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FINITE DIMENSIONAL APPROXIMATIONS IN

OPERATOR ALGEBRAS

MICHAEL HARTZ

Abstract. A non-self-adjoint operator algebra is said to be residually
finite dimensional (RFD) if it embeds into a product of matrix algebras.
We characterize RFD operator algebras in terms of their matrix state
space, and moreover show that an operator algebra is RFD if and only if
every representation can be approximated by finite dimensional ones in
the point weak operator topology. This is a non-self-adjoint version of
a theorem of Exel and Loring for C

∗-algebras. Moreover, we construct
an example of an operator algebra for which approximation in the point
strong operator topology is not possible. As a consequence, the maximal
C

∗-algebra generated by this operator algebra is not RFD. This answers
questions of Clouâtre and Ramsey and of Clouâtre and Dor-On.

1. Introduction

In this article, an operator algebra is a norm closed (not necessarily self-
adjoint) subalgebra A ⊂ B(K) for some Hilbert space K. We say that A is
unital if the identity operator on K belongs to A. By a representation of A,
we mean a (not necessarily unital) completely contractive homomorphism
π : A → B(H) for some Hilbert space H. Background information on
operator algebras and their representations can be found in [5, 16, 17].

We will study operator algebras that can be recovered from their finite
dimensional representations. Explicitly, an operator algebra A is said to be
residually finite dimensional (RFD) if for every n ∈ N and every a ∈Mn(A),
we have

(1) ‖a‖ = sup{‖π(n)(a)‖},

where the supremum is taken over all representations π : A → B(H) with

dim(H) < ∞. Here, π(n)(a) is the element of Mn(B(H)) obtained by ap-
plying π to each entry of a. Note that A is RFD if and only if there exist
a family {Hλ : λ ∈ Λ} of finite dimensional Hilbert spaces and a completely
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2 MICHAEL HARTZ

isometric homomorphism

π : A →
∏

λ∈Λ

B(Hλ).

Residual finite dimensionality is a central concept in the theory of C∗-
algebras. If A is a C∗-algebra, then contractive homomorphisms A →
B(H) are automatically ∗-homomorphisms (see, for instance, [5, Proposi-
tion A.5.8]), so for C∗-algebras, the notion of residual finite dimensionality
considered here agrees with the usual C∗-algebraic notion. In the setting of
non-self-adjoint operator algebras, residual finite dimensionality was intro-
duced by Mittal and Paulsen [15, Section 3] and in particular studied in the
context of operator algebras of functions. More recently, RFD operator alge-
bras have been studied as objects in their own right, such as in the works of
Clouâtre and Marcoux [7], Clouâtre and Ramsey [8], Clouâtre and Dor-On
[6] and Thompson [19].

Examples of non-self-adjoint RFD operator algebras include all uniform
algebras, all finite dimensional operator algebras [8, Corollary 3.6], all multi-
plier algebras of reproducing kernel Hilbert spaces [15] and the algebra of all
bounded upper triangular operators on ℓ2. More involved examples of RFD
operator algebras are the Schur–Agler algebra (the algebra of holomorphic
functions on the polydisc that are bounded on all commuting strict contrac-
tions) and the Douglas–Paulsen algebra on an annulus; see [15, Section 5]
for details.

In the context of C∗-algebras, a fundamental theorem characterizing resid-
ual finite dimensionality is due to Exel and Loring [12]. If A is a unital
C∗-algebra, we let S1(A) denote the state space of A, i.e. the space of all
unital contractive functionals on A, equipped with the weak-∗ topology. The
GNS construction shows that for every state ϕ ∈ S1(A), there exist a unital
∗-homomorphism π : A → B(H) and a unit vector x ∈ H with

ϕ(a) = 〈π(a)x, x〉 for all a ∈ A.

The state ϕ is said to be finite dimensional if H can be taken to be finite
dimensional. A representation π : A→ B(H) is said to be finite dimensional
if the essential space, which is the closed linear span of π(A)H, is finite
dimensional.

Theorem 1.1 (Exel–Loring). The following assertions are equivalent for a
unital C∗-algebra A:

(i) A is RFD;
(ii) the set of finite dimensional states is weak-∗ dense in S(A);
(iii) for every representation π : A → B(H), there exists a net (πλ) of

finite dimensional representations such that (πλ(a)) converges to π(a)
in SOT for all a ∈ A.

In fact, Exel and Loring establish the appropriate version of this result in
the non-unital setting. The implication (iii) ⇒ (i) in the Exel–Loring theo-
rem follows fairly immediately by applying (iii) to any faithful representation
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of A. Thus, the implication (i) ⇒ (iii) can be interpreted as the following
statement: If one faithful representation of A can be approximated by finite
dimensional ones, then every representation of A can.

Clouâtre and Dor-On [6] raised the question of whether there is a version
of the Exel–Loring theorem for non-self-adjoint operator algebras. The first
goal of this article to establish such a result.

To state the non-self-adjoint version of the Exel–Loring theorem, it is
convenient to first recall some terminology. If A is a unital operator algebra,
a matrix state of A is a unital completely contractive (u.c.c.) linear map
ϕ : A → Mn, where we write Mn = Mn(C). The matrix state space of A is
the collection Sn(A) = (Sn(A))

∞
n=1 of sets

Sn(A) = {ϕ : A →Mn : ϕ is linear and u.c.c.}.

Since contractive linear maps into C are automatically completely contrac-
tive, this notation is consistent with the earlier notation S1(A) for the state
space. We may identify each Sn(A) with a subspace of Mn(A

′), where A′

denotes the dual space of A. We equip Mn(A
′) with the product topology

of the weak-∗ topology on A′.
The Arveson extension theorem and the Stinespring dilation theorem im-

ply that every matrix state ϕ : A →Mn dilates to a unital representation of
A. This means that there exist a Hilbert space H, an isometry w : Cn →H
and a unital completely contractive homomorphism π : A → B(H) so that

ϕ(a) = w∗π(a)w for all a ∈ A.

We say that the matrix state ϕ is finite dimensional if H can be chosen to
be finite dimensional.

A representation of A is said to be finite dimensional if the closed linear
span of C∗(π(A))H is finite dimensional. Since A is assumed to be uni-
tal, π(1) is a contractive idempotent and hence an orthogonal projection.
Thus, π is a finite dimensional representation if and only if π(1)H is finite
dimensional.

In Section 2, we will establish the following version of the Exel–Loring
theorem for non-self-adjoint operator algebras.

Theorem 1.2. The following assertions are equivalent for a (not necessarily
self-adjoint) unital operator algebra A:

(i) A is RFD;
(ii) the set of finite dimensional matrix states is weak-∗ dense in the

matrix state space S(A);
(iii) for every representation π : A → B(H), there exists a net (πλ) of

finite dimensional representations such that (πλ(a)) converges to π(a)
in WOT for all a ∈ A.

The equivalence of (i) and (iii) continues to hold in the non-unital setting;
see Corollary 2.4.
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There are two obvious differences between the Exel–Loring theorem for
C∗-algebras (Theorem 1.1) and Theorem 1.2 for not necessarily self-adjoint
algebras. Firstly, in items (ii), the state space in the C∗-case is replaced
with the matrix state space in the non-self-adjoint setting. In Section 3, we
will show that for a unital operator algebra, the finite dimensional states are
weak-∗ dense in the state space if and only if Equation (1) holds for n = 1,
that is, if and only if the norm of A can be recovered from finite dimensional
representations.

Secondly, and perhaps more importantly for the purposes of this article,
the approximation by finite dimensional representations in (iii) is in SOT
in the C∗-case, but only in WOT in the non-self-adjoint setting. However,
for C∗-algebras, the two conditions are the same. This follows from the
simple operator theory fact that for a net (Aλ) of bounded operators, WOT
convergence Aλ → A and A∗

λAλ → A∗A implies SOT convergence Aλ → A.
Thus, the equivalence of (i) and (iii) in Theorem 1.1 can be recovered from
the corresponding equivalence in Theorem 1.2.

Nonetheless, the distinction between WOT and SOT turns out to be rel-
evant, and it is natural to ask if WOT convergence in Theorem 1.2 can be
improved to SOT convergence. In fact, this is the non-self-adjoint version of
the Exel–Loring theorem that Clouâtre and Dor-On asked for; see [6, Ques-
tion 2]. They also asked if, even better, approximation in SOT-∗ is possible,
meaning that (πλ(a)) converges to π(a) in SOT and (πλ(a)

∗) converges to
π(a)∗ in SOT for all a ∈ A; this is again automatic for C∗-algebras. Their
question was motivated by considerations regarding the maximal C∗-algebra
of an operator algebra, which we will review below. Clouâtre and Dor-On
also showed that SOT-∗ approximation is indeed possible for certain classes
of operator algebras. For instance, their results include the statement that
the universal norm closed operator algebra generated by d commuting con-
tractions has this approximation property; see [6, Corollary 5.14]. This has
the following operator theory consequence: Every d-tuple of commuting con-
tractions on a Hilbert space can be approximated in SOT-∗ by a d-tuple of
commuting matrices.

In Section 4, we will show that SOT-approximation, and hence SOT-∗
approximation, is not possible for general RFD operator algebras. In some
sense, this also means that it is no accident that the SOT-∗ approxima-
tion results of Clouâtre and Dor-On used specific properties of the operator
algebras. Let D denote the open unit disc in C, let T = ∂D, and let

A(D) = {f ∈ C(D) : f
∣∣
D

is holomorphic}

be the disc algebra. We think of A(D) as a subalgebra of C(T) by virtue of
the maximum modulus principle.

Theorem 1.3. Let

B =

{[
f 0
h g

]
: f, g ∈ A(D), h ∈ C(T)

}
⊂M2(C(T)).
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Then:

(a) B is a unital operator algebra that is RFD;
(b) there exists a unital representation π : B → B(H) which is not the

point SOT-limit of a net of finite dimensional representations of B.

In fact, the representation π will take a very concrete form given by
Toeplitz operators on the Hardy space H2, namely

π : B → B(H2 ⊕H2),

[
f 0
h g

]
7→

[
Tf 0
Th Tg

]
.

The algebra B in Theorem 1.3 is not only RFD, but it is (completely isometri-
cally) 2-subhomogeneous, meaning that it suffices to consider the supremum
over all Hilbert spaces of dimension at most 2 in (1); see [2] for background
on this notion.

The question of Clouâtre and Dor-On on SOT-∗ approximations was mo-
tivated by the following considerations. Given a non-self-adjoint unital op-
erator algebra A, there are in general many C∗-algebras that are gener-
ated by a copy of A. In particular, there is minimal one, called the C∗-
envelope, and a maximal one, called the maximal C∗-algebra and denoted
by C∗

max(A). The maximal C∗-algebra is characterized by the following uni-
versal property: There exists a unital completely isometric homomorphism
ι : A → C∗

max(A) such that C∗
max(A) is generated by ι(A) as a C∗-algebra,

and for every representation π : A → B(H), there exists a ∗-homomorphism
σ : C∗

max(A)→ B(H) such that σ ◦ ι = π, i.e. so that the following diagram
commutes:

C∗
max(A)

A B(H)

σι

π

Background material on the maximal C∗-algebra can be found in [4] and [5,
Section 2.4]. Since residual finite dimensionality is much better understood
in the C∗-context, it is natural to try to link residual finite dimensionality of
A to residual finite dimensionality of a canonical C∗-algebra associated with
A.

Now, there are simple and natural examples of RFD operator algebras
whose C∗-envelope is not RFD. For instance, the C∗-envelope of the algebra
of all bounded upper triangular operators on ℓ2 is B(ℓ2), which has no finite
dimensional representations. Another example is given by Arveson’s algebra
Ad, which is the multiplier norm closure of the polynomials on the Drury–
Arveson space. It plays a central role in multivariable operator theory; see
[3] for background. This algebra is RFD, being an algebra of multipliers on a
reproducing kernel Hilbert space. But if d ≥ 2, then the C∗-envelope of Ad is
the Toeplitz C∗-algebra, which contains the algebra of all compact operators
and hence is not RFD; see [3, Theorem 8.15]. Clouâtre and Ramsey even
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constructed a finite dimensional unital operator algebra whose C∗-envelope
is not RFD; see [8, Section 6, Example 4].

Thus, attention shifted to C∗
max, and Clouâtre and Ramsey [8] asked if

C∗
max(A) is RFD whenever A is RFD. Since every representation of A ex-

tends to a representation of C∗
max(A) by the universal property, C∗

max(A) has
many finite dimensional representations whenever A is RFD. This question
was further studied by Clouâtre and Dor-On [6, Question 1], who observed
that C∗

max(A) is RFD if and only if every representation of A can be ap-
proximated point SOT-∗ by finite dimensional ones; see [6, Theorem 3.3].
Indeed, necessity, which is what we will use, is immediate from the universal
property of C∗

max(A) and the Exel–Loring theorem (Theorem 1.1).
Therefore, Theorem 1.3 has the following consequence.

Corollary 1.4. Let B be the operator algebra of Theorem 1.3. Then B is
RFD, but C∗

max(B) is not RFD.

However, since B is 2-subhomogeneous, [2, Proposition 4.1] shows that the
C∗-envelope of B is 2-subhomogeneous as well and hence RFD. Indeed, the
C∗-envelope of B is M2(C(T)) since B is a Dirichlet algebra; see Remark 4.2
and [5, Proposition 4.3.10]. Now, if A is any unital RFD operator algebra
whose C∗-envelope is not RFD, then the direct sum A⊕B is a unital operator
algebra with the property that neither the C∗-envelope nor the maximal C∗-
algebra is RFD. This is because the C∗-envelope of a direct sum is the direct
sum of the C∗-envelopes, and similarly for the maximal C∗-algebra.

2. A non-self-adjoint Exel–Loring theorem

Recall from the introduction that the matrix state space of a unital oper-
ator algebra A is the collection S(A) = (Sn(A))

∞
n=1 of sets

Sn(A) = {ϕ : A →Mn : ϕ is linear and u.c.c.}.

We identify each Sn(A) with a subspace of Mn(A
′), where A′ is the dual

space of A. Then S(A) is a matrix convex set in A′, meaning that whenever
ϕj ∈ Snj

(A) and αj ∈ Mnj ,n(C) for j = 1, . . . , r satisfy
∑n

j=1 α
∗
jαj = In,

then
∑n

j=1 α
∗
jϕjαj ∈ Sn(A). Background on matrix convexity can be found

in [11, 21]. We equip Mn(A
′) with the product topology of the weak-∗

topology on A′. Then each Sn(A) is compact.
The following result is a slight refinement of Theorem 1.2 from the intro-

duction.

Theorem 2.1. Let A be a unital operator algebra. The following are equiv-
alent:

(i) A is RFD;
(ii) the finite dimensional matrix states form a weak-∗ dense subset of

the matrix state space S(A);
(iii) for every unital representation π of A on H, there exist a net (πλ) of

finite dimensional representations on H and an increasing net (Pλ)
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of finite rank orthogonal projections so that π(a) = limλ Pλπλ(a)Pλ

in the SOT-∗ topology for all a ∈ A.
(iv) for every unital representation π : A→ B(H), there exists a net (πλ)

of finite dimensional representations such that (πλ(a)) converges to
π(a) in WOT for all a ∈ A.

Proof. (i) ⇒ (ii) The proof is essentially an adaptation of the proof of Exel
and Loring to the matrix convex setting. A very similar argument in the
C∗-setting already appeared in the first arXiv version of [13].

Let F (A) = (Fn)
∞
n=1 denote the collection of all finite dimensional matrix

states of A. It is a simple matter to verify that F (A) is a matrix convex
subset of S(A) = (Sn(A))

∞
n=1. Indeed, let ϕj ∈ Fnj

and αj ∈ Mnj ,n for
j = 1, . . . , r satisfy

∑n
j=1 α

∗
jαj = In. For each j, the map ϕj : A → Mnj

is
a finite dimensional matrix state, so there exist an isometry wj : C

nj → Hj

and a unital representation πj : A→ B(Hj), with dim(Hj) <∞, so that

ϕj(a) = w∗
jπj(a)wj for all a ∈ A.

Then the identity

r∑

j=1

α∗
jϕj(a)αj =

[
α∗
1w

∗
1 · · · α∗

rw
∗
r

]




π1(a) 0 · · · 0
0 π2(a) · · · 0
...

. . .
. . .

...
0 0 · · · πn(a)






w1α1

...
wrαr




shows that
∑r

j=1 α
∗
jϕjαj ∈ Fn.

Assume towards a contradiction that F (A) is not weak-∗ dense in S(A),

so that there exist n ≥ 1 and ψ ∈ Sn(A) \ Fn
w∗

. We will identify Mn(A) =
Mn ⊗A in the usual way. The separation theorem for matrix convex sets of
Effros and Winkler [11] (see [21, Theorem 1.6] for the statement in the form
in which it is needed) yields a weak-∗ continuous linear map Φ : A′ → Mn

and a self-adjoint matrix α ∈Mn such that

ReΦ(r)(ϕ) ≤ Ir ⊗ α for all r ∈ N, ϕ ∈ Fr,

but

ReΦ(n)(ψ) 6≤ In ⊗ α.

Identifying Φ with an element of Mn(A
′′), weak-∗ continuity of Φ shows that

it is given by an element a ∈Mn(A). Thus, under the canonical shuffle (see,
for instance, [16, Chapter 8]), the two conditions above translate to

(2) Reϕ(n)(a) ≤ α⊗ Ir for all r ∈ N, ϕ ∈ Fr,

but

(3) Reψ(n)(a) 6≤ α⊗ In.

We will show that (2) implies that Re a ≤ α inside of Mn(A+A
∗). Indeed,

if π : A → Mr is a unital finite dimensional representation of A, then in
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particular π ∈ Fr, hence

(4) Reπ(n)(a) ≤ α⊗ Ir = π(n)(α).

Since A is unital and RFD, the direct sum over a suitable collection of unital
finite dimensional representations yields a completely isometric representa-
tion Π of A, and ReΠ(n)(a) ≤ Π(n)(α) by (4). Since Π is a unital complete
isometry, it extends to a unital complete order isomorphism between the op-
erator systems A+A∗ and Π(A) + Π(A)∗; see [16, Proposition 3.5]. Hence

Re a ≤ α ∈Mn(A +A∗).

On the other hand, the u.c.c. map ψ : A → Mn extends to a u.c.p. map
from A+A∗ into Mn, so

Reψ(n)(a) ≤ ψ(n)(α) = α⊗ In,

contradicting (3).
(ii) ⇒ (iii) Let π : A→ B(H) be a unital representation. Clearly, we may

assume that H is infinite dimensional. Let (Pλ)λ∈Λ be an increasing net of
finite rank projections converging to the identity in SOT. Then

(5) π(a) = lim
λ
Pλπ(a)Pλ in SOT-∗ for all a ∈ A.

For each λ, we may regard a 7→ Pλπ(a)Pλ as a matrix state on A. By
assumption, there exists for every finite subset F ⊂ A, every λ ∈ Λ and
every k ∈ N a finite dimensional matrix state ϕF,λ,k : A→ B(PλH) so that

‖Pλπ(a)Pλ − ϕF,λ,k(a)‖ <
1

k
for all a ∈ F . Each ϕF,λ,k dilates to a finite dimensional representation πF,λ,k
of A. Since H is infinite dimensional, we may assume that the range of πF,λ,k
is contained in H. Thus,

‖Pλπ(a)Pλ − PλπF,λ,k(a)Pλ‖ <
1

k

for all a ∈ F . In combination with (5), we see that the net (PλπF,λ,k(a)Pλ),
indexed over F(A) × Λ × N in the product order, where F(A) denotes the
set of all finite subsets of A, converges to π(a) in SOT-∗ for all a ∈ A.

(iii) ⇒ (iv) Let πλ and Pλ be as in (iii). Then

πλ(a)− Pλπλ(a)Pλ = (I − Pλ)πλ(a) + Pλπλ(a)(I − Pλ).

Since ‖πλ(a)‖ ≤ ‖a‖ and (I−Pλ) converges to zero in SOT, both summands
converge to zero in WOT. Hence, in the setting of (iii), we have π(a) =
limλ πλ(a) in WOT.

(iv) ⇒ (i) We apply (iv) to a completely isometric representation π of A.
Since the operator norm is lower semi-continuous with respect to WOT, we
see that for all a ∈Mn(A), we have

‖a‖ = sup
λ∈Λ
‖π

(n)
λ (a)‖,

hence A is RFD. �
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The net (πλ) in part (iv) of Theorem 2.1 converges to π in the BW topol-
ogy, a frequently studied topology in operator algebras; see for instance [16,
Chapter 7].

Remark 2.2. If A and H are separable, then the nets in Theorem 2.1 can be
replaced with sequences. To see this, let D ⊂ A be a countable dense subset.
A straightforward modification of the proof of (ii) ⇒ (iii) above yields an
increasing sequence (Pn) of orthogonal projections and a sequence (πn) of
finite dimensional representations of A such that

π(a) = lim
n→∞

Pnπn(a)Pn in SOT-∗

for all a ∈ D. Since ‖πn‖ ≤ 1 and ‖Pn‖ ≤ 1 for all n, we obtain convergence
for all a ∈ A.

Remark 2.3. The implication (i) ⇒ (ii) in Theorem 2.1 could alternatively
be deduced from a corresponding result for C∗-algebras. According to [1,
Theorem 3.8], the equivalence (i)⇔ (ii) in Theorem 2.1 holds if A is a unital
C∗-algebra. Now, if A is a unital operator algebra that is RFD, then we
may embed A into a C∗-algebra of the form A =

∏
λ∈ΛB(Hλ), where each

Hλ is finite dimensional. Then A is a unital C∗-algebra that is RFD. By
the Arveson extension theorem, each matrix state on A extends to a matrix
state on A. Conversely, finite dimensional matrix states on A restrict to finite
dimensional matrix states on A. Therefore, density of the finite dimensional
matrix states on A implies density of the finite dimensional matrix states on
A.

We observe that the equivalence of (i), (iii) and (iv) in Theorem 2.1 con-
tinues to hold in the non-unital setting. If A is an operator algebra, then a
representation π : A → B(H) is said to be finite dimensional if the closed
linear span of C∗(π(A))H is finite dimensional. (This is stronger than merely
assuming that the closed linear span of π(A)H is finite dimensional in the
non-unital setting, as simple examples of operator algebras with zero product
show.)

Corollary 2.4. Let A be a (not necessarily unital) operator algebra. The
following are equivalent:

(i) A is RFD;
(ii) for every representation π of A on H, there exist a net (πλ) of finite

dimensional representations on H and an increasing net (Pλ) of finite
rank orthogonal projections so that π(a) = limλ Pλπλ(a)Pλ in the
SOT-∗ topology for all a ∈ A.

(iii) for every representation π : A → B(H), there exists a net (πλ) of
finite dimensional representations such that (πλ(a)) converges to π(a)
in WOT for all a ∈ A.

Proof. (i) ⇒ (ii) It is a theorem of Meyer [14] that every operator algebra
A admits a unitization A1; see also [5, Section 2.1]. If A is RFD, then A
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embeds completely isometrically into an algebra of the form
∏

λ∈ΛB(Hλ),
where eachHλ is finite dimensional. By the universal property of the unitiza-
tion (see [5, Corollary 2.1.15]), this embedding extends to a unital completely
isometric homomorphism A1 →

∏
λ∈ΛB(Hλ); thus A1 is RFD as well. Every

representation of A extends to a unital representation of A1 (see [5, Theorem
2.1.13]). Moreover, finite dimensional representations of A1 restrict to finite
dimensional representations of A. Thus, the implication (i) ⇒ (iii) of Theo-
rem 2.1, applied to the unitization A1, yields the approximation statement
in the non-unital case.

The implications (ii) ⇒ (iii) ⇒ (i) are immediate, just as in the unital
setting. �

3. Density of finite dimensional states

Whereas the main focus of this article lies on finite dimensional approx-
imations of representations, it is natural to ask what happens if we replace
the matrix state space with the ordinary state space in Theorem 1.2. That
is, which (non-self-adjoint) operator algebras have the property that the set
of finite dimensional states is weak-∗ dense in the state space? A character-
ization is given by the following result.

Proposition 3.1. The following assertions are equivalent for a unital oper-
ator algebra A:

(i) The set of finite dimensional states is weak-∗ dense in the state space
S1(A);

(ii) for every a ∈ A, we have

‖a‖ = sup{‖π(a)‖},

where the supremum is taken over all completely contractive homo-
morphisms π : A → B(H) with dim(H) <∞.

Clearly, (ii) may also be rephrased by saying that there exist a family {Hλ :
λ ∈ Λ} of finite dimensional Hilbert spaces and a completely contractive,
isometric homomorphism π : A →

∏
λ∈ΛB(Hλ).

In the proof of Proposition 3.1, we will use the Cayley transform. The
following lemma is certainly well known and essentially appears already in
[20, §5.2], see also [14, Lemma 2.1]. Since the exact formulation we require
is slightly different, we sketch the proof.

Lemma 3.2. The maps

{T ∈ B(H) : −1 /∈ σ(T )} ↔ {S ∈ B(H) : 1 /∈ σ(S)}

T 7→ (T − I)(T + I)−1

(I + S)(I − S)−1 ← [ S

are mutually inverse bijections that restrict to bijections

{T ∈ B(H) : ReT ≥ 0} ↔ {S ∈ B(H) : ‖S‖ ≤ 1, 1 /∈ σ(S)}.
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Proof. The spectral mapping theorem shows that if −1 /∈ σ(T ) and S = (T−
I)(T + I)−1, then 1 /∈ σ(S). Similarly, if 1 /∈ σ(S) and T = (I+S)(I−S)−1,
then −1 /∈ σ(T ). A routine computation then shows that the two maps in
the statement are inverse to each other.

Next, if T ∈ B(H) with ReT ≥ 0, then the numerical range and hence the
spectrum of T is contained in the closed right half plane, and so in particular
−1 /∈ σ(T ). Finally, let T ∈ B(H) with −1 /∈ σ(T ) and S = (T−I)(T+I)−1.
Then

I − S∗S = I − (T ∗ + I)−1(T ∗ − I)(T − I)(T + I)−1

= 2(T ∗ + I)−1(T + T ∗)(T + I)−1.

This operator is positive if and only if T + T ∗ ≥ 0. Therefore, ‖S‖ ≤ 1 if
and only if ReT ≥ 0. �

Proof of Proposition 3.1. (i) ⇒ (ii). We regard A ⊂ B(K) for some Hilbert
space K. Let a ∈ A and suppose that sup{‖π(a)‖} = r < 1, where the
supremum is taken over the maps π occurring in (ii). We will show that
‖a‖ ≤ 1. This will establish (ii).

Let ϕ ∈ S1(A) be a finite dimensional state. Then ϕ dilates to a finite
dimensional representation of A, and so |ϕ(a)| ≤ r by assumption on a.
Since the finite dimensional states are dense in S1(A), we have |ϕ(a)| ≤ r
for all ϕ ∈ S1(A). It follows that the numerical radius of a, regarded as an
operator on K, is at most r, and so the spectral radius of a is at most r. In
particular, 1− a is invertible in A.

Let b = (1+ a)(1− a)−1 ∈ A. We will show that Re b ≥ 0. If π is a unital
finite dimensional representation of A, then ‖π(a)‖ ≤ r < 1, so Lemma 3.2
implies that

Reπ(b) = Re[(I + π(a))(I − π(a))−1] ≥ 0.

Let ϕ ∈ S1(A) be a finite dimensional state. Then there exists a unital finite
dimensional representation π : A → B(H) and a unit vector ξ ∈ H with
ϕ = 〈π(·)ξ, ξ〉. Thus,

Reϕ(b) = Re〈π(b)ξ, ξ〉 ≥ 0.

Density of the finite dimensional states yields that Reϕ(b) ≥ 0 for all states
ϕ ∈ S1(A), and so Re b ≥ 0 as an element of B(K). Applying Lemma 3.2
again, we find that ‖a‖ ≤ 1, as desired.

(ii) ⇒ (i) By assumption, there exists a unital completely contractive
isometric homomorphism π : A →

∏
λ∈ΛB(Hλ), where dim(Hλ) < ∞ for

all λ ∈ Λ. Since π is a unital isometry, we obtain a homeomorphism

Φ : S1(π(A))→ S1(A), ϕ 7→ ϕ ◦ π.

Since π is completely contractive, every representation of π(A) induces a
representation of A, and so Φ maps finite dimensional states in S1(π(A)) to
finite dimensional states in S1(A). Finally, π(A) is RFD since

∏
λ∈ΛB(Hλ)

is RFD, so the finite dimensional states in S1(π(A)) are weak-∗ dense in
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S1(π(A)) by Theorem 2.1. Therefore, the finite dimensional states in S1(A)
are weak-∗ dense in S1(A). �

Proposition 3.1 shows that if the finite dimensional states are weak-∗ dense
in the state space of A, then the norm of A can be recovered from finite
dimensional representations of A. This raises the question of whether the
norms of Mn(A) can also be recovered, i.e. whether A is RFD in this case.

Conversely, does there exist a non-RFD operator algebra A whose finite
dimensional states are weak-∗ dense in the state space? Let us call an algebra
of the form

∏
λ∈ΛB(Hλ), where dim(Hλ) < ∞ for all λ ∈ Λ, a product of

matrix algebras. With this terminology, Proposition 3.1 shows that we may
equivalently ask:

Question 3.3. Does there exist a unital operator algebra A that admits a
unital completely contractive isometric embedding into a product of matrix
algebras, but not a unital completely isometric embedding?

4. SOT approximation

In this section, we will prove Theorem 1.3. As in the introduction, let

B =

{[
f 0
h g

]
: f, g ∈ A(D), h ∈ C(T)

}
⊂M2(C(T)).

It is clear that B is a unital operator algebra that is RFD; in fact, it is
(completely isometrically) 2-subhomogeneous; see [2].

To exhibit a representation of B that cannot be approximated by finite
dimensional representations in SOT, we have to recall a few basic facts about
Toeplitz operators. Let H2 ⊂ L2(T) denote the classical Hardy space, which
consists of all functions in L2(T) whose negative Fourier coefficients vanish.
The Hardy space can also be thought of as a space of holomorphic functions
on D, but we will exclusively work with the description as a subspace of
L2(T). Let P : L2(T)→ H2 denote the orthogonal projection. If h ∈ C(T),
then the Toeplitz operator with symbol h is defined to be

Th : H2 → H2, f 7→ P (hf).

It is clear that Th is a bounded linear operator with ‖Th‖ ≤ ‖h‖∞; in fact,
equality holds. For background material on Toeplitz operators, see for in-
stance [10, Chapter 7].

Let

π : B → B(H2 ⊕H2),

[
f 0
h g

]
7→

[
Tf 0
Th Tg

]
.

We call π the Toeplitz representation of B.

Proposition 4.1. The map π is a unital completely contractive homomor-
phism and hence a representation of B.
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Proof. If fi, gi ∈ A(D) and hi ∈ C(T) for i = 1, 2, then
[
f1 0
h1 g1

] [
f2 0
h2 g2

]
=

[
f1f2 0

h1f2 + g1h2 g1g2.

]

Therefore, the basic relations

TgTh = Tgh and ThTf = Thf

for h ∈ C(T) and f, g ∈ A(D), see [10, Proposition 7.5], imply that π is
multiplicative.

To see that π is completely contractive, we will construct a dilation to a
∗-homomorphism. For h ∈ C(T) let

Mh : L2(T)→ L2(T), f 7→ hf,

denote the multiplication operator with symbol h. Let

σ :M2(C(T))→ B(L2(T)⊕ L2(T)),

[
h11 h12
h21 h22

]
7→

[
Mh11

Mh12

Mh21
Mh22

]
.

Then σ is a ∗-homomorphism, and hence completely contractive. Moreover,

π(a) = (P ⊕ P )σ(a)
∣∣
H2⊕H2

for all a ∈ B,

so π is completely contractive as well.
(Multiplicativity of π can also be seen from this dilation, since H2 ⊕ L2

and (H2⊕L2)⊖ (H2⊕H2) = 0⊕ (H2)⊥ are invariant for σ(B), so H2⊕H2

is semi-invariant.) �

Remark 4.2. Let B∗ = {B∗ : B ∈ B} ⊂ M2(C(T)). Then B + B∗ is dense
in M2(C(T)) as A(D) + A(D)∗ is dense in C(T). By definition, this means
that B is a Dirichlet algebra.

As a consequence, we can see that the Toeplitz representation π does not
extend to a ∗-representation of M2(C(T)). Indeed, since B + B∗ is dense in
M2(C(T)), the unital complete contraction π has a unique extension to a
completely positive map on M2(C(T)), given by

M2(C(T))→ B(H2 ⊕H2),

[
a b
c d

]
7→

[
Ta Tb
Tc Td

]
,

and this map is not multiplicative as the map C(T) → B(H2), h 7→ Th, is
not multiplicative.

If π did extend to a ∗-representation of M2(C(T)), then it would be the
point SOT limit of a net of finite dimensional representations by the Exel–
Loring theorem. Thus, Remark 4.2 can be regarded as a consistency check
for the following result, which will complete the proof of Theorem 1.3.

Theorem 4.3. The Toeplitz representation π is not the point SOT limit of
a net of finite dimensional representations of B.
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Roughly speaking, the fact that the Toeplitz representation cannot be
approximated point SOT by finite dimensional representations is related to
the fact that every isometry or co-isometry on a finite dimensional Hilbert
space is unitary, but the operator

π

([
z 0
0 z

])
=

[
Tz 0
0 Tz

]

cannot be approximated in SOT by unitary operators, since it is not an
isometry. (But it can be approximated in WOT.) The main difficulty here
is that the algebra B admits many representations σ for which

σ

([
z 0
0 z

])

is not built from isometries or co-isometries. Indeed, for any pair of contrac-
tions T and S on possibly different Hilbert spaces H and K, von Neumann’s
inequality (or the Sz.-Nagy dilation theorem) show that there exists a rep-
resentation σ of B on B(H⊕K) with

σ

([
f 0
h g

])
=

[
f(T ) 0
0 g(S)∗

]

for all h ∈ C(T) and all f, g ∈ C[z]. We will need to separate out these
representations, which we will call diagonal type.

First, we show that any representation of B decomposes in matrix form.

Lemma 4.4. Let σ : B → B(H) be a unital representation. Then there
exist an orthogonal decomposition H = H1 ⊕H2, unital representations σj :
A(D) → B(Hj) for j = 1, 2 and a completely contractive linear map ϕ :
C(T)→ B(H1,H2) such that

σ

([
f 0
h g

])
=

[
σ1(f) 0
ϕ(h) σ2(g)

∗

]

with respect to the decomposition H = H1 ⊕H2. Such a decomposition of σ
is unique. Moreover,

ϕ(ghf) = σ2(g)
∗ϕ(h)σ1(f)

for all f, g ∈ A(D) and all h ∈ C(T).

Proof. This follows from routine arguments involving 2 × 2 matrices. For
completeness, we provide the proof. Let

P1 = σ

([
1 0
0 0

])
and P2 = σ

([
0 0
0 1

])
.

Then P1 and P2 are contractive idempotents and hence orthogonal projec-
tions satisfying P1P2 = 0 = P2P1 and P1 + P2 = I. Thus, if we define
Hj = ran(Pj) for j = 1, 2, then we obtain an orthogonal decomposition
H = H1 ⊕H2.
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If f ∈ A(D), then
[
f 0
0 0

]
=

[
1 0
0 0

] [
f 0
0 0

]
=

[
f 0
0 0

] [
1 0
0 0

]
.

Applying σ to these equations, it follows that

σ

([
f 0
0 0

])
=

[
σ1(f) 0
0 0

]

for some map σ1 : A(D) → B(H1), which is necessarily a unital represen-
tation. Similarly, there exists a representation σ̃ : A(D)∗ → B(H2) such
that

σ

([
0 0
0 g

])
=

[
0 0
0 σ̃2(g)

]

Defining σ2(g) = σ̃2(g)
∗, we obtain the desired representation σ2 : A(D) →

B(H2).
Finally, if h ∈ C(T) and f, g ∈ A(D), then

[
0 0
ghf 0

]
=

[
0 0
0 g

] [
0 0
h 0

] [
f 0
0 0

]
.

Firstly, choosing f = g = 1 and applying σ, we find that

σ

([
0 0
h 0

])
=

[
0 0

ϕ(h) 0

]

for some necessary completely contractive linear map ϕ : C(T)→ B(H1,H2).
Secondly, it then follows that

ϕ(ghf) = σ2(g)
∗ϕ(h)σ1(f)

for all h ∈ C(T) and all f, g ∈ A(D), which completes the proof of existence
and of the additional statement.

To see uniqueness, simply observe that if we are given any such decom-
position of σ, then the orthogonal projection onto H1 is necessarily given
by [

1 0
0 0

]
= σ

([
1 0
0 0

])
,

and similarly for H2. The maps σ1, σ2 and ϕ are then uniquely determined
by the orthogonal projections and by σ. �

We require the following standard fact from operator theory.

Lemma 4.5. Let H be a finite dimensional Hilbert space and let A ∈ B(H)
with ‖A‖ ≤ 1. Then A decomposes as A = A0 ⊕ U , where U is unitary and
limn→∞An

0 = 0.

Proof. This is the decomposition of a contraction into unitary and completely
non-unitary part, see [18, Theorem I.3.2], specialized to finite dimensions.
For the convenience of the reader, we provide a linear algebra argument.

We may without loss of generality assume that A is an upper triangular
matrix. If the k-th diagonal entry of A has modulus one, then since ‖A‖ ≤ 1,
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the k-th row and the k-th column are zero outside of the diagonal. By
permuting the basis, we can therefore write

A =

[
U 0
0 A0

]
,

where U is a diagonal unitary matrix and A0 is upper triangular with diag-
onal entries of modulus strictly less than one. Hence the spectral radius of
A0 is strictly less than one, so that limn→∞An

0 = 0. �

Let σ : B → B(H) be a unital representation, decomposed as in Lemma
4.4. We say that σ is of unitary type if σ1(z) and σ2(z) are unitary operators
on H1 and H2, respectively. We say that σ is of diagonal type if ϕ = 0.

Lemma 4.6. Let σ : B → B(H) be a unital representation and assume that
dimH <∞. Then there exists a reducing subspace M for σ such that

σM : B → B(M), a 7→ σ(a)
∣∣
M
,

is of unitary type and

σM⊥ : B → B(M⊥), a 7→ σ(a)
∣∣
M⊥

is of diagonal type.

Proof. Let σ be decomposed as in Lemma 4.4 and define A = σ1(z) ∈ B(H1)
and B = σ2(z) ∈ B(H2) and X = ϕ(1) ∈ B(H1,H2). Then

B∗XA = ϕ(z1z) = ϕ(1) = X.

This operator equation has been well studied in the context of Toeplitz oper-
ators; see, for instance, [9]. We borrow an argument from there. By Lemma
4.5, we can write A = A0 ⊕ U for a unitary operator U and an operator
A0 with limn→∞An

0 = 0. Let U act on M1 ⊂ H1. Similarly, decompose
B = B0 ⊕ V , where V is unitary on M2 ⊂ H2. Inductively,

(B∗)nXAn = X.

Thus, if ξ ∈M⊥
1 , then

‖Xξ‖ = ‖(B∗)nXAnξ‖ = ‖(B∗)nXAn
0 ξ‖ ≤ ‖A

n
0ξ‖

n→∞
−−−→ 0,

so Xξ = 0. This implies that XPM1
= X. Applying the same argument to

the equation X∗ = A∗X∗B, we find that PM2
X = X. Therefore

(6) X = XPM1
= PM2

X.

Let M = M1 ⊕M2 ⊂ H1 ⊕H2. To see that M is reducing, it suffices to
show that PM commutes with σ(a) for all a in the dense subset

{[
f 0

h1 + h2 g

]
: f, g, h1, h2 ∈ C[z]

}
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of B. So let f, g, h1, h2 be polynomials. Then using the identity for ϕ in
Lemma 4.4 as well as multiplicativity of σ1 and σ2, we find that

σ

([
f 0

h1 + h2 g

])
=

[
σ1(f) 0

ϕ(h1 + h2) σ2(g)
∗

]

=

[
f(A) 0

Xh1(A) + h2(B)∗X g(B)∗

]
.

(7)

Using that PM1
commutes with A, PM2

commutes with B (and hence with
B∗) and (6), it follows that PM = PM1

⊕ PM2
commutes with the operator

matrix in (7). Hence M is reducing.
Moreover, we see from the (2, 1)-entry in (7) and (6) that

ϕ(h) = ϕ(h)PM1
= PM2

ϕ(h) for all h ∈ C(T),

so ϕ(h) maps M1 into M2 and is zero on M⊥
1 . The decomposition of σM is

given by

σM

([
f 0
h g

])
=

[
σ1(f)

∣∣
M1

0

ϕ(h)
∣∣
M1

σ2(g)
∗
∣∣
M2

]
.

In particular, σ1(z)
∣∣
M1

= A
∣∣
M1

= U is unitary. Similarly, σ2(z)
∣∣
M2

=

B
∣∣
M2

= V is unitary. Hence, σM is of unitary type. Finally, since ϕ(h)

is zero on M⊥
1 for all h ∈ C(T), it follows that σM⊥ is of diagonal type. �

Note that the decomposition into unitary and diagonal type is not unique.
Indeed, representations can be simultaneously unitary and diagonal type.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let σ : B → B(H2 ⊕ H2) be a finite dimensional
representation. We claim that

(8)

[
σ

([
0 0
0 1

])
− σ

([
0 0
0 z

])∗

σ

([
0 0
0 z

])]
σ

([
0 0
1 0

])
= 0.

To prove this claim, let H0 = σ(1)(H2 ⊕H2), which is finite dimensional.
Then σ induces a unital representation σ̃ : B → B(H0). Lemma 4.6 implies
that there is a reducing subspace M ⊂ H0 ⊂ H2 ⊕H2 for σ such that the
representation σ̃M is unitary type and σ̃M⊥ is diagonal type. Since σ̃M is
unitary type, the first factor in (8) is zero for σ̃M in place of σ. Since σ̃M⊥ is
diagonal type, the second factor in (8) is zero for σ̃M⊥ in place of σ. Hence
the expression in (8) is zero for σ̃ and hence also for σ. This proves the
claim.

Notice that (8) is equivalent to

(9) σ

([
0 0
1 0

])
− σ

([
0 0
0 z

])∗

σ

([
0 0
z 0

])
= 0.

Recall that if (Tλ) and (Sλ) are bounded nets in B(H) such that Tλ → T in
SOT and Sλ → S in WOT, then SλTλ → ST in WOT. Indeed, if x, y ∈ H,
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then

|〈(SλTλ − ST )x, y〉| ≤ |〈Sλ(Tλ − T )x, y〉|+ |〈(Sλ − S)Tx, y〉|

≤ (sup
λ

‖Sλ‖)‖(Tλ − T )x‖‖y‖+ |〈(Sλ − S)Tx, y〉|
λ
−→ 0.

From this fact, it follows that the set of all representations satisfying (9) (or
equivalently (8)) is closed in the point SOT.

Finally, notice that the Toeplitz representation π does not satisfy (9), as

π

([
0 0
1 0

])
− π

([
0 0
0 z

])∗

π

([
0 0
z 0

])
=

[
0 0

I − TzT
∗
z 0

]
,

which is not zero since I − TzT
∗
z is the orthogonal projection in H2 onto

the constant functions. Therefore, π cannot be approximated point SOT by
finite dimensional representations. �
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