement ideal which
is also an essential extension of A.

3. Uniform ideals

Definition 3.1. A non-zero ideal I of R is said to be uniform if (0) 6= J � R, and
J ⊆ I ⇒ J ≤e I.

Note 3.2. Let R1, R2 be two rings and f: R1 → R2 is a ring isomorphism. I, J �

R1. Then f−1(I) ∩ f−1(J) = f−1(I ∩ J).

Theorem 3.3. (i) I is an uniform ideal⇔ L�R, K�R, L ⊆ I, K ⊆ I, L∩K = (0)
⇒ L = (0) or K = (0).
(ii) Let R1 and R2 be two rings and f: R1 → R2 be ring isomorphism. If U is ideal
of R1, then U is uniform in R1 ⇔ f(U) is uniform in R2.
(iii) Let H and K be two ideals of R such that H ∩K = (0). For an ideal U of R
contained in H, we have that U is uniform ⇔ (U + K)/K is uniform in R/K.
(iv) If U and K are two ideals of R such that U ∩K = (0), then U is uniform in
R ⇔ (U + K)/K is uniform in R/K.

Proof. (i) Let I be an uniform ideal of R. Suppose L � R, K � R, L ⊆ I, K ⊆ I, L
∩ K=(0). Suppose L 6= (0). By our supposition, we have that L ≤e I. Since L ≤e I
and L ∩ K = (0) by Note 2.3 (i), we have that K ∩ I = (0). Since K ⊆ I it follows
that K = K ∩ I = (0). The other part of (i) is straight forward verification.
(ii) is direct verification.
(iii) Define f : H → (H+K)/K by f(h) = h+K. Then f is a ring isomorphism. By
(ii), we get that U is uniform in H ⇔ f(U) = (U +K)/K is uniform in (H +K)/K.
(iv) follows from (iii). �

Remark 3.4. Let K be an uniform ideal of R and L � R such that L ⊆ K. Then
either L = (0) or L is uniform.

[Verification: Suppose L 6= (0). Let A � R, B � R such that A ⊆ L, B ⊆ L
and A ∩ B = (0). Since A, B ⊆ L ⊆ K, A ∩ B = (0) and K is uniform, it follows
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that A = (0) or B = (0). This shows that L is uniform.]

4. Associative rings with finite dimension

Definition 4.1. (i) We say that R has Finite Dimension on Ideals (FDI, in short)
if R do not contain infinite number of non-zero ideals of R whose sum is direct.
(ii) Let (0) 6= K � R. We say that K has finite dimension on ideals of R (FDIR, in
short) if K does not contain an infinite number of non-zero ideals of R whose sum
is direct. It is clear that if R has FDI, then every ideal K of R has FDIR.

Theorem 4.2. K has FDIR ⇔ for any strictly increasing sequence H1, H2, · · · of
ideals of R contained in K, there is an integer i such that Hk ≤e Hk+1 for every k
≥ i.

Proof. Suppose K has FDIR. Take a strictly increasing sequence H1 ⊆ H2 · · · of
ideals of R contained in K. In a contrary way, suppose that for every integer i there
exists k ≥ i such that Hk is not essential in Hk+1 · · · · · · (i)
Take i = 1. Then there exists k1 ≥ 1 such that HK1 is not essential in HK1+1 .
Write i2 = k1 + 1. Then by (i), there exists k2 ≥ i2 such that HK2 is not essential
in HK2+1 . Note that k2 ≥ k1 +1. If we continue this process, then we get a
subsequence { HKi}∞i=1 of { Hi}∞i=1 such that HKi is not essential in HKi+1 and
ki+1 ≥ ki + 1. Since the sequence H1 ⊆ H2 · · · is increasing we have that HKi+1

⊇ HKi+1. Since HKi
is not essential in HKi+1 and HKi+1 ⊆ HKi+1 we have that

HKi
is not essential in HKi+1 . Thus we got a subsequence { HKi

}∞i=1 of { Hi}∞i=1

such that HKi is not essential in HKi+1 for all i. Write Bi = HKi for i ≥ 1. Now
{Bi}∞i=1 is an increasing sequence of ideals of R contained in K such that Bi is not
essential in Bi+1. Now for each i there exists a non-zero ideal Ai of R contained in
K such that Ai ⊆ Bi+1 and Bi ∩ Ai = (0). Now we verify that the sum

∑∞
i=1 Ai

is a direct sum of infinite number of non-zero ideals {Ai}∞i=1 . Let x1 ∈ Ai1 , x2 ∈
Ai2 , · · · , xn ∈ Ain such that x1 + x2 + · · ·+ xn = 0. With out loss of generality, we
may assume that i1 < i2 < · · · < in. Also we can suppose that xn 6= 0.
Now Ai1 ⊆ Bi1+1 ⊆ · · · ⊆ Bin

, Ai2 ⊆ Bi2+1 ⊆ · · · ⊆ Bin
, · · · , Ain−1 ⊆ Bin−1+1 ⊆

· · · ⊆ Bin

x1 + x2 + · · ·+ xn−1 ∈ Ai1 + Ai2 + · · · + Ain−1 ⊆ Bin
.

Now (Ai1 + Ai2 + · · ·+ Ain−1) ∩Ain ⊆ Bin ∩Ain = (0) ⇒ x1 + x2 + · · ·+ xn−1 =
−xn ∈ (Ai1 + Ai2 + · · ·+ Ain−1)∩Ain = (0) ⇒ xn = 0, a contradiction. Hence the
sum

∑∞
i=1 Ai is a direct sum of infinite number of non-zero ideals of R contained in

K, a contradiction to (i). This completes the proof for (i) ⇒ (ii).
(ii) ⇒ (i): Suppose (ii). We have to verify that K does not contain a direct sum
of infinite number of non-zero of ideals of R. In a contrary way, suppose that K
contains a direct sum of infinite number of non-zero of ideals {Ii}∞i=1. Write Jn =
I1 + I2 + · · · + In for n ≥ 1. Then J1 ⊆ J2 ⊆ · · · . Since (0) 6= In ⊆ Jn+1 and Jn

∩ In+1 = (0), it follows that Jn is not essential in Jn+1. This is true for all n ≥
1. Thus we arrived at a strictly increasing sequence J1 ⊆ J2 ⊆ · · · of ideals of R
contained in K such that Ji is not essential in Ji+1 for i ≥ 1, a contradiction to the
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assumed condition (ii). This completes the proof. �

Lemma 4.3. If R has FDI and (0) 6= K � R, then K contains an uniform ideal of
R.

Proof. In a contrary way, suppose K contains no uniform ideal of R. Then K is
not uniform ideal of R. So there exist (0) 6= K1 � R and (0) 6= L1 � R such
that K1 ∩ L1 = (0), and K1 + L1 ⊆ K (by Theorem 3.3(i)). Now L1 is not
uniform and so there exist (0) 6= K2 � R, (0) 6= L2 � R such that K2 ∩ L2 = (0)
and K2 + L2 ⊆ L1. If we continue this process, we get two infinite sequences
{Ki}∞i=1, {Li}∞i=1 of non-zero ideals of R such that Ki ∩ Li = (0) for each i and
Ki + Li ⊆ Li−1 for i ≥ 2. Also note that L1 ⊇ L2 ⊇ · · · . The sum

∑∞
i=1 Ki is an

infinite direct sum of non-zero ideals of R. [Verification: In contrary way, suppose
that there exist non-zero elements x1 ∈ Ki1 , x2 ∈ Ki2 , · · · , xn ∈ Kin such that
x1+x2+· · ·+xn = 0 where i1 < i2 < · · · < in. xn ∈Kin

⊆ L(in)−1 ⊆ · · · ⊆ Li1 , xn−1

∈ Kin−1 ⊆ L(in−1)−1 ⊆ · · · ⊆ Li1 , x2 ∈ Ki2 ⊆ L(i2)−1 ⊆ Li1 . Now x2 +x3 + · · ·+xn

∈ Li1 . Since x1 ∈ Ki1 and x2+x3+· · ·+xn ∈ Li1 , it follows that −x1 = x2+· · ·+xn

∈ Ki1 ∩ Li1 = (0) and so x1 = 0, a contradiction]. This is a contradiction to the
fact that R has FDI. This completes the proof. �

Theorem 4.4. Suppose 0 6= H � R and H has FDIR. Then the following conditions
hold.
(i) (Existence) There exist uniform ideals U1, U2, · · · , Un of R whose sum is direct
and essential in H;
(ii) If Vi, 1 ≤ i ≤ k are uniform ideals of R, whose sum is direct and essential in
H, then k ≤ n.
(iii) (Uniqueness) If Vi, 1 ≤ i ≤ k are uniform ideals of R whose sum is direct
and essential in H, then k = n.

Proof. (i) Suppose H has FDIR. In a contrary way, suppose that for any finite
number of uniform ideals Ui, 1 ≤ i ≤ n whose sum is direct, the sum

∑
Ui is not

essential in H. By Lemma 4.3, H contains an uniform ideal U1. Then U1 is not
essential in H. So there exists 0 6= H1 � R such that H1 ⊆ H with U1 ∩ H1 = (0).
Again by using Lemma 4.3, we conclude that H1 contains a uniform ideal U2. Now
the sum U1 + U2 is a direct sum of two uniform ideals. So U1 + U2 is not essential
in H. This means, there exists (0) 6= H2 � R, H2 ⊆ H such that (U1 + U2) ∩ H2

= (0). Again by using Lemma 4.3, we get an uniform ideal U3 ⊆ H2. Now the
sum U1 + U2 + U3 is direct. If we continue this process, we get an infinite strictly
increasing chain U1 ⊂ (U1 + U2) ⊂ (U1 + U2 + U3) · · · of ideals of R such that
U1 ⊕ U2 ⊕ · · · ⊕ Us is not essential in U1 ⊕ U2 ⊕ · · · ⊕ Us ⊕ Us+1 for all s ≥ 1. By
Theorem 4.2, it follows that H has no FDIR, a contradiction to our assumption.
Hence there exist uniform ideals Ui, 1 ≤ i ≤ n in R whose sum U1 + U2 + · · ·+ Un

is direct and essential in H.
(ii) Suppose Vi, 1 ≤ i ≤ k are uniform ideals of R whose sum is direct and V1 +V2 +
· · ·+ Vk ⊆ H. Write K1 = V2 ⊕ V3 ⊕ · · · ⊕ Vk. Since K1 is not essential in H, there
exists i ( 1 ≤ i ≤ n) such that K1 ∩ Ui = (0). Without loss of generality, we may
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assume that K1 ∩ U1 = (0). Note that the sum U1 + V2 + · · ·+ Vk is direct. Write
K2 = U1 ⊕ V3 ⊕ · · · ⊕ Vk. Since K2 is not essential in H there exists an i (2 ≤ i ≤
n) such that K2 ∩ Ui = (0). We may suppose that K2 ∩ U2 = (0). Now the sum
U1 +U2 +V3 + · · ·+Vk is direct. If we continue this process, we can replace each Vj

(1 ≤ j ≤ k) by some Ui (1 ≤ i ≤ n). From this discussion, we can conclude k ≤ n.
(iii) In (ii) we verified that k ≤ n. Similarly, we can verify that n ≤ k. Hence k =
n. �

As a consequence of this result we have the following Corollary.

Corollary 4.5. If R is a ring with FDI, then the following (i) - (ii) are true:
(i) (Existence) There exist uniform ideals U1, U2, · · ·Un in R whose sum is direct
and essential in R;
(ii) (Uniqueness) If Vi, 1 ≤ i ≤ k, are uniform ideals of R whose sum is direct and
essential in R, then k = n.

Definition 4.6. The number n of the above Theorem is independent of the choice
of the uniform ideals. This number n is called the dimension of H, and is denoted
by dim H.
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