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FINITE-DIMENSIONAL APPROXIMATIONS OF
UNSTABLE INFINITE-DIMENSIONAL SYSTEMS*

G. GU, P.P. KHARGONEKAR, E.B. LEE AND P. MISRA

Abstract. This paper studies approximation of possibly unstable linear time-invariant infinite-
dimensional systems. The system transfer function is "assumed to be continuous on the imaginary
axis with finitely many poles in the open right half plane. A unified approach is proposed for rational
approximations of such infinite-dimensional systems. A procedure is developed for constructing a

sequence of finite-dimensional approximants, which converges to the given model in the Loo norm
under a mild frequency domain condition. It is noted that the proposed technique uses only the FFT
and singular value decomposition algorithms for obtaining the approximations. Numerical examples
are included to illustrate the proposed method.

Key words, finite-dimensional approximations, infinite-dimensional systems, optimal Hankel
approximation, balanced realization, discrete Fourier transform

AMS(MOS) subject classifications. 93C25, 93B15, 41A65, 41A20

1. Introduction. Since it is difficult to deal with infinite-dimensional systems
directly, often a finite-dimensional approximate model is sought. The problem of
approximating infinite-dimensional systems with finite-dimensional ones has been ad-
dressed by many authors in both the time domain [2], [8], [14], and the frequency
domain [10]-[12], [17], [18], [21], [25], [26]. In this paper, we consider the approxi-
mation of possibly unstable linear time-invariant infinite-dimensional systems in the
frequency domain. It is assumed that the transfer function T(s) of the given system is
continuous on the imaginary axis, including infinity and has only finitely many poles
in the open right half plane. The objective is to seek a rational approximant Tr(s),
having the same number of unstable poles as T(s), such that liT- Trll is suitably
small. The motivation for this problem comes from feedback design considerations.
For example, it follows from Curtain and Clover [5] and Chen and Desoer [4] that a
controller stabilizes T(s) also stabilizes T(s), provided that T(s) and Tr(s) have the
same number of poles in the right half plane and liT- TII is suitably small.

One approach for the approximation of such unstable infinite-dimensional systems
is to first separate the (finite-dimensional) unstable part by partial fraction expansion,
and then consider the approximation of the stable part of system [5], [21]. Although
partial fraction expansion is very effective for extracting the unstable part of the given
infinite-dimensional system, it requires computation of the right half plane poles of
the system. In this paper, we propose an alternative technique for the approxima-
tion of unstable infinite-dimensional systems. This work extends to unstable systems
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certain approximation techniques developed in [11], [17], [18], [25] for stable systems.
An important feature of this proposed technique is the unification of approximations
of both the stable and the unstable parts of T(s) within a single algorithm. It will
be shown that under certain mild conditions, the resulting approximants Tr(s), which
have same number of unstable poles as T(s), converge to T(s) in the L-norm. More-
over, the proposed approximation technique uses only the FFT and singular value
decomposition algorithms. Therefore, we expect our method to be preferable from
the computational point of view. It should be noted that the fast Fourier transform
technique has been used in many problems in the literature on computational com-
plex analysis. See, for example, the survey paper by Henrici [13] and the references
therein. Our work shows that thse ideas are also very useful in system approximation
problems, and lead to concrete convergence results as well as L-error bounds. Also,
the resulting algorithms are computationally very efficient.

It is also noted that other frequency domain approximation techniques such as
those developed in [10], [12], [21] might be applicable to the approximation problem
considered in this paper. However, we believe that our algorithm is attractive from
a computational point of view as compared to some of these algorithms. Also, the
extensive work in the Pad approximation literature is potentially applicable to the
present problem. However, in this case, convergence and error analysis in the L
norm remains a topic for future research in the context of our problem. Finally, the
work of Trefethen [23] is also of interest for our problem. The Caratheodory-Fejer
(CF) method proposed in [23] is considered to be very effective for frequency domain
approximation [12]. However, it has been recently pointed out by Saff and Totik [22]
that the CF method does not always provide a better approximation than partial sums
of Fourier series, and there exist functions whose Fourier series converges uniformly but
the approximant obtained using the CF method diverges. We would like to emphasize
that this should not be taken to imply that the CF method is inferior in comparison
to Fourier series. As indicated in [22], the CF method is superior to the partial sum
of Fourier series for those functions that are sufficiently smooth.

We believe that the technique proposed in the present paper offers an effective
alternative to the techniques that could be derived from the references cited above.
Preliminary analysis appears to imply that all these techniques may have different
domains of applicability. A comparative study of all these algorithms remains a subject
for future work.

The paper is organized as follows. A preliminary result will be presented first
for discrete-time systems in 2, which will be used to establish the main result of this
paper in 3. Two numerical examples will be given in 4 to illustrate the approximation
technique.

2. A preliminary result. Before studying the approximation of unstable infi-
nite-dimensional systems, we will first establish a simple result that will be useful in
the next section. Let G(z) be the transfer function of a given linear, time-invariant,
finite-dimensional, exponentially stable, discrete time system of McMillan degree n.
Suppose that G(z) is given by

(2.1) G(Z)=Egkz-k with gkTpm

k=l



706 G. GU P.P. KHARGONEKAR E.B. LEE AND P. MISRA

Define the partial summation

N

(2.2) SN(Z) "= Zgkz-k.
k--1

A simple (possibly nonminimal) realization for SN(Z) is given by

0 0 0 Iom gT
Im 0 0 0

(2.3) AN-- 0 Im 0 BN-- C--"
o i. o ;

Since the above realization is controllable, an input normal realization [8], [10] of
SN(z) (which has properties similar to balanced realization) can be easily found by
solving two Lyapunov equations. In fact, with the realization as in (2.3), a much
simpler algorithm can be used to compute a similarity transformation T (which is a
unitary matrix) using only one singular value decomposition (see [11] for more details)
such that

(Ab, Bb, Cb) (TANTT, TBN, CNTT)

is an input normal realization of SN(Z). NOW (for N >_ n) an approximant CNn(z)
of degree n can be obtained by direct truncation of the input normal realization
(Ab, Bb, Cb) as follows:

It is noted that the McMillan degree of GNn(z) may be smaller than n. However, if
the McMillan degree of SN is no smaller than n, then the McMillan degree of GN
is exactly n. With GNu(z) := cN(zI- ANn)-IBN as described above, we have the
following result.

THEOREM 2.1. Let G(z) be given as in (2.1). Suppose that G(z) is exponentially
stable and has UcMillan degree n. Then, Nlirno IIG GNn IIo O, where GNn is obtained

from (2.2)-(2.5).
Proof. It is easy to show that (see also [10]), for k > n,

(2.6) grk(SN) --Z grmax(gN+k),
k--1

where O’k(SN) is the kth Hankel singular value (in descending order) of SN(Z) and
Crmax(gN+k) is the maximum singular value of p m matrix gN+k. Hence,

N

ak(SN) <_ (N n)Z
n+l k---1
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SinceGN is obtained from (2.2)-(2.5), using the results from Glover [9], Enns [6], and
A1-Saggaf and Franklin [1], it is easy to see that

By the triangle inequality and the fact that IIG SNII <_ O’max(gN+k), it follows
k=l

from (2.6)-(2.8)that

(2.9) Ila a NIl Ila SNIIo + IISN anNIl 2(N n + 1/2) O’max(gN+k).
k=l

By the hypothesis, G(z) admits a minimal realization (A, B, C) where A E ,nxn, B
T,nxm and C pxn such that G(z) C(zI- A)-IB and the spectral radius of A,
p(A) < 1. Therefore,

(2.10) O’max(gk) _< ap(A) k

for some a > 0. Hence, the error estimate in (2.9) can then be bounded as

(2.11)
ap(A)gG GuN I1 -< 2(N n + 1/2) 1 p(A)"

The condition p(A) < 1 guarantees that limg- Ila aN o.
Note that the approximant GNu(z) can also be obtained from nth-order optimal

nankel approximation of SN(z) as in (2.2) for which Theorem 2.1 is still true (see
Glover [9] and Kung and Lin [16]). However, as N becomes large, the computational
burden associated with the Hankel approximation technique would be significantly
higher compared to the input-normal-realization-based direct truncation technique.
Finally, although the error bound in (2.11) is conservative, it does indicate that the
convergence depends directly on the value of p(A).

3. Main result. In this section, we consider the approximation of unstable,
continuous-time infinite-dimensional system T(s). Let :H and :D denote the open right
half plane and the open unit disc, respectively. It is assumed that T(s) L and has
only finitely many poles in

As mentioned earlier, one technique for obtaining finite-dimensional approxima-
tions is to use the partial fraction expansion to decompose T(s) Ts(s)+ T(s) with
Ts(s) and T(-s) both analytic in 7-/. Consequently, much of the existing research
work concentrates only on the approximation of stable part T(s) T(s) T(s).
From the computational point of view, it is preferable to avoid the partial fraction
decomposition.

In the rest of this section, we develop a new technique to obtain rational approxi-
mations for possibly unstable systems. The transfer function of the given continuous-
time infinite-dimensional system is first transformed to a function on the unit circle
by means of a bilinear transformation. This transformation preserves theL norm as
well as Hankel singular values [9]. The rational approximant is then obtained by using
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the FFT and singular value decomposition algorithms. The resulting approximant is
then transformed back to obtain an approximation of the original system by means of
the inverse bilinear transformation.

Define the bilinear transformation

or z :=(3.1) s:=A+ z

which is a conformal mapping from 7-/to :D. Next, define

(3.2) F(z):=T A
l+z

Then, F(z) fkZk Fs(z)+ F(z), (which converges in the L2-sense) with

F(z) S_kz-k and Fs(z) fkzk,
k--1 k=0

Clearly, F,(z) and T,(s) have the same McMillan degree which by assumption
is finite. Purthermore, since the bilinear transformation does not change the Hankel
singular values of the original transfer function as shown in [9], the Hankel singular
values of F,(z) are exactly the same as those of T,(s). Therefore, if the sequence
{f-k}=l is known precisely, F,(z)can be reconstructed using a number of different
techniques from the realization theory literature. A problem arises, since we would
like to avoid computing the sequence {fk} exactly. Let us define a 2M-point inverse
discrete Fourier transform as follows to compute {fk } approximately:

M-1

(3.4) fu(k)
2M F(WM)W-k’ k =-M,-M + 1,... ,M- 1,

r=-M

where W2M ej/M. The sequence (fM(k)} can then be used as an approximation
for {f}.

The DFT-based approximation has been studied in [11] for stable infinite-dimen-
sional systems, and the convergence, as well as the error bounds, are established for
a class of infinite-dimensional systems. Here, we concentrate on the approximation
of the unstable part of the system and obtain some similar results. We first state a
lemma based on which the main result of the paper will be obtained.

LEMMA 3.1. Let F(z) be defined as in (3.2) and let F(z) be of finite McMillan
degree. Suppose that dF(eJ)/deY e n2[0, 2zr]. Then,

(i) {[[fk[[} e gl, (that is, Ilfkll < ) and
k=--

(ii) fM(k)= f2LM+k,
L=-

where fk and fM(k) are dCned by (3.3) and (3.4), respectively.
This result is quite well known. See, for example, [15], [13].
Note that since F(z) is analytic on unit circle and its McMillan degree is finite,

the condition dF(eJ)/deJ e L2[0,2r] is, in fact, equivalent to dFs(eJ)/deJ e
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L2[0,2r]. Hence, F(z) (or Fs(z)) is continuous on the unit circle. By (3.2), the
continuity of F(z) on unit circle is equivalent to the continuity of T(s) on the extended
jw axis. Therefore the hypothesis in Lemma 3.1 implies that the transfer function
T(s) admits rational approximants that converge in Lot-norm to T. Our results in
this paper, in fact, give a constructive procedure for obtaining such approximants.

THEOREM 3.2. Let F(z) be defined as in (3.2) and Fu(z) have McMillan degree
n DeftneSS(z)" g

k=l fM(--k)z-k, with fM(k) as in (3.4), N > n. Suppose that
dF(eJw)/dejw e n2[0, 2r]. Then

(3.5) lim
> N---cx:)

I:?M N

F,,M;Nwhere u;n (z) is an nth-order approximant of S(z) obtained using the balanced
truncation scheme described in 2 (or the optimal Hankel approximation method).

Proof. By the triangle inequality,

(3.6)

where SN(z) g
-k=l f-kz-k" We will show that the three terms on the right-hand

side of (3.6) approach zero as
Indeed, because F(z) is rational and has all its poles in 7:), it is easy to see that

(3.7) lim [IF SN[]o O.
N--+o

Furthermore, since IIz-kll 1, we have that IISN- SMNII <_ -kN=l amax(fM(--k)-
f-k). Lemma 3.1 implies that

(3.s) f-(a) h
L#0

where the summation is with respect to L and k is fixed. Hence,

N oo

(3.9) IISN 0"max(fA(k))

_
E{O’max(fMTk-1) + amax(f-M-k)} 0

k=l k=l

as M --, cx). Finally, the third term on the right-hand side of (3.6) is bounded by

N
FM;N(3.10) IISNM- =;, II < Z E ai(S),

i=n-4-1

where/ 1 if F;MN is obtained from optimal Hankel approximation of SNM [9] and
F,M,N/3 2, if =;n is obtained from the reconstruction scheme in 2 or the balanced

realization technique for SNM [1]. Now

N N

(3.11) S (z) E fM(--k)z-k SN(Z) +E fA (--k)z--k"
k=l k=l
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By singular value perturbation results and Theorem 2.1, we get

(3.12)

N

(Yi() <_ (:ri(SN) --E (:rmax(fA(--k))
k--1

cx N

<_ECrmax(f-N-k)+EECrmax(f2LM-k),
k--1 k--1 L:0

whenever > n. Note that in deriving the above inequality, (2.6) is used with gk

replaced by f-k. Taking sum of ai for n + 1 <_ i <_ N above, we get

(3.13) IISNM IIo fl(N n) E{2(Tmax(Y_N_k) nt- (:rmax(fMWk)}.
k=l

Since the derivative of F(z) is absolutely square-integrable on the unit circle and its
unstable part is finite-dimensional, the derivative of Fs(z) is also absolutely square-
integrable on the unit circle, which implies that

(3.14) fU+k
]M+k

and E O’max(]k)2 < (30,
M+k

k=l

where ]k is the kth Fourier series coefficient of dF(z)/dz. Moreover, since the unstable
part has only n poles on open unit disc, amax(f-k) <_ aopko for some ao > 0 and po < 1,
where k > 0. Therefore, using the Schwarz inequality, we have

F,M;N OoPoN + fl(N- n)(3.15) IIS ;, I1 -< 2fl(N- n)
1 po

as _> N -- c. The proof is now complete using (3.6)-(3.9) and (.15).
Remark 3.1. It is important to note that n, the McMillan degree of F(z), may

not be known in advance. However, from Theorem 3.2 (also (3.12)), the first n Hankel
singular values ofS (z) converge to the true Hankel singular values of F(z) and the
rest of the Hankel singular values converge to zero as (M, N) (oc, c), withM > N.
Therefore, as M,N are both large, a gap between an(SMN) and an+l(S) would be
significant if an(F) is not too small. In this case, the McMillan degree of F(z) can
also be identified in the approximation process.

Since F(z)is given by (3.2), the frequency domain condition dF(eJ)/deJ e
L2[0, 2r] is, in fact, equivalent to (- jw)(dT(jw)/djw) e L2[-(x), oo] (see [24]). This
.condition is difficult to verify in general. However, for a class of time delay systems,
we can state the following.

PROPOSITION 3.3. Let T(s) be a transfer function of the form

(3.16) T(s) F_,k=o Qk(s) exp(--hks)
sn +. -=oPk(S)exp(--TkS)’

where pk(s) is a scalar polynomial of s, Qk(s) is a polynomial matrix of size m x r,
and O < ho <_ hi <_ <_ h,,Tk > 0 forO <_ k <_ n. Let dk deg(Qk(s)) and
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5k deg(pk(s)). It is assumed that dk
L2[-x3, cx], if the following statements hold: (1) T(s) is continuous on imaginary axis;
and (2) (i) dk < n--1, if hk --O; (ii) dk < n--1, if hk O.

We omit the proof of the above proposition, as it is an easy extension of a result
in [11]. To conclude our results, we summarize the following algorithm for rational
approximation of unstable part of the given infinite-dimensional system.

Algorithm 3.1 (Rational approximation).
Step 1: For a given unstable infinite-dimensional transfer function T(s), verify
first if (/k- jw)(dT(jw)/djw) e L2[-x), 3] and choose > 0 to find F(z) as in
(3.2);
Step 2" Use 2M-point inverse FFT algorithm to compute fM(k) as defined in

Step 3: Compute Hankel singular values of SNM as defined in (3.11) with N2 < M,
N large enough, and estimate n: the number of unstable poles of T(s);

I:i,M NStep 4: Apply (2.3)-(2.5) to S(z) to obtain, =;, (z) cN(zI- AN)-iBN;
Step 5" Use bilinear transform (3.1) to obtain an approximation for the unstable
part of T(s).
End

As discussed earlier, the hypothesis in Theorem 3.2 (which is same as in Lemma
3.1) implies that dF(e")/de L2[0,2r]. The approximation of such F(z) using
{fM (k) }k__0 has been studied previously in [11], where some convergence results and
the error bounds have been established. Hence, we will only briefly describe the
approximation of the stable part of F(z) below.

Define the partial summation as the approximant of the stable part

L

(3.17) SM;L(z) E fM(k)z JL + HL(Z-I- FL)-GL,
k--0

where the realization (FL, GL, HL, JL) is similar to (2.3). Therefore, the above real-
ization can be easily converted into an input normal realization by computing only
one singular value decomposition. The rational approximant of the stable part of
McMillan degree no larger than g can then be obtained by direct truncation as in
(2.5), which is denoted as

(3.18) I:pM;L
"s;, (z) J# + H#(z-II- FL)-IG#.

It has been established in [11] that if the conditions in Theorem 3.2 are true, then

1;i,M L(3.19) lim
M>L> g.--*cx

The procedure described above is similar to the approximation of unstable part except
that N is replaced by L, and n is replaced by , and while n is kept fixed, cx3.

Therefore, the approximation of both stable and unstable part of T(s) can be handled
with Algorithm 3.1. The final approximant of F(z) can then be obtained as

I:pM L I:pM N(3.20) F(z) ; (z) +, ;, (z).

Finally, the finite-dimensional approximation given by T(s):= F ((- s)/(A + s))
is an approximation of T(s). With these definitions, we have the main result of the
paper.
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THEOREM 3.4. Let T(s) be the transfer function of a given infinite-dimensional
system having finitely many poles on open right half plane. Assume that T(s) is
continuous on extended jw-axis and (- jw)dT(jw)/djw E L2(-oc, oc). Then, with
Tr(s) obtained from the above approximation procedure, lim liT-
L >_ g-- oc and x/- >_ N --- oc.

It is noted that the bilinear transform does not change the Lo-norm of the transfer
function and thus liT-

Remark 3.2. We would like to indicate further that as the approximate model is
used for feedback control system design, the following condition should be satisfied to
ensure the existence of stabilizing feedback compensator [5]"

I:pM;N lcpM;NliT TI1 < an- ;n (:rmink- u;n j.

This is due to the fact that the bilinear transform does not change the Hankel singular
values.

4. Illustrative examples. To illustrate the approximation technique proposed
in this paper, two examples are presented below.

Example 4.1. Consider the following transfer function:

(4.1)

It is easy to verify that the above T(s) is continuous on imaginary axis. Further-
more, the convergence condition in Theorem 3.2 is true in light of Proposition 3.3. If
the partial fraction is used for approximation, the poles of T(s) as well as the residues
must be computed, which, computationally, is very demanding. Using Algorithm 3.1,
we applied bilinear transform (3.1) with A 10. A 2048-point FFT program is used
to compute the sequence {fM(k)} as defined in (3.4). The partial sum S(z) is ob-
tained with N 9. The gap between the second and third Hankel singular values
was significant, suggesting that the number of unstable poles of T(s) is n 2. The
approximate unstable part of the system is finally obtained as

-0.0aas( +

It is noted that the exact unstable poles are 5.002224 and 5.999994, which are very
close to the poles of (s) above.

We would like to mention that this particular transfer function has a very rich
frequency response (see the dash line curve in Fig. 4.1). Hence, it is not easy to
find a simple finite-dimensional approximation for this transfer function. We have
also used Algorithm 3.1 (with necessary modification) for approximation of the stable
part with L 45 and g 15. The approximant T(s) of degree 15 is obtained. By
setting T(s) 8(s) + (s) as the approximant, a satisfactory result is achieved.
The magnitude frequency response of the approximant Tr(s) is plotted in solid line in
Fig. 4.1. It is seen that the frequency response of T(s) matches very well with that
of T(s) for the first seven peaks. The frequency response of the error function can be
found in Fig. 4.2. Note that

lIT T,. I[oo 0.0437 < O’min(u) 0.0689.
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.2

O 20 40 SO

Omega

FI(. 4.1. Frequency response oil(s) and T(s).

E .025

.015

005

0 20 40 60 l0 100 20

FIG. 4.2. Frequency response of (s) T(s).

Therefore, the existence of feedback compensators, which stabilizes both Tr(s) and
T(s), is guaranteed. The approximant Tr(s) in fractional form is listed in Table 4.1.

Example 4.2. Consider the system described by delay-differential equation

(4.4)

be(t) Alx(t) + A2x(t- 1) + Bu(t)

0 1 -1 0 0 0
o (t)+ o o o o

0 1-1 0 0 0 0 0

1
X(t 1) H- 0

0

The above system was used in Fiagbedzi and Pearson [7], where stabilization
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TABLE 4.1

Coefficients ofs (s) in Example 4.1

Power of s Numerator coefficients Denominator coefficients

17

16

15

14

13

12

11

10

9

8

7
6

5

4

3

2

1

0

-4.674443306368986e-03

4.239380836236473e-01

-4.521836609299845e+01
3.466157426093782e+02

-6.582229625369409e04
9.097441642147570e+04

-3.713504005871573e+07
6.293813076095961e06

-9.927606421876093e+09
-6.799049187753367e08
-1.313153757820815e+12
-1.029096097997340e11
-8.195766310713688e13
-3.100690880350008e+12
-2.059046683673155e+15
-5.551124575148588e13
-1.354380608580234e16
2.229241917067798e+15

1.000000000000000e-

2.344791598941533e-

1.291295941920766e-

2.081800085936672e-

5.962725161939924e-

6.002018359817575e-

1.216507871727509e-

5.190579448022859e-

1.075305465480490e-

-3.125834632061094e-

3.399723344157356e-

-5.810536260868385e-

-00

-01

-03

-04

-05

-06

-08

-08

-10

-10

-11

-12

6.376021158219976e+12
-1.624831770313712e+14
5.092921660281645e+14
3.600520359638086e+14
8.398888911991564e+15
9.157772117540838e+15

with state feedback was investigated. The synthesis technique proposed in [7] involves
the computation of undesirable modes of the system. The state feedback law is then
designed to shift the undesirable modes to the left of Re(s) Uo, where o < 0
represents the stability margin of the closed-loop system. For the above system, Uo
-1 was chosen in [7]. We demonstrate that the proposed approximation technique
can also be used to compute the poles to the right side of Re(s) Uo.

First, we choose C BT, so that

T(s) C(sI- A)-IB
+ + + + +

where A AI + A2e-s. It is not difficult to show that with C BT, the system is
both controllable and observable. Furthermore, using Proposition 3.3, the convergence
conditions as in Theorem 3.2 are satisfied. Next, we take s / 1 and determine the
unstable part of Ta() C(M- A- I)-B. Using Algorithm 3.1, we select A 1
for bilinear transform and use a 204S-point inverse FFT to compute (fM(k)}. Since
the fifth Hankel singular value of .0245 (z) is very small, it is clear that the number of
unstable poles of Ta() is n 4. With the model reduction scheme described in 2,

F,M;gwe obtain a fourth-order approximant ;n (z). Based on the rational approximant
of unstable part, we finally computed the poles of T(s) on the right of Re(s) -1
approximately, as below:

{-0.186364675 d= j0.91770066797; 0.11438695855 d= jl.517680152}.

The above poles are very close to the ones in [7], which are computed using the
algorithm in Manitius et al. [19] (within ll-digit of exact poles).

Remark 4.1. It should be emphasized that in the above computation, we used
only an inverse FFT and a singular value decomposition program, whereas the algo-
rithm in [19] involves searching for poles on each rectangular region of the s-plane
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by computing Cauchy index with contour integral and then applying the numerical
procedure to find the roots of the exponential polynomial in that particular region.
The proposed method, therefore, provides significant computational saving.

Remark 4.2. The selection of parameter A in bilinear transformation in (3.1) is
important in computing the approximant. Extensive experimental experience shows
that selecting A as the bandwidth of T(s) often yields better numerical results.

5. Concluding remarks. In this paper, we proposed a systematic procedure
for rational approximation of unstable infinite-dimensional systems with finitely many
right half plane poles (McMillan degree n). Convergence results for rational approxi-
mation from truncated Fourier series expansion of the given system transfer function
were established. A computational procedure using FFT and singular value decompo-
sition algorithms was outlined. The proposed technique is numerically more reliable
and computationally more efficient than the existing procedures to achieve the same
objective. Numerical examples illustrated the performance of the proposed technique.
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