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Abstract. We consider the viscous Cahn-Hilliard equation in an infinite domain. Due
to the noncompactness of operators, we use weighted Sobolev spaces to prove that the
semigroup generated by this equation has the global attractor which has finite Hausdorff
dimension.

1. Introduction. Many equations arising from mechanics and physics possess a
global attractor, which is a compact invariant set which uniformly attracts the trajecto-
ries as time goes to infinity, and thus appears as a suitable object for the study of the
asymptotic behaviour of the system. An important issue is then to study the dimension,
in the sense of the Hausdorff or fractal dimension, of the global attractor. A finite bound
of the dimension of the attractor means that the system has an asymptotic behaviour
determined by a finite number of degrees of freedom, indeed a remarkable improvement
compared to the a priori infinite-dimensional dynamics (see [5] and [15]).

For the equations on bounded domains, the known constructions of global attractors
make use of some compactness properties in an essential manner, and more specifically of
the compact embedding of Hm1 into Hm2 , when m1 > m2. Such properties are no longer
valid for equations on unbounded domains, and it is thus more difficult to develop a
general theory of existence of the global attractor in this case. A possibility then consists
of working in weighted Sobolev spaces (see [1], [3], [4], [6], and [10]).

In this article, we study, on an unbounded domain, the existence of global attractors
and their Hausdorff dimensions for the viscous Cahn-Hilliard equation of the form

∂t(u − β∆u) + ν∆2u − ∆(f(u) + λ0u + g) = 0, (1.1)

where β, ν > 0, λ0 ≥ 0, and f and g are given functions and u = u(x, t) is the unknown
function. Such equations, where f is the derivative of some double-well potential F , are
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94 AHMED BONFOH

generalizations of the Cahn-Hilliard equation which is very important in material science
and models the qualitative behaviours of two phase systems (see [7], [8], [9], [11], [12],
[13] and [14]).

The layout of this paper is as follows. In Section 2, we set the problem. In Section 3
and 4, we obtain some results, as existence of solutions, in unweighted and in weighted
spaces, respectively. Section 5 is devoted to the study of the existence of the global
attractor. Finally, in Section 6, we prove that the Hausdorff dimension of the global
attractor is finite.

Throughout this paper, the same letter C and c (and sometimes ci, i = 0, 1, 2, ...) shall
denote positive constants that may change from line to line.

2. Setting of the problem. For the sake of simplicity, we take, in this section,
λ0 = 0 and g = 0, and consider the following system:⎧⎨

⎩
∂t(u − β∆u) + ν∆2u − ∆f(u) = 0 in Ω × R

+,

u|t=0 = u0 in Ω,

u = ∆u = 0 on ∂Ω × R
+,

(2.1)

where Ω ⊂ R
2 is defined by the inequalities

b1(x1) ≤ x2 ≤ b2(x1), x1 ∈ R, (2.2)

and where b1 and b2 are twice continuously differentiable functions bounded over the
entire axis {

−M ≤ b1(x1) ≤ b2(x1) ≤ M,

|b′i(x1) + b′′i (x1)| ≤ c, i = 1, 2.
(2.3)

All the results of this paper are valid for any open set Ω of R
d, d = 2 or 3, regular

and bounded at least in one direction. That is, Ω is included in the set limited by two
hyperplanes orthogonal to that direction. The nonlinear term f(u) is supposed to satisfy
the following conditions:⎧⎪⎪⎨

⎪⎪⎩
f(u)u ≥ 0,

f(0) = 0, f ′(0) = 0, f ′(u) ≥ −c,

|f ′(u) − f ′(v)| ≤ c|u − v|α0(1 + |u| + |v|)q0 ,

|f(u)| ≤ c1|u|1+α1(1 + |u|)q1 ,

(2.4)

where α0, α1 ≥ 1, q0, q1 > 0 are arbitrary when d = 2 and

q0 + α0 ≤ 2, q1 + α1 ≤ 2, (2.5)

when d = 3. For instance, the function f(u) = u5 − σu3, σ > 0, satisfies (2.4) for
|u| ≥

√
σ. We denote by ‖.‖ and (., .) the usual norm and inner product of L2(Ω),

respectively, and set H = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩ H1

0 (Ω) and H3 = {v ∈
H3(Ω)∩H1

0 (Ω), ∆v ∈ H1
0 (Ω)}. The first eigenvalue λ1 of the operator A = −∆ : D(A) →

H, with D(A) = H2(Ω) ∩ H1
0 (Ω), is positive, that is,

inf{(−∆v, v), v ∈ D(A), ‖v‖ = 1} = λ1 > 0. (2.6)

In the case b1 = −M, b2 = M , we have λ1 = ( π
2M )2 (see [3]).
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VISCOUS CAHN-HILLIARD EQUATION IN AN UNBOUNDED DOMAIN 95

Remark 2.1. For v ∈ L2(Ω), the solution ξ (denoted by N(v)) of the Dirichlet problem{
−∆ξ = v in Ω,

ξ = 0 on ∂Ω,
(2.7)

is such that ξ ∈ D(A). Furthermore, the norm ‖∆ξ‖ is equivalent on D(A) to the
canonical norm ‖ξ‖H2(Ω) (see [1] and [2]).

If we denote ‖q‖−1 = ‖∇N(q)‖, then there exists c1, c2 > 0 such that

c1‖q‖−1 ≤ ‖q‖ ≤ c2‖∇q‖, ∀q ∈ H1
0 (Ω). (2.8)

We now endow H, H1, H2 and H3 with the norms ‖q‖0 = (‖q‖2
−1 + β‖q‖2)

1
2 , ‖q‖1 =

(‖q‖2 + β‖∇q‖2)
1
2 , ‖q‖2 = (‖∇q‖2 + β‖∆q‖2)

1
2 and ‖q‖3 = ‖∇∆q‖, respectively. These

norms are equivalent to the usual L2(Ω), H1(Ω), H2(Ω) and H3(Ω) norms, respectively.
We finally denote {

‖u‖2
0,γ =

∫
Ω
|u|2(1 + |x|2)γ dx,

‖u‖2
l,γ =

∑
|α|≤l ‖∂αu‖2

0,γ , l = 1, 2,
(2.9)

where γ > 0 and ∂α = ∂α1

∂x1
α1

∂α2

∂x2
α2 with |α| = α1 + α2, (α1, α2) ∈ N

2. The space Hl,γ(Ω)
is the set of u such that the norm ‖u‖l,γ is finite. The space Hl,0(Ω) is denoted by H l(Ω).

3. Estimates in unweighted spaces. In order to obtain the existence of solution
results for the system (2.1)-(2.5), we introduce a weak variational formulation of the
problem:
Find u : [0; T ] → H2 such that u(0) = u0, and for a.e. t ∈ [0, T ], ∀T > 0,

d
dt [(u, v) + β(∇u,∇v)] + ν(∆u, ∆v) − (f(u), ∆v) = 0, ∀v ∈ H2. (3.1)

Theorem 3.1. Let u0 ∈ H1. Then, there exists a unique function u solution of (3.1) such
that u ∈ L∞(0, T ; H1) ∩ L2(0, T ; H2) and ∂tu ∈ L2(0, T ; H). Furthermore, if u0 ∈ H2,
then u ∈ L∞(0, T ; H2) ∩ L2(0, T ; H3) and ∂tu ∈ L2(0, T ; H1).

Proof. Using Galerkin approximation arguments, we prove, for each n ∈ N, the exis-
tence of a solution un of (3.1) in the truncated domain Ωn = Ω ∩ (] − n, n[×[−M, M ]).
For u0 ∈ H1, we easily obtain, noting that the constant c2 in (2.8) is chosen to depend
on M only, that there exists a constant C > 0 independent of n such that∫

Ωn
(|un|2 + β|∇un|2) dx + c

∫
Ωn×]0,T [

|∆un|2 dxdt ≤ C. (3.2)

Equation (2.1) restricted to Ωn can be written as

∂tun = L−1∆(−ν∆un + f(un)), (3.3)

where L = I − β∆ is an isomorphism from H1
0 (Ω) onto H−1(Ω), and can be viewed

alternately as an unbounded operator on L2(Ω) with domain D(L) = H2(Ω) ∩ H1
0 (Ω).

Furthermore, ‖Lq‖ is a norm which is equivalent on D(L) to the norm ‖∆q‖, and there-
fore, ‖L−1∆q‖ is a norm which is equivalent on L2(Ω) to the usual L2(Ω) norm (see [1]
and [2]). Therefore, constants in inequalities deduced from the respective equivalence of
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these norms restricted to Ωn can be chosen to depend on M only, but not on n. From
(3.3), we have∫

Ωn×]0,T [
|∂tun|2 dxdt ≤ C

∫
Ωn×]0,T [

(|∆un|2 + |f(un)|2) dxdt

≤ C(1 +
∫
Ωn×]0,T [

|un|2+2α1(1 + |un|2q1) dxdt)
≤ C(1 + T (‖un‖r

H1(Ωn) + 1)) ≤ C,

(3.4)

where r > 0, C is chosen to depend on T , M , ‖u0‖1 only, but not on n. We further
note that Sobolev embeddings are valid on the whole domain Ω even when Ω = R

d,
so, in the deduced inequalities, we can choose constants independently of Ωn (see [2]
and [15]). In (3.4), we used the continuous embedding H1(Ωn) ↪→ Lq(Ωn), ∀q ≥ 1, and
the fact that there exists a constant c > 0 independent of n such that ‖un‖2

H1(Ωn) ≤
c
∫
Ωn

(|un|2 + β|∇un|2) dx. We then deduce the existence of solutions un in Ωn and a
subsequence (which we still denote by {un}n) which converges to u as n → +∞ and u is
a solution of (3.1). We remark that, here, due to the noncompactness of operators, A−1

for instance, we are not able to apply classical methods used to directly obtain a solution
of (3.1).

Let u1 and u2 be two solutions of (3.1) with the same initial data. Setting w = u1−u2,
we have w(0) = 0 and

1
2

d
dt‖w‖2

0 + ν‖∇w‖2 = −(f(u1) − f(u2), w). (3.5)

Noting that (f(u1) − f(u2), w) ≥ −c‖w‖2, we obtain
d
dt‖w‖2

0 ≤ c‖w‖2
0, (3.6)

hence the uniqueness of solution.
Now, let u0 in H2 and multiply (2.1) by v = −∆un. Integrating over Ωn, we obtain

1
2

d
dt (

∫
Ωn

(|∇un|2 + β|∆un|2) dx) + ν
∫
Ωn

|∇∆un|2 dx

=
∫
Ωn

∇f(un)∇∆un dx.
(3.7)

We have
|
∫
Ωn

∇f(un)∇∆un dx| ≤ ‖f ′(un)∇un‖L2(Ωn)‖∇∆un‖L2(Ωn)

≤ c‖f ′(un)∇un‖2
L2(Ωn) + ν

2‖∇∆un‖2
L2(Ωn)

(3.8)

and
‖f ′(un)∇un‖2

L2(Ωn) =
∫
Ωn

|f ′(un)|2|∇un|2 dx

≤ c
∫
Ωn

|un|2α0(1 + |un|2q0)|∇un|2 dx.
(3.9)

Since d ≤ 3, we have∫
Ωn

|un|2α0(1 + |un|2q0)|∇un|2 dx ≤ c(‖un‖2α0
L8α0 (Ωn)

+‖un‖2(α0+q0)

L8(α0+q0)(Ωn)
)‖∇un‖L4(Ωn)‖∇un‖L2(Ωn),

(3.10)

and, using Sobolev embeddings, we obtain∫
Ωn

|un|2α0(1 + |un|2q0)|∇un|2 dx ≤ c‖un‖2α0
H1(Ωn)

×(1 + ‖un‖2q0
H1(Ωn))‖∆un‖2

L2(Ωn).
(3.11)

We finally obtain the estimate∫
Ωn

(|∇un|2 + β|∆un|2) dx + c
∫
Ωn×]0,T [

|∇∆un|2 dxdt ≤ C, (3.12)
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VISCOUS CAHN-HILLIARD EQUATION IN AN UNBOUNDED DOMAIN 97

where C is chosen to depend on ‖u0‖1, ‖u0‖2, T, M only, but not on n; hence the result,
passing to the limit.

4. Estimates in weight multipliers. Let ϕ(x) = ϕ(x, ε, ρ, γ) be a function of the
variable x ∈ Ω, which depends on parameters ε, ρ, γ and satisfies the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(x, ε, ρ, γ) ≥ 1, ϕ(x, ε, ρ, γ) = ϕ(εx, 1, ρ, 1)γ ,

ϕ(x, 1, ρ, γ) does not depend on ρ if |x| ≤ ρ,

ϕ(x, 1, ρ, γ) = ϕ(ρ + 1, 1, ρ, γ) as |x| ≥ ρ + 1,

|∂αϕ(x, ε, ρ, γ)| ≤ Cε|α|ϕ(x, ε, ρ, γ) for |α| ≤ 2,

ϕ(x, ε, ρ1, γ) ≥ ϕ(x, ε, ρ2, γ) as ρ1 ≥ ρ2 ≥ 1, γ ≥ 0,

limρ→∞ ϕ(x, 1, ρ, γ) = (1 + |x|2) γ
2 = φ(x).

(4.1)

Let ϕ = ϕ(x, ε, ρ, 2γ) and ψ = ϕ
1
2 .

Remark 4.1. In [3], A.V. Babin gives an example of a function satisfying all the
above conditions.

The following propositions and their proofs can be found in [3].

Proposition 4.1. If u ∈ H1(Ω), then

|‖ψ∇u‖ − ‖∇(ψu)‖| ≤ Cε‖ψu‖. (4.2)

If u ∈ H2(Ω), then

|‖ψ∆u‖ − ‖∆(ψu)‖| ≤ Cε‖ψ(|u| + |∇u|)‖. (4.3)

Proposition 4.2. If u ∈ H1(Ω) such that u|∂Ω = 0, then

2‖ψ∇u‖2 ≥ λ1‖ψu‖2. (4.4)

Proposition 4.3. For ε sufficiently small and u ∈ H2(Ω) such that u|∂Ω = 0, we have

‖ψ∇u‖ ≤ 2λ1
−1/2‖ψ∆u‖. (4.5)

Proposition 4.4. We have{
‖u‖1,γ ≤ c‖ψ∇u‖, ∀u ∈ H1,γ(Ω), u|∂Ω = 0,

‖u‖2,γ ≤ c‖ψ∆u‖, ∀u ∈ H2,γ(Ω), u|∂Ω = 0.
(4.6)

Lemma 4.1. Let γ > 0 and u0 ∈ H2 ∩ H1,γ(Ω). Then, the solution u(t) of (2.1)-(2.5)
satisfies the estimates {

‖u(t)‖2
1,γ ≤ C, 0 ≤ t ≤ T,∫ T

0
‖u(t)‖2

2,γ dt ≤ C, ∀T > 0.
(4.7)

Proof. For the solution u of (2.1)-(2.5), equation (2.1) is equivalent to

∂t(N(u) + βu) − ν∆u + f(u) = 0. (4.8)

We multiply (4.8) by ϕ(−∆u+ ε∂tu). We omit the details here (see for instance [5]). We
treat only the term

|(f(u), ϕ(−∆u + ε∂tu))| ≤ ‖ψf(u)‖‖ψ∆u‖ + ε‖ψf(u)‖‖ψ∂tu‖ (4.9)
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98 AHMED BONFOH

and

‖ψf(u)‖2 =
∫
Ω
|f(u)|2ϕ dx ≤ c

∫
Ω
|u|2+2α1(1 + |u|2q1)ϕ dx

≤ c‖u‖2α1
L∞(Ω)(1 + ‖u‖2q1

L∞(Ω))‖ψu‖2 ≤ c‖u‖2α1
H2(Ω)

×(1 + ‖u‖2q1
H2(Ω))‖ψu‖2 ≤ c‖ψu‖2.

(4.10)

We finally obtain an estimate of the form

1
2

d
dt (‖ψu‖2 + β‖ψ∇u‖2) + ν‖ψ∆u‖2 + βε‖ψ∂tu‖2

≤ Cε2‖ψu‖ ‖ψ∆u‖ + Cε‖ψ∂tu‖ ‖ψu‖ + Cε2‖ψ∂tu‖2

+Cβ‖ψ∂tu‖ ‖ψ∇u‖ + Cεν‖ψ∇u‖ ‖ψ∂tu‖
+C‖ψu‖ ‖ψ∆u‖ + Cε‖ψu‖ ‖ψ∂tu‖.

(4.11)

For ε sufficiently small, we obtain, using Young’s inequality and Propositions 4.1 through
4.3, the estimate

1
2

d
dt (‖ψu‖2 + β‖ψ∇u‖2) + ν‖ψ∆u‖2 + βε‖ψ∂tu‖2

≤ ν
10‖ψ∆u‖2 + βε

10‖ψ∂tu‖2 + ν
10‖ψ∆u‖2 + βε

10‖ψ∂tu‖2

+βε
10‖ψ∂tu‖2 + c1‖ψ∇u‖2 + ν

10‖ψ∆u‖2 + βε
10‖ψ∂tu‖2

+c2‖ψu‖2 + ν
10‖ψ∆u‖2 + ν

10‖ψ∆u‖2 + βε
10‖ψ∂tu‖2,

(4.12)

and therefore
d
dt (‖ψu‖2 + β‖ψ∇u‖2) + ν‖ψ∆u‖2 + βε‖ψ∂tu‖2

≤ c1‖ψu‖2 + c2‖ψ∇u‖2.
(4.13)

There exists δ > 0 such that
d
dt (‖ψu‖2 + β‖ψ∇u‖2) + ν‖ψ∆u‖2 + βε‖ψ∂tu‖2

≤ δ(‖ψu‖2 + β‖ψ∇u‖2),
(4.14)

hence the result.

Theorem 4.1. Let γ > 0 and u0 ∈ H2 ∩ H1,γ(Ω). Then, u ∈ L∞(0, T ; H1,γ(Ω))∩
L2(0, T ; H2,γ(Ω)) and ∂tu ∈ L2(0, T ; H0,γ(Ω)), ∀T > 0.

Proof. We integrate (4.14) and pass to the limit on ρ using Fatou’s lemma.
We set H(γ) = H2 ∩ H1,γ(Ω). Thanks to Theorem 4.1, we can define the semigroup

{St}, St : H(γ) → H(γ), u0 �→ u(t). We have the following results.

Lemma 4.2. Operators {St} are bounded in H1,γ(Ω),

‖Stu0‖1,γ ≤ c(‖u0‖1,γ , T ), as 0 ≤ t ≤ T. (4.15)

Proof. It follows from (4.14).
Remark 4.2. For sufficiently smooth u, we have ∂tN(u) ∈ H2(Ω) and then

∂tN(u) = N(∂tu), (4.16)

and therefore, ∂tN(u)|∂Ω = 0 (see [2]).

Lemma 4.3. Operators {St} are bounded from H(γ) into H2,γ(Ω) as t ≥ 0.
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VISCOUS CAHN-HILLIARD EQUATION IN AN UNBOUNDED DOMAIN 99

Proof. On differentiating (4.8) with respect to t and multiplying by ϕt∂t(N(u) + βu),
we obtain using estimate

|(∂tuf ′(u), ϕt∂t(N(u) + βu))| ≤ ct‖ψ∂t(N(u) + βu)‖ ‖ψ∂tu‖ (4.17)

that
1
2

d
dt (t‖ψ∂t(N(u) + βu)‖2) + t‖ψ∂tu‖2 ≤ 1

2‖ψ∂t(N(u) + βu)‖2

+Cε2t‖ψ∂tu‖ ‖ψN(∂tu)‖ + Cεt‖ψ∂tu‖ ‖ψ∇N(∂tu)‖
+βεt‖ψ∂tu‖2 + t‖ψ∂t(N(u) + βu)‖ ‖ψ∂tu‖.

(4.18)

For ε sufficiently small and using the estimates

‖ψN(∂tu)‖ ≤ c1‖ψ∇N(∂tu)‖ and ‖ψ∇N(∂tu)‖ ≤ c2‖ψ∂tu‖, (4.19)

which follow from (4.4) and (4.5), we obtain
1
2

d
dt (t‖ψ∂t(N(u) + βu)‖2) + t‖ψ∂tu‖2 ≤ c(1 + t)‖ψ∂t(N(u) + βu)‖2

+ t
8‖ψ∂tu‖2 + t

8‖ψ∂tu‖2 + t
8‖ψ∂tu‖2 + t

8‖ψ∂tu‖2,
(4.20)

and therefore
d
dt (t‖ψ∂t(N(u) + βu)‖2) ≤ c(1 + t)‖ψ∂t(N(u) + βu)‖2, (4.21)

hence
τ‖ψ∂t(N(u) + βu)‖2 ≤ c(1 + τ )

∫ τ

0
‖ψ∂t(N(u) + βu)‖2 dt

≤ c(1 + τ )
∫ τ

0
(ν2‖ψ∆u‖2 + ‖ψf(u)‖2) dt.

(4.22)

We pass to the limit on ρ and obtain

τ‖φ∂t(N(u) + βu)‖2 ≤ C(T, ‖u(0)‖1,γ). (4.23)

We multiply (4.8) by ϕt∆u and obtain

τν‖ψ∆u‖2 ≤ τ‖ψ∂t(N(u) + βu)‖2 + τC‖ψu‖2. (4.24)

We pass to the limit on ρ and using (4.6) we obtain that

τ‖u(τ )‖2
2,γ ≤ C(T, ‖u(0)‖1,γ), ∀τ ∈ [0, T ]. (4.25)

Theorem 4.2. The semigroup {St} has an absorbing set in H(γ) which is invariant and
bounded in H2,γ(Ω).

Proof. We first prove the existence of an absorbing set bounded in H1,γ(Ω). We
multiply (4.8) by ϕ(u + ε∂tu) and use (4.19) and the estimates

‖ψN(u)‖ ≤ c1‖ψ∇N(u)‖ and ‖ψ∇N(u)‖ ≤ c2‖ψu‖, (4.26)

which follow from (4.4) and (4.5). We find
1
2

d
dt (‖ψ∇N(u)‖2 + νε‖ψ∇u‖2 + β‖ψu‖2) + ν‖ψ∇u‖2 + βε‖ψ∂tu‖2

≤ Cε‖ψ∂tu‖ ‖ψ∇u‖ + Cε2‖ψ∂tu‖2 + Cεν‖ψ∇u‖2

+Cε2ν‖ψ∂tu‖ ‖ψ∇u‖ + Cε‖ψ∇u‖ ‖ψ∂tu‖.
(4.27)

For ε sufficiently small, we have
1
2

d
dt (‖ψ∇N(u)‖2 + νε‖ψ∇u‖2 + β‖ψu‖2) + ν‖ψ∇u‖2 + βε‖ψ∂tu‖2

≤ βε
8 ‖ψ∂tu‖2 + ν

8‖ψ∇u‖2 + βε
8 ‖ψ∂tu‖2 + ν

8‖ψ∇u‖2

+βε
8 ‖ψ∂tu‖2 + ν

8‖ψ∇u‖2 + βε
8 ‖ψ∂tu‖2 + ν

8‖ψ∇u‖2,

(4.28)
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and therefore,

d
dt (‖ψ∇N(u)‖2 + νε‖ψ∇u‖2 + β‖ψu‖2) + ν‖ψ∇u‖2 ≤ 0. (4.29)

There exists η > 0 such that

ν‖ψ∇u‖2 ≥ η(‖ψ∇N(u)‖2 + νε‖ψ∇u‖2 + β‖ψu‖2). (4.30)

We then deduce after passing to the limit on ρ that

‖u(t)‖2
1,γ ≤ c‖u0‖2

1,γe−ηt, ∀t > 0. (4.31)

We deduce the existence of a bounded absorbing set B0 for {St} in H(γ). We denote by
B1 = St1B0 for some t1 > 0 such that StB0 ⊂ B0, ∀t ≥ t1 and B2 =

⋃
t≥t1

StB1. The
set B1 is a bounded absorbing set and B2 is a bounded absorbing and invariant set in
H(γ) which is bounded in H2,γ(Ω) (which follows from Lemma 4.3).

5. Existence of the global attractor. Let E be a Banach space.
Definition 5.1. The set A is called an (E, E)−attractor of the semigroup {St} if

1. A is compact in E.
2. A is strictly invariant, that is, StA = A, ∀t ≥ 0.
3. A is an attracting set for {St} in the following sense: for any bounded set B ⊂ E

the Hausdorff distance

distE(StB,A) → 0 as t → ∞.

Theorem 5.1. We assume that the operators {St} are continuous on E for any t ≥ 0
and there exists a compact subset K ⊂ E having the following attracting property: for
any bounded set B ⊂ E

distE(StB, K) → 0 as t → ∞. (5.1)

Then, the semigroup {St} has an (E, E)−attractor A ⊂ K.

We want to prove the existence of a compact set B4 of H(γ) which is bounded in
H2,γ(Ω) and satisfying (5.1).

Any solution u of (2.1) can be decomposed into the sum

u = v + w, (5.2)

where v is a solution of the linear problem⎧⎨
⎩

∂t(v − β∆v) + ν∆2v = 0,

v|t=0 = v0 = u0,

v|∂Ω = ∆v|∂Ω = 0,

(5.3)

and w is a solution of⎧⎨
⎩

∂t(w − β∆w) + ν∆2w − ∆f(u) = 0,

w|t=0 = w0 = 0,

w|∂Ω = ∆w|∂Ω = 0.

(5.4)
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Lemma 5.1. Let u0 ∈ B0. Then, the solution v of (5.3) satisfies the inequality

‖v(t)‖2
1,γ ≤ Ce−µt, ∀t ≥ 0, (5.5)

where µ > 0.

Proof. We multiply (−∆)−1 of (5.3) by ϕ(v+∂tv) and integrate with respect to x and
pass to the limit on ρ.

Lemma 5.2. Let w be a solution of (5.4) where u(t) ∈ B2. Let α ≤ α1 (α1 of (2.4)–(2.5)).
Then, {

‖w(t)‖2,γ ≤ C, ∀t ≥ 0,

‖w(t)‖1,(1+α)γ ≤ C, ∀t ≥ 0.
(5.6)

Proof. The first estimate of (5.6) follows from the fact that u is bounded in H2,γ(Ω).
We multiply (−∆)−1 of (5.4) by ϕ1+α(w + ∂tw) and obtain an inequality of the form

d
dt (‖ψ1+α∇N(w)‖2 + β‖ψ1+αw‖2 + ν‖ψ1+α∇w‖2)
+β‖ψ1+α∂tw‖2 + ν‖ψ1+α∇w‖2 ≤ C‖ψ1+αf(u)‖2.

(5.7)

There exists η > 0 such that
d
dt (‖ψ1+α∇N(w)‖2 + β‖ψ1+αw‖2 + ν‖ψ1+α∇w‖2) + η(‖ψ1+α∇N(w)‖2

+β‖ψ1+αw‖2 + ν‖ψ1+α∇w‖2) ≤ C‖ψ1+αf(u)‖2.
(5.8)

To deduce the last estimate of (5.6) it is sufficient to prove that ‖ψ1+αf(u)‖ is bounded.
We have

‖ψ1+αf(u)‖2 ≤ C
∫
Ω
|u|2+2α1(1 + |u|2q1)ϕ1+α dx

≤ C
∫
Ω
|ψu|2+2α1 dx + C

∫
Ω
|ψu|2+2α1+2q1 dx

≤ C(‖ψu‖r
H2(Ω) + 1),

(5.9)

where r > 0, noting the continuous embeddings H2(Ω) ⊂ Lq(Ω), ∀q ≥ 2. Passing to the
limit ρ → +∞ after integrating with respect to t, and noting that ‖φu‖H2(Ω) ≤ c‖u‖2,γ

and the boundedness of u(t) in H2,γ(Ω), we deduce the result.

Lemma 5.3. Operators {St} are continuous from H(γ) into H(γ).

Proof. Let u01 and u02 be two initial values of problem (2.1)-(2.5). We denote by
u1(t) = Stu01, u2(t) = Stu02 and s(t) = u1(t)−u2(t). The following equation is satisfied:

∂t(N(s) + βs) − ν∆s + f(u1) − f(u2) = 0. (5.10)

We multiply (5.10) by ϕ(s + ∂ts) and obtain after calculations

‖s(t)‖1,γ ≤ Ceηt‖s(0)‖1,γ , (5.11)

with η > 0, and therefore

‖u1(t) − u2(t)‖1,γ ≤ Ceηt‖u01 − u02‖1,γ , (5.12)

hence the result.

Lemma 5.4. A set, which is bounded in H2,γ(Ω) and in H1,β(Ω), β > γ > 0, is precom-
pact in H1,γ(Ω).
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Proof. See the proof of Lemma 4.5 in [3].

Theorem 5.2. The semigroup {St}, St : H(γ) → H(γ), generated by (2.1)-(2.5), has a
(H(γ), H(γ))-attractor A(γ), bounded in H2,γ(Ω) and in H((1 + α)γ) as α ≤ α1.

Proof. We denote by B3 the set

B3 = {y ∈ H(γ), y = w(t, u0), t ≥ 0, u0 ∈ B2},
which is the union of all the values w(t) of solution w of (5.4) for all t ≥ 0 and all u0 ∈ B2.
The set B3 is bounded in H2,γ(Ω) and in H1,(1+α)γ(Ω) , since u(t) ∈ B2. Such a set is
precompact in H1,γ(Ω). We denote by B4 the closure of B3 in H1,γ(Ω). The set B4 is
compact in H1,γ(Ω), and for all u(t) ∈ B2, we have w(t) ∈ B4 and

distH1,γ(Ω)(u(t), B4) ≤ Ce−µt, µ > 0. (5.13)

Since the operators {St} are continuous on H(γ), we apply Theorem 5.1.

A careful examination of the previous study shows that Theorem 5.2 is applicable to
the following system:⎧⎨

⎩
∂t(u − β∆u) + ν∆2u − ∆(f(u) + λ0u + g) = 0,

u|t=0 = u0,

u|∂Ω = ∆u|∂Ω = 0,

(5.14)

where λ0 > 0 and g ∈ H2(Ω).
Here, any solution of (5.14) can be decomposed into the sum u = v + w + z, where v

is a solution of the linear problem⎧⎨
⎩

∂t(v − β∆v) + ν∆2v − λ0∆v = 0,

v|t=0 = v0 = u0,

v|∂Ω = ∆v|∂Ω = 0,

(5.15)

w is a solution of⎧⎨
⎩

∂t(w − β∆w) + ν∆2w − ∆(f(u) + λ0w) = 0,

w|t=0 = w0 = 0,

w|∂Ω = ∆w|∂Ω = 0,

(5.16)

and z is a solution of the stationary problem{
ν∆2z − ∆(λ0z + g) = 0,

z|∂Ω = ∆z|∂Ω = 0.
(5.17)

We have the following result.

Theorem 5.3. Let g ∈ H2,γ(Ω). The semigroup {St}, St : H(γ) → H(γ) generated by
(5.14), (2.2)-(2.5) has a (H(γ), H(γ))-attractor A(γ), bounded in H2,γ(Ω). This attractor
can be represented in the form

A(γ) = z + A1, (5.18)

where z is a solution of (5.17) and the set A1 is bounded in H1,(1+α)γ(Ω) as α ≤ α1.

Proof. We denote B5 = z + B4. We have u = v + z + w and z + w ∈ B5 as t ≥ 0,
v ∈ u − B5 and v satisfies (5.5); therefore the result.
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Corollary 5.1. Let g ∈ H2,γ0(Ω), 0 < γ ≤ γ0. Then, the semigroup {St} generated by
(5.14), (2.2)-(2.5) has a (H(γ), H(γ))-attractor A(γ) as in Theorem 5.3.

Proof. Let g ∈ H2,γ0(Ω), 0 < γ ≤ γ0. Then, g ∈ H2,γ(Ω), and we apply Theorem 5.3.

Theorem 5.4. Let g ∈ H2,γ0(Ω), γ0 > 0 , 0 < γ ≤ γ0. Then, the attractors A(γ) of
semigroups {St} acting in H(γ) coincide with A(γ0).

Proof. See Theorem 4.2 in [3].

6. Finite Hausdorff dimension of the attractor. We consider the (H(γ), H(γ))-
attractor A of the semigroup {St} acting in H(γ) ⊂ H obtained in Theorem 5.3. We
prove the following result when d = 2 (a similar result is available for d = 3).

Theorem 6.1. Suppose g ∈ H2,γ(Ω), γ > 0, and f satisfies the conditions of Therorem
5.3. Then, the following statements are valid:

1. If |f ′(u)| ≤ C|u|α0C1(u), then

dimH A ≤ Cν−1λ
−3−2/α0
0 ‖g‖. (6.1)

2. If −f ′(u) ≤ c|u|, then

dimH A ≤ Cν−1λ−3
0 , (6.2)

where dimH A is the Hausdorff dimension of A in the topology of H.

Proof. Due to the equivalence, first, of equations (5.14) and

∂t(N(u) + βu) − ν∆u + f(u) + λ0u + g = 0 (6.3)

on H(γ) and, secondly, of norms ‖u‖0 and ‖u‖ on H, the differential S′
t(u0)v0 = v(t) of

operator St acting on a function v0 is the solution of the equation in variations

∂t(N(v) + βv) = ν∆v − f ′(u(t))v − λ0v, (6.4)

where u(t) = St(u0), u0 ∈ A. The operator S′
t(u0) : H → H generated by (6.4) is the

differential of St on A at the point u0 (see [6]). We then apply Theorem 3.2 of [6].
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[13] A. Miranville, A. Piétrus and J.M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard

equation based on a microforce balance, Asymptotic Anal. 16(1998), 315-345. MR1612825
(99c:35095)

[14] A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptotic Anal. 22(2000),
235-259. MR1753766 (2001b:35153)

[15] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition,
Springer-Verlag, Berlin, Heidelberg, New York, 1997. MR1441312 (98b:58056)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1665748
http://www.ams.org/mathscinet-getitem?mr=1665748
http://www.ams.org/mathscinet-getitem?mr=2079758
http://www.ams.org/mathscinet-getitem?mr=2079758
http://www.ams.org/mathscinet-getitem?mr=387065
http://www.ams.org/mathscinet-getitem?mr=387065
http://www.ams.org/mathscinet-getitem?mr=1612825
http://www.ams.org/mathscinet-getitem?mr=1612825
http://www.ams.org/mathscinet-getitem?mr=1753766
http://www.ams.org/mathscinet-getitem?mr=1753766
http://www.ams.org/mathscinet-getitem?mr=1441312
http://www.ams.org/mathscinet-getitem?mr=1441312

	1. Introduction
	2. Setting of the problem
	3. Estimates in unweighted spaces
	4. Estimates in weight multipliers
	5. Existence of the global attractor
	6. Finite Hausdorff dimension of the attractor
	References

