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FINITE DIMENSIONAL HOPF ALGEBRAS ARISING
FROM QUANTIZED UNIVERSAL ENVELOPING ALGEBRAS

GEORGE LUSZTIG

INTRODUCTION

0.1. An important role in the theory of modular representations is played by
certain finite dimensional Hopf algebras T over F, (the field with p elements,
p = prime). Originally, 1 was defined (Curtis [3]) as the restricted enveloping
algebra of a “simple” Lie algebra over Fp .

For our purposes, it will be more convenient to define T as follows.

Let us fix an indecomposable positive definite symmetric Cartan matrix

(a) (aij)lgi,jgn .

In particular a;; = 2 and q;; = a;; € {0, -1}, for i # j. Let UQ be the
Q-algebra defined by the generators E;, F,, H, (1 <i<n), and the relations

(b1) HH =HH,

(b2) HE -EH =aE, HF -FH=-aF,
(3) EF,-FE,=3,H,

(b4) EE =EE, FF,=FF, ifa,=0,
(bS)

=2 ) 2 N —— .
EE,-2EEE,+FEE; =0, F,F;,-2FF F,+FF =0, ifa,;=-1.

Then UQ is known to be the enveloping algebra of the simple Lie algebra g
over (Q corresponding to (a). .

Chevalley [2] has proved that any U Q-module of finite dimension over Q
admits a lattice which is stable under the subring U of vQ generated by the
EM = EV/N! and FY) = F)/N! (1 <i < n, N > 0), and Kostant [7]
constructed a nice Z-basis for U . . .

Then U can be defined as the subring of U ® F, = Uy generated by the

F4
elements Ff.l) and Ff.l) (1 < i < n). The pth powers of these generators are

. _ . . . . di
zero and in fact T is of finite dimension (= p®™?) over F,.
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258 GEORGE LUSZTIG

0.2. From [3] it is known that the simple T-modules can be naturally parame-
trized by elements of (Z/p)" ; but the structure of simple #-modules (e.g. their
dimensions) is not known. From [3, 12] it is known that from the representation
theory of 1 one can recover essentially the whole rational representation theory
of the simple algebraic group over T—p corresponding to (a; j) .

0.3. Let & be the ring Z/[{], where { isa pthrootof 1, { # 1, p an
odd prime; thus % is the ring of integers in a cyclotomic filed &’ . One of
the main results of this paper is that i can be regarded naturally as reduction
modulo a maximal ideal of a Hopf algebra over % . More precisely, we shall
define a Hopf algebra ii over # with the following properties.

(a) i is free of rank p™™? as a Z-module.

(b) If m is the maximal ideal of % defined as the kernel of the ring
homomorphism # — F, (¢ =1,z - zmodp, z € Z), then
i/mi=1UQ, Fp is isomorphic to U as a Hopf algebra over Fp .

(c) The simple modules of the %#'-algebra 'ii = fig ® #' are naturally

parametrized by elements of (Z/p)"; if M is such a simple module,
then M contains some F-lattice M which is a ii-submodule and
the corresponding #i-module M,/mAf, has as a quotient the simple

t-module with the same parameter (in (Z/p)" ) as M .

In particular, the simple 'fi-modules are in natural bijection with the simple
u-modules so that the simple %i-module corresponding to a simple @-module M
has dimension < dimM .

We conjecture that the last inequality is an equality (at least for p not too
small) and that in fact T and i have identical representation theories.

0.4. The definition of i is in the framework of the theory of quantum groups.
Let v be an indeterminate and let & = Z[v, 'u_’] , &' = Q(v) its quotient
filed. Following Drinfel'd [4] and Jimbo [6] we define U, to be the %/ ’-algebra

defined by the generators E;, F;, K, K, ! (1 £i < n), and the relations

(al) KK =KK, KK '=K'K=1,

(a2) KE =vYEK,  KF,=v “FK,
K, —-K '

(33) EiF}_FjEi =5ij-—vTv—_—l—,

(ad) EE;=EE, FF=FF, ifa;=0,

EE,~(v+v )EEE+EE =0,
(as) F'F,~(v+v )FF;F,+ F,F =0,

ifaij=—1.
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FINITE DIMENSIONAL HOPF ALGEBRAS 259

(We adopt the notation in [9] which is slightly different from the original
one.) Then U, is a Hopf algebra over & " with comultiplication A : U, —
U, ®U, defined by

-1
(b) A(E)=E,® 1 +K,®E,, A(F)=F,8K, +18F, AK)=K®K,.

Following [8] we define U to be the & -subalgebra of U, generated by the
elements EY) = EN/[N), FV/IN), K,,and K7 (1<i<n, N2>0),
where

N vs _ ,U—x
(c) INl=][——=€¥.
Vv

We shall prove that U is a free & -module and that U is itself a Hopf
algebra over &/ in a natural way. We regard & as an %/ -algebra with v
acting as multiplication by { and we form U, = U ®, & ; this is a Hopf
algebra over &% .

Now i is defined as the Z-subalgebra of U, generated by the elements
EY, FY, K,,and K;' (1 <i < n) modulo the left (or two-sided) ideal
generated by the central elements K7 — 1, ..., K2 — 1. It has a natural Hopf
algebra structure over & and it satisfies assertions (a)-(c) in §0.3.

The algebra it ® C appears in the simplest case (type A4,) in the physics
literature; see [14, 15].

0.5. We shall try to motivate the definition of U as follows. Consider the sym-
metric bilinear form (, ) on Z" (with canonical basis 1= {¢,, a,, ..., @,})
given by (a,, aj) =a;.

Let R = {a € Z"|(a, @) = 2}. Then R is a root system in Z" with set of
simple roots II.

‘Consider the free %/-module .# with basis {X_ (a € R), 1,(1 <i<n)}.

Define & -linear maps E;, F,: . # — # as follows:

E,.Xa=Xa+a‘_ ifa,a+co;,€R,

@) FX =X, ifa,a~a,€R,

(b) EX_, =t FX, =1,

; EX =0 ifa€eR, at+a;¢ RUOD;

(c FX =0 ifacR, a—a,¢RUO,

(d) Et,=-a,X,, Fti=-a,X_, ifi#],
(e) Et,=(w+v )X,, Ft,=@w+v )X__.

@; i

Consider # = # ® L, where Z is regarded as an & -module with v acting
as 1. Then .Z inherits a basis {X,,t;} and E,, F; define endomorphisms
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260 GEORGE LUSZTIG

E,,F, of #; these are defined by the same formulas as E,, F, except that
(e) is replaced by

Et;=2Xx, Fit,=2X_.

If we set H, = EF,— F E, we see that the endomorphisms E,, F,, and H,
of A satisfy relations 0.1(b1)-(b5) of U, . Hence ARQ isa U ,-module
(it is the standard representation of U, on g). Now E; and F, acton V
by matrices whose entries are in {0, 1, 2}. The simplest deformation of such
a matrix is obtained by leaving the entries 0, | unchanged and replacing 2
by v+ v~ we thus obtain the endomorphisms E; and F;. If we define au-

tomorphisms K,: # — # by KX, = v%X (a€R), Kt; =1, we

see that, miraculously, the endomorphisms E,, F;, K, K, Y M - A sat
isfy relations (al)-(a5) in §0.4, hence they define a U_,.-module structure on
A ®,". Now E’ maps # into (v+ v ').# hence E/[2]! maps .4
into .# . This leads us to consider the .27 -subalgebra U of U . ; it leaves .#
stable.

0.6. Consider the following three (unsolved) problems.

(a) Finding the characters of the finite dimensional simple modules of the
algebraic group of F, corresponding to (a; i)

(b) Finding the characters of the finite dimensional simple modules over
the quantum group corresponding to (g, J.) at V1.

(c) Finding the characters of the simple highest weight modules of level
—p —h (h =Coxeter number) over the affine Lie algebra corresponding
to (a;;).

It is expected that these three problems are very closely related. (See the
conjectures in [10] as well as in [9].) The present paper is an attempt to relate
problems (a) and (b).

0.7. We now review the contents of this paper in some detail. For several
purposes it seems necessary to introduce in U, elements E, and F, corre-
sponding to any positive root, generalizing E; and F;, (which correspond to
simple roots). (Such elements were introduced in type A by Jimbo.) If a is

asum o; +a; of two simple roots one has two candidates —E . E Gt v 'E E;

and —F jE ; +v 'E E ; for E_ and, unlike the case v + 1, these two candidates
are not even proportional to each other. For roots of height > 3 there are
even more candidates for E_ . This difficulty is unavoidable, but we manage to
keep it under control by using a braid group action in U,,. introduced in [8].
This is explained in §1 in which the main result is the construction of a basis
of Poincaré-Birkhoff-Witt type for U, . In §2 we define an algebra V' over
& , by generators and relations; after some combinational preparations in §3
we show in §4 that V' is isomorphic to U.

In particular, this provides a presentation of U by generators and relations.
We also construct an explicit % -basis for U .
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FINITE DIMENSIONAL HOPF ALGEBRAS 261

In §5 we study the specializations of U and U,. in which v is taken to
be of finite order. We also define in this context some finite dimensional Hopf
algebras ‘u over a cyclotomic field. We classify the simple modules of 'u.

In §6 we establish a connection between quantum groups at ¢/1 and the
algebras i1, and we verify the assertions given in §0.3.

0.8. The author wishes to thank Matthew Dyer for some helpful discussions.

1. THE BRAID GROUP ACTION
1.1. Anyroot a € R defines a reflection s, : Z' - Z", z —» z—(z, a)a. We
shall write s5; instead of s, (1<i<n). Let W be the Weyl group of R;itis

the subgroup of GL(Z") generated by the reflections s; (1<i<n). Let [(w)
be the usual length function on W with respect to the generators {s,, ..., s,}.

Let R™ (resp. R™ ) be the set of positive (resp. negative) roots in R with
respect to the set of simple roots I (see §0.5).

1.2. We define two Q-algebra isomorphisms Q: U,,, = UZF and ¥: U,
= UZP by

(@  QE)=F, QEF)=E, QK)=kK;

I b

(b) WE)=E, ¥F)=F, ¥K)=K '

i P2

Qu)=v"",

Yv)=wv.
(Here U:,’ip is U, with the opposite multiplication.)

1.3. Forany i € [1, n] there is a unique .%/'-algebra isomorphism T,: U,
=5 U, such that

~FK,, ifi=j,
T(E)=14 Ej> if a; =0,
~EE,+v'EE, ifa;=-1

-K;'E,, ifi=j,

(al) T(F)={ F ifaij=0,

I J?

~F.F,+vFF,, ifa, =-1.

Kj", ifi=j,
T(K)=1 K,, ifa,;=0,

KK;, ifa;=-1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



262 GEORGE LUSZTIG

Its inverse is given by
-1 o s
1 -K'F;, ifi=j,

T7'(E) =1 Ej»

-1 .
-EE,+v'EE,, ifa;=-1

ifaij =0,

-EK,, ifi=j,
-1 .
(a2) T, (F) =14 Fj, if a,; =0,
~-F,F,+vFF,, ifa;=-1

—~1 e
Kj , ifi=j],

T, '(K,)=1 K;, ifa;=0,
K,.Kj, ifaij=—1.
Note that
(b) QT, =T,Q foralli.
We have
(c) I'T;T,=T,T.T;, ifa;=-1, I,T, =TT, ifa;=0.

Hence the T, define a homomorphism of the braid group of W into the
group of algebra automorphisms of U, .

It follows that for any w € W there is a well-defined algebra isomorphisms
T,: U — U such that T, = Ti,TiZ"‘Ti whenever w = 5;8;, 7S, with

p = I(w). From (b) it follows that ’ ’
(d) QT, =T,Q forallweW.

We have WT, = T,”'¥ for all i. It follows that

(€) Y7, =7, forallweW.
A simple computation shows that
(f) T,T.E,=E, TTF=F, ifa,=-1.
1.4. We define Q-algebra automorphisms 7, : TJ_Q - _ITQ (1<i<n)by
-F,, -E,, ifi=j,
TE ={E,, TF ={F, if a; =0,
~EE,+EE, ~FF,+FF, ifa;=-1.

We define Q-algebra automorphisms T, : U, — UQ in terms of the 7, in
the same way as the 7, were defined in terms of the 7, in §1.3. Note that

T,: UQ — U, is induced by an automorphism of the Lie algebra g. We have
—d
T =1.
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FINITE DIMENSIONAL HOPF ALGEBRAS 263

If we W and a, €Il satisfy w(a,) € R", then T (E,) and T, (F,) actu-
ally belongto g U o > more precisely they are root vectors in g corresponding
respectively to the root w(a;), —w(a;). They are completely determined (up
to sign) by w(a;).

1.5. Let UL.; U*;U" (resp. U,.; U™ ;U )bethe &'-, & -, Q-subalgebra
of U, ; U; U generated by the elements E,; EEN), N > 0; E, (resp. F,;
F™M, N>0; F,). Let £ be the Q-subalgebra of &' consisting of those
f € &' which have no pole at v = 1. Evaluation at 1 defines a Q-algebra

homomorphism #Z — Q. Let Z~ be the F-algebra defined by the generators
E; (1 <i< n) and the relations

. 2 .
EE, = EE, 1fa,.j =0, EE, - (v+v )E,EJE,+E E =0 1fal.j =-1.

We have natural homomorphisms
(@) %~ Uy (E—E),
(b) #*-TU, (E+—E)
induced by # c &', # — Q respectively.
Lemma 1.6. Consider the «/'-algebra with two generators A, B and relations
AB-(v+v Y4B4+BA =0, AB*-(w+v ")BAB+B =0.
Set C=—-AB+v 'BA. Let k,l, meN. Then

(a) AC =vCA, vBC=CB,
B* 4 jrk=iyi-i) A ¢’ B
b v — =,
(b) T 2 G
j<k _]<1
(c) A B"*’A’ B'4**'B*  (compare Verma [13)),
B, 4™ B™/
d j j'.—__—.—.
@ Z( DT m3 T = I

[m]'

Proof. The identities (a) are obv1ous. To prove (b) we can assume that k,/ >

1. One first proves (b) for / = 1 and k£ > 1 by induction on k, then one
uses induction on /. In (c), we replace B“*'4' and B'4**' by the expressions

provided by (b); we find that both sides of (c) are equal to the same expression:

i

Mk + 1 JHkH=U=]) k=] j k=]

- —V A C'B .
2 U= 1Mk + 1= j])

In the right-hand side of (d) we replace Z by the expression provided by

(b); we thus obtain the identity (d).

J
50 [ml'
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264 GEORGE LUSZTIG

Proposition 1.7. Let w € W. Then T, (U) =

Proof. It is enough to show that T,(U) ¢ U and T,.'l(U) Cc U forany i €
(1, n]. We have

2
N N-—- NF(N)K(N) T}(I:j(N))=(—-1)NU-N+N K;NEEN)

ifi=j,

() T(E™) = (-1)"v
(N)y _ (V) (N)y _ p(N) _
(b) T(EM=E", 7™ =F" ifa =0,

N
i (-EE;+v~ EjEi)N=Z("1)N—1’U—1E(.1)E§N)E(,N_l)

(M)
(© T(E™M = > i EES

[N]’

ifa,.j = —]

(using Lemma 1.6(a)) and, applying to this Q (see §1.3(b)):

T(F™) = ——(~F,F,+ vF,F)"

[N]'
Nl I (N=1) AN) (]} :
= 12(-1) v F;"UFUF” ifa;=-1.
=0
Since Ti(Kjil) is Kfl or Ki:‘HKJ.il it follows that T;U C U. An entirely
similar proof shows that Ti_1 UcU.

(d)

Proposition 1.8. Let w € W and o, €Il be such that w(a;) € R*.
(a) We have T (E™)e U, T (F)e U (YN >0).
(b) WehaveT(E)eU (F)EU
(c) There exists te %™ whzch maps to Tw( E)e U;, under 1.5(a) and to
T,(E)) € U] under 1.5(b).
(d) Assume, in addition, that w(o;) = o, € I1. Then T (E)) = E_,
T,(F)=
Proof. The method used in Dyer [5] to study the action of the Hecke algebra
in the reflection representation can also be used in this case. We shall consider
only the assertions concerning E,; ; those concerning F, are proved in the same
way. All the assertions are trivial when w = e ; therefore we may assume that
[(w) > 1 and that our assertions hold for elements w’ with /(w') < l(w). We
can find j € [1, n] such that w(aj) € R ; in particular, we have i # j. Let
(s;» s;) be the dihedral subgroup generated by s, and s;, and let w' be the
element of minimal length in the coset w(s;,s;). We have w'(ai) > 0 and
w'(a ;) >0, and we are in one of the following three cases:
(1) a,;=0, w=uw's;, l(w)=l(w)+1.
Q) a;=-1, w=u'ss;, l(w)=1(w)+2.

ivjo
(3) a;=-1, w=uw's;, l(w)=Iw)+1.
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FINITE DIMENSIONAL HOPF ALGEBRAS 265

The induction hypothesis provides us with an element ri. e %" (attached by
(c)to w', ;) and an element 7, € " (attached by (c) to w’, ;). Assume
that we are in case (1). We have (using the induction hypothesis)

T (EM) =T, T(EM) =T, (E™)e U* (see Proposition 1.7(b)).

Similarly, T (E;) =T (E,) € Ug . The element 7 =1} satisfies (c).

Under the assumption of (d) we have T (E;,)=T,.(E,) = E_, since 'w'(ai)
= o, . Assume now that we are in case (2). We have (using the induction
hypothesis)

T (EM) =T, T,T(E™) = T,(T.T(E)")/IN}
=T (E))/IN) =T (EM) e U" (see §1.3(f)).

Similarly, T,(E,)=T,.(E,) € Ug . The element = 7/, satisfies (c).
Under the assumption of (d) we have w'(aj) = ws;s,(a;) = wle,) = o,

hence

w 1

T,(E)=T,(E)=E,.
Finally, assume that we are in case (3). We have using the induction hypothesis
(M) (N)
T(E " )=T,T,(E)

N=l_ = () (N) (N=I
=Tw,(z(—l) v 'EVEME! >)
l

-1 =1 i N N—!
=3 (-0 ENT(EMT(EN) e Ut
]

(see Proposition 1.7(c)). In particular,

1

T, (E) = ~T (E)T (E) +v " T (E)T,(E)).

w

=+

Similarly, we have T (E)) = =T (E )T (E)+ T, (E)T(E;) €U,.
The element 7 = —7)7; + ’U_l‘t;‘[} satisfies (c).
In case (3) we cannot have w(e,) = ¢, . If we had w(e;) = o, then

a, = w'sj(ai) = w'(ai + aj) = w'(a,.) + w'(aj); but w'(ai) and w'(aj) are

positive roots, hence their sum cannot be in I1.
This completes the proof.

1.9. We choose for each § € R an element wy € W such that for some
index ig €[1, n] we have

(a) wy ' (B) =« .
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Let N be the set of all functions R* — N. We fix a total order on R*
and define for any y € NR

H TwB(Eiﬂ)W(ﬁ)’ E‘//= H T ( )‘/’(B)

BERY BER
v o_ v(B) = (VB
=111, F)"”, Il 7T,F)",
BER" BER*

where the factors in E¥, EY (resp. F¥,F") are written in the given (resp.
opposite to the given) order of R*. By Proposition 1.8, we have E¥ € U,

FYeU, ,E'eU,, F'eT,.

Proposition 1.10. The elements EY (resp. F¥ ), for v € NE | are linearly in-
dependent in the </ '-vector space U,,. (resp. Uy ).

Proof. Assume that in U;./ we have a relation of the form ZAWE ¥ =0, where

AW € &' — {0} and w runs over a finite nonempty set & of NR . We will
show that this leads to a contradiction. Multiplying by a power of v—1, we can
assume that all 4, are in &# — {0} (see §1.5) and at least one of them does not

vanish at v = 1. Using Proposition 1.8(c) we can choose for each y € N* an
element 7, € %" such that 7, maps to E ¥ under §1.5(a) and to E” under
§1.5(b).

Let t=3% 44,7, € %" . Then % mapsto 0 € U, under §1.5(a). Choose
an integer u > 0 such that y(B) < u forall e R" andall y € &.

From [8] we see that there exists a U, ,.-module M, of finite dimension over

&', and an F-lattice M, C M with properties (a) and (b) below.
(a) E,,...,E ,F,...,F, ,K,, ..., K, leave M, stable and induce on
M= M/(v - l)M operators E ...,E Fl,...,F 1,...,1
which define a U -module structure on M.
(b) The UQ-module 717 is simple and there exists a nonzero vector y € M
suchthat E;y=0 and Hy=uy for i=1,...,n.

n?

From the representation theory of UQ 1t is known that

(c) the elements E’(y), with y € N® such that 0 < w(f) < u for all
p € R", form a Q-basis of M.
By (a), M, isa % -module via " — U, given by §1.5(a). Hence % acts
asOQon M,.
On the other hand, by the definition of 7 and by (2), #: M; — M|, induces

on M the operator 3_ ., AW(I)E_W from the U ,-action. (Here 4,(1) is the
value of AW at v = 1.) Hence the last operator is zero. Applying itto y € M
and using (c), we deduce that /IW( 1) =0 forall ¥ € &. This is a contradiction.

The statement concerning FY follows from that for EY | by using the invo-
Iution Q (see §1.3(d)).
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1.11. Let U;, be the subalgebra of U, generated by the elements K, and
K" (1<i<n).For ¢=Y,4(i)a, =Z", we define

¢ _ o) p-9(2) ¢(n) 0
K=k . kM eul,.

Lemma 1.12 (Rosso [1]). (a) Multiplication defines an &/ -vector space isomor-
phism U @, Uy ®,, UL = U,,..
(b) The elements K® (¢ € Z") form and s '-basis of U>,. .

Proposition 1.13. The elements F V' KPEY (v, vy e N% | ¢ €Z") forman
& -basis of U.,. .

Proof. The linear independence follows from Lemma 1.12 and Proposition
1.10. We also see that it is enough to show that the elements EY (y € NR+)
generate U;, as an & ’-vector space. (The analogous statement for Uy, is
proved in the same way.)

Let Z " be the Q-algebra defined by the generators E,,...,E, and the
relations EE, =EE, if a,;, =0 and E,E,~2EE E+E,E, =0if ;= ~1.
For k € N, let _?72 (resp. % , %, ;) be the subspace of 7", (resp ¥,
%) spanned by the products of E,, ..., E, (resp. E,, ..., E,) involving
exactly k factors.

It is clear that 7 = @, Z, and ¥* = ®Di>0 %, (by the homogeneity
of the defining relations.)

Clearly, ?/,:’ is an #-module of finite type. Since % is a discrete valuation

domain, we see that
!

(2) dim, (%, ®4 Q) 2 dimy %, ®5 ",

where Q is regarded as an %#-module with v acting as 1. Let

S w(B)A(B) = k} :

BER*

P, = {t//eNR+

where h: Z" — Z is given by the sum of coordinates.

Now Z ' is the enveloping algebra of a Lie algebra. From the Poincaré-
Birkhoff-Witt theorem, we see that

(b) dim, 7, =#%,) (k20).

It is clear that Z = %" ® » @ and this is compatible with the grading.
Using this and (b), we see that

(c) dim, % ®,4 0 =#,).

The obvious (surjective) homomorphism %~ — UJ,. induces a surjective
& 'linear map %, ® %' — U, . It follows that

(d) dim (%, ® &) > dim_, U, , > #(F,)
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268 GEORGE LUSZTIG

(the last inequality follows from the linear independence of the elements EY
(v € #,) in U, , proved in Proposition 1.10). Combining (d), (a), and (c)
we see that all these inequalities must be equalities. It follows that the elements
EY (y € %) span the & -vector space U _x » hence they form an ./ '-basis

of U, . The proposition follows.

2. THE ALGEBRA V
2.1. In this section we shall introduce and study an %/ -algebra V' defined by
generators and relations. Eventually (§4) this algebra will be identified with U .

We shall need the following notation. For any integers m, r with r > 0 we
define the Gaussian binomial coefficient

[m] r vm—s+l _ v-—-m+s-—1

r =H e .

s -5
s=1 v -7

f m>r>0, wehave [7] = [m]/[r][m —r]!, while if r > m >0 we have
m

We shall assume that the numbering of the o; €I is

(a) that of {1, Planches I, V, VI, VII] for types 4,, E;, E,, Eg,
(b) that of [1, Planche V] composed with i — n+ 1 -1 for type D, .

2.2. Let o € R". We can write uniquely a = c;o;+ (linear combination of
o;, j< i) with ¢; > 1; we then set [ = g(a) and ¢, = ¢;. By our choice of
numbering we have

(a) ¢, = 1, except when o is the highest root of E; in which case g(a) =8
and ¢, = 2.

Let h(a) be the height of o (the sum of coefficients of the various «,, in a),
and let #'(a) = ca—lh(a) . From (a), we see that 4'(a) is integral (and equal to
h(a)) in all cases except when « is the highest root of E;, when W (a) =29/2.
We call 4'(a) the level of «.

We shall write R:’,, ={aeR|gla)=1i,h'(a)=1}.

2.3. We shall consider the set consisting of the following variables:

(a) EM  (aeR',N20),
(b) FY  (aeR',N20),
(c) K, K", [Kit;c] (iefl,n],ceZ,teN).
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Let V" be the ./ -algebra defined by the generators (a) and the relations
(d1)-(d5) below:

(dl) EiN)EiM) _ [N-J;M] EiN+M) , E(()O) —1,
@) EMEM=EME™ if(a,a,)=0, i<gla), K(a)€Z,
(d3) E((!{V)EiM) —_ E UJ+(N_J)(M_J)E((IM—1)E(§QQ’E((II'V—J) ,
J20;jEN;jEM
(d4) o"MENEM, — EM ED,
NM (M) (N) (N} (M)
(d5) v Ea+a'Ea = Ea Ea+al .

In (d3), (d4), and (d5) it is assumed that (o, o') = ~1 and that either (el)
or (e2) holds:

(el) o =a, i< gla),
(e2) h(@)y=h(a)+1,  gla)=g(e).

Let V™ be the &/ -algebra defined by the generators (b) and the relations
(f1)-(f5) below:

(1) F(J(N)Fch) _ [N ;M] FOEN+M) , Fa(O) -1,
#2) FVEM - FMFEM  if(a,a)=0, i< g(a), h'(e)eZ,
(f3) FCEM)FCE/N) — Z ,U‘]_(N_J)(M_])F:’N"J)Fa(i)alFOEM"J) ,
J20;jSN;j<M
(t4) o8 EW 0, ) 0
NM (M) ~(N) (N) (M)
(5) oMMEM EW - WD,

In (f3), (f4), and (f5) it is assumed that (a, o') = —1 and either (el) or (e2)
holds. Let ¥° be the &/ -algebra defined by the generators (c) and the relations
(gl)-(g5) below:

(gl) the generators (¢) commute with each other,
-1 K-;C
(g2) KK, =1, [ 0 ]= >
K;; 0] [K;; —1 t+1][K;50 '
> e >
@ O] ez
(e4) [Ki;c] oy [K,; c+ 1] . [Ki; c] > 1),
t t iorr-1
-1, [K.; 0] -
(&5) w-v 50 =k -k
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An equivalent set of relations for ¥° consists of (g5) together with the relations
(g6)-(g10) below:

(g6) the generators K, K, ! , [Ki t; 0] commute with each other,
-1 K ;0
(g7) KK, =1, [ 0 ] =1,

)3 (—1)p" [t+j_— I]K? [K,GO] [IIQ;Q]
J ! t r—j

(8) osssr
=[’+’HK""9} (21,720,

e
(89)

i g aff] eancan
@o) |5 ]Ogj:qv‘("“[.} R ezoczo.

Let V be the &7 -algebra defined by the generators (a), (b), and (c) and the
relations (d1)-(dS), (f1)-(f5), and (g5)-(g10) together with the relations (h1)-
(h6) below:

M M M N g s .
(h1) EFM =FYEY i),
(N) (M) _ M- K.;2t—N—-M| ~(N~1)
(h2) E,'F,"= Y F [ P E, T,
120;1<N 1M
(h3) KEM =N EMK?
7 P
- (e ==£1),
(b4) K = v FVK]
J J
(b5) [Kt C]Ea _E(N) [Ki;c”t*N“ij] ,
J
(h6) [Kt C] F'=F" [K :Naij] :
J

Remark 2.4. We observe that a, o' € RY with (a, o') = —1 can satisfy §2.3
(e2) only in type E;. Indeed for such a and o we have a +a' € R”,
Cota! = Cu+Cyp 212, and we then use §2.2(a). We see also that we have

necessanly a€R; ,, d €R; 5, and a+a’ = B (= the highest root). Note
that in type E; we have

8 16 =152 Bss B} R;,IS = {B;’ »B;’ '3;}’ R;,29/2 =1{Bo}>
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where the notation is determined by the equalities
(a) ,B; =B +a, if i, j, k is a permutation of 2, 5, 7,
. .
(b) Bo=B,+8B,,if ie{2,5,7}.

We wish to derive some consequences of the relations in §2.3.

Lemma 2.5. Let o, o' be as in 2.3(d3)~(d5). The following identities hold in
V.
(N) (M) _ N[ r=1 (N=r) (M) ()
(a) EVE ) = Y (-1 [N M_l]E E E,
N-MZr<N
(N>M2=0),

(b) EM g _ E (_1)r+N——M[ r—1 ]Eir)Eg’u)Ec(!N—r)

o Za N-M-1
N-M<Zr<N
(N>M20),

(c) EMEGNEN — ENEMESD (N, M > 0)
(compare Verma [13]),

N Nei o .
(d) EN, =3 (-)Y T EVENENTY (N> 0),

Jj=

N Y N—j j o (N—J N j

(e) EN =S ()" ENIEDEY (v 0).

j=

Proof. In the right-hand side of (a) we substitute E‘(IM )E((x') by the expression
provided by §2.3(d3); performing cancellations, we get the left-hand side of (a).

In the right-hand side of (b), we substitute E(M )E(N =" by the expression
provided by §2.3(d3), and in the left-hand side of (b) we substitute E(M )E (M
by the expression provided by §2.3(d3); we see that we obtain equal expressmns
The same argument applies to (c): we substitute E(M *MEM and E(N JEMHN
by the expressions provided by §2.3(d3). We argue ‘in the same way for (d) we

substitute Ei’ )Ef!N) in the right-hand side of (d) by the expression provided by
§2.3(d3) and we obtain the left-hand side. Now (e) follows directly from (c)
and (d).

Lemma 2.6. Let y€ R" and o,, o; €Il be such that i, j < g(7), (o, a;) =
0,and (y,e)=(,a;)=~ Then EM) g _ pM) gyt

Y+o; }'+a }'+a y+a,
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Proof. By Lemma 2.5(e) we have

N

(N) (M) _ N—~j  ~ip(N=j) o (N) ())

E 0Bl = Y (-1 TvTE, E,"E,
Jj=0

M
" (Z(_1>M~hv~hE;M-h>ngE;h>)
h=0 ’
_ 2 (= 1)MHN=I=hy=i=h [M +j] — h] E}EN—j)Eiy)E;M+j—h)E(()y)E}(,h).

0<jSN
0<h<M

Now let

9 = Z (__1)M+N—kv—kE;(,M+N—k)El(1N)E(M)E(k).

o; b3
0<k<M+N

In the last sum we apply Lemma 2.5(a) with a =y and o' = o ; to the products
E§M+N'k)Ei7) with k < M and we apply Lemma 2.5(b) with o = y and
o' = a; to the products Eg”)E;k) with k > M : we leave the term with k = M
unchanged. We obtain

M+N—k —k raM—k| r—1 ]
b= > (=1 v > (=1) M—k-1
0<k<M M—k<r<M+N—k L .

(M+N=k=r) (N} (1) (M) (k)
x E, Ea‘_ E, Ea/ E,

M+N—k —k rek-M | r—1
+ > (-1 v S (-1 e M1
M<k<M+N k—M<r<k t .

(M+N=k) ((N) 0 (r) (M) (k—T)
x E E,E/E"E,

N_—M p(N) (N) (M) (M)
+ (0" EVEDEME
_ Z (_1)M+N—j—hv—j—h (Uj [M+jj—h—1]

0<j<N
0<h<M
LM [M+j—h— 1])

Jj—1

x E,(N_j)E(N)E,(MH_h)E(M)E,(h)
7 o Ty a, 77

~ EW g

7ta; 7+“J *

(We have used the following convention: [7] =0 for m>0, [Z]]=1.)
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Interchanging the roles of «;, N and o B M , we see by the same computa-

tion that E}(,fa) Effi is equal to the expression obtained from 6, ; by interchang-
J i :
ing E‘(IN ) and EflM ). But that expression is again g, since Eff_‘[), Eg_”) com-
i J ¢ p)
N) (M M) (N

mute by §2.3(d2). (Recall that (a;, o) = 0.) Hence E;+gig;+gj = ELQJE;;
=0, ;- The lemma is proved.

Proposition 2.7 (Type E;). Let i, k,! be a permutation of {2,5,7}. With
the notation in Remark 2.4 we have forany N, M > 0:

(V) (M) _ (M) (V)
(a) Eg By =Eg Eg,

(N) (M) _ (M=5) £(5) 1(s) p-(N=s)
(b) E,'Eg' =) WwE, "EJEyE, ",

520

where y, = p SNHM=s) Hj,zl(l - v, and

(N) (M) _ (M) AN)
(c) E,'Eg” =E;"E." ifhe€{l,3,4,6}.

Proof. If we set y = B,, we have B, =y + o, and B, =y +q, (see Remark
2.4(a)), hence (a) follows directly from Lemma 2.6.
We not prove (c). Let 2 be as in (c). We write Eé:l) as an &/ -linear

combination of products E%)E;:{)Eé?{_') , using Lemma 2.5(d) with a = B,
o' = B;,and a+a' = B;. Note that Eg: ) commutes with all three factors in
such a product (by §2.3(d2) since (a,, B;) = (a,, Bs) = 0); (c) follows.

We compute the left-hand side (= I') of (b) by substituting Ego”) by the
expression given in Lemma 2.5(d), with a =8, , o' =B, ,and a+a’ = §,:

_ M=t =t (N) (8 (M) (M=)
r_ft:( D" E VEy E VU Ey

Using the commutation formulas
N ~Nt () (N
Ef,,. )E,(e? =v 'EB'L E, ) (see §2.3(d4); B, = B, +a,),

(N) (M) _ SHN=$)(M—5} (M—5) 1=(5) (N=5)
(d) E,E;" =3 v E, E,E,

s
(see §2.3(d3); B, = B, +,),
we see that

_ M~t —t+5+(N~s)(M—=s5)—Nt (1) p(M=5) (5) p(N=$) (M —1)
=Y (-1)"""v EgE, “EgE, “Ey .
t,s

We interchange the last two factors (and introduce an appropriate power of
v ) using (d), and we use (a) to interchange EY) and E’(;,” =0 ; we obtain
k
N—s)

B
_ M=t 1St (N=s)(t=5) =Nt 1(0) (M =$) (M =1) 1.(5) 12
=3 (-H""" Eg Es "Eg EgE,
L,s

i
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This shows that to prove (b) it is enough to prove that forany 0 <s < M,
we have

(e) Z( 1M—t —t+5+(N—=5)(t—s)— NtE(t)E —s)E(M-—t) E(M—S)E(s)

Let I be the left-hand side of (e). We substitute E ’)E(M *) by the expres-
sion given by §2.3(d3); we see that

M—-t —t+s+(N—s)( ~8)=Nt+r+(t—r)(M—s~r) (M =s=r) ~(r) (t=r) ~(M—1)
re Y BB BT EY.

We replace E(’ ')E(M 7 by [ "]E;M =9 then I” is a linear combination

of monomials E(")E(b)E(”) with coefficients in % , and it is enough to show

that each of these coeﬁiments is zero except in the case where a =0, b= M-s,
and c=s,whenitis y,.

Thus, we are reduced to showing that for any s € [0, M] and any r €
[0, M —s] we have

Z (_I)M—tvf(t)[M—r]= y, ifr=M-s,
o<y M-—r 0 ifr<M-s,

where f(t) = —t+s5s+(N—s5)(t—s)—Nt+r+({t—r)(M-s-r), or equivalently,

that:
A M —r| {M-r-1)(  2Astr+1-M) !
v Z [ t, }'U ( v )
0<r'<M—r
S .
(f) [Ta-v¥) ifr=M-s,

Jj=1

0 ifr<M-s,

where fo=(s+r-M)(1+r—-M).
The left-hand side of (f) is equal to the value of
M-r—1 -
v’ H (1+v7x) forx=-v
h=0
Hence it is zero precisely when 0 € —(s+r+1—- M), ie. when r < M —5s.
Hence (f) holds and the proposition is proved.

2(s+r+1—-M)

Proposition 2.8. Let o € R}, and o/ € R} ,, a # o' . Assume that I' =1 or
I+ 1. In the case where I' = | + 1, assume further that R;1+1/z = . Let
N,M>0.
(a) If I' =1, we have (a,a’) =0
() If I' =1+ 1, we have either (a,a') =0 or (a,d') = 1; in the latter
case, we have o = a + a, for some h<i.
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(©) If (@, 0)=1, then ENEYD = o EMED
(@) If (a, ') =0, then E(N)EW) EMEN.

Proof. If (a,a’) = —1, then a+o' € R*. We have g(a +a') = i and
Cope? =€+ €y 2 1+1=2. By §2.2(a), it follows that we are in type E; and
i=8, at+a =8,.

Hence h(a)+ h(a') = 29. This is impossible in case (a) since h(a) = h(a’)
is an integer; in case (b), we have h(a) =17 and A(a’) =[+1, hence a € R;, 14
and o € Ry |, contradicting our assumption. (We have Rg, 2972 # @) Thus,
(a, a') € {0, 1}.

Assume that (a, ') = 1. Then o' —a is a (positive) root, hence a and o’
have different heights; in particular, we must be in case (b). Then o' — a has
height 1 s0 o’ = o+, for some a, € I1. Clearly, h < i. If h = i, then
€y > €, ,80 c,s > 2. By §2.2(a), we see that we are in type E; and o = By, so
/+1=29/2. But then o would have level 27/2, which is impossible. Thus
h < i and (a) and (b) are proved. Now (c) follows directly from (a), (b), and
§2.3(d5).

We prove (d) by induction on N = k(a) + h(a’) > 2.

When N =2, then both a and o' are in II and, since g(a) = g(a'), we
have a = o' and there is nothing to prove. Assume now that o and o (as in
(d)) have N > 3 and that (d) is already known for smaller values of N. We
can assume that

(e) in type Eg, we have o ¢ Rs 15+
(Otherwise, we would also have a € Rs, 15 and we could use Proposition 2.7(a).)

Moreover, it is clear that

(f) in type Ej, neither o nor o' canbein Ry 5y, -

Since N > 3, we can assume that A(a’) > 2. We can write o' =y + a, for
some k < i and y' € R*. We have h(a)+h(y) = N-1,y € R ,_,, and
=1 -1 or !'; moreover, in the case where / = /', we have R:,_I/z =@ by
(e). We have y # a; otherwise, o' = a + o, , contradicting (a, o) =

Assume first that (a y) = 0. Then the induction hypothesis apphes to Y,
and gives

(8 EMEN = EMEM

We have (a, o;) = (@, a’ —¥') = (a, a') = 0. Hence, by (f) and §2.3(d2)
we have

(h) E“’ E™ E“"’E“’ ) forany P > 0.

By Lemma 2 5(d) we have

M
j=0

This, together with (g) and (h) shows that Eg,”) and EiN) commute.
Assume now that (a, y) # 0. Since (a) and (b) are applicable to y and
a, it follows that a = y +a; for some j < i. We have a; # o since
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a # o . Hence (a;, ;) € {0, —1}. If we had (;, a;) = —1, then from
(7, j) = (7, a,) = —1 it would follow that the mutual inner products of 7,
a;, and o, form a singular matrix

2 -1 -1

-1 2 -1},

-1 -1 2

hence 7y, o, and «, are linearly dependent so y € {aj, o, o)+ a, }; this
contradicts (y, aj) = (y,a,) = —1. Thus, we have (aj, o) = 0. We may
apply Lemma 2.6 and deduce that Eg,”) and E((IN) commute. This proposition
is proved.

2.9. A nonempty subset of R is said to be a box if it is of the form R;L ; for
some i, /. We arrange the boxes in a sequence as follows:

(a R

n,1°

R, ,,...;R,_ | ,R;

AT n-—l,2””;"'

;RZ,I’RZ,Z"" §R1,1-

(Note that in type E, we place the box Ry ,, ,» between the boxes R; |, and
+
Rg 15-)
We shall give the product Hae R E‘i'"") the following meaning: we compute

it using any total order on R* which is compatible with the order (a) of the
boxes, i.e. if a, o’ € R and the box of ' is to the right of the box of a, then

a < o . This is well defined since E" and E"’ commute when o and o
are in the same box (see Proposition 2.8).

We define similarly a product [] E((x'"ﬂ) where o runs over a subset of R*;
this is a special case of the previous product, with m_ =0 for certain «.

2.10. We introduce a number of subspaces of V" . We fix a box Rf’ , with [
integral.

X; , 1s the &/ -subalgebra of V' generated by the EiN) (a e R;L’ ;» N21)
and by the E:”) (J<i,M=>1).

X ;.; is the 7 -subalgebra of V'™ generated by the EM (ae RT UR] U
R} ... N>1) and by the Ef:“ (j<i,M>1).

Y, , is the &/-submodule of V" generated by all monomials I, E((IN o)
(N, > 0) with o restricted to the roots in boxes strictly to the left of R,TL’ /-

Z, , is the &/ -subalgebra of V" generated by all monomials I1, ELN )

(N, > 0) with a restricted to the roots in R; ,UR] | /2

With this notation we can state

Lemma 2.11. Assume that R, is a box with | integral (i,1) # (1,1). Let
R}/ be the first box with integral I' which is to the right of R} . Then
@ X, ,CZ - Xy p,
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() Y, ;- X;  C Yy Xy
(The product of two subsets of V' is the set of sums of products of an element
in the first set with one in the second set.)

Proof. (a) X ;.1 1s spanned as an & -module by monomials &,&,---&; , where

each ¢, is one of the algebra generators of X ; ; given in §2.10. For such a
monomial we define the content tobe >, N, where ¢ runs over all indices in

[1, L] such that ¢, -E( o) with a, eR+,UR, Ry and N >1. (Such a
generator £, is said to be dlstmgulshed )

We define the defect of a monomial as above to be the number of pairs ¢ < ¢
in [1, L] such that . 1s distinguished and ¢, is not distinguished. (Thus
§=E, with a€R],, or a=a;, j<1,and N> 1.) Such pairs 1 <7
are sald to be bad pairs. Consider a monomial &,¢,---&; as above and assume

that it has content ¢ and defect d > 1. We can find for it a bad pair # < ¢
with ¢ =t + 1. Using §2.3(d2)-(d5) and Propositions 2.7(b), (c) and 2.8, we
see that { ¢, is equal to an &/ -multiple of £.¢, plus an &/ -linear combination
of monomials with content strictly smaller than that of £, . Hence (&, ---&;
is an &/ -linear combination of monomials, one of which has content ¢ and
defect < d, and the remaining ones, if defined, have content < ¢. This shows
by double induction on (¢, d) that any monomial is an %/ -linear combination
of monomials of defect 0.

Now the distinguished generators commute with each other (only up to a
power of v if one is in R;” 14 and one is in R;’ 15/2 ); using this and §2.3(d1)
we see that any monomial of defect O is contained in Z; X, , and (a) is
proved.

From (a) it follows that Y, , - X, 1 €Y, Z - Xy p. Itis clear that

1,
Y,,Z,—Y/,,anXm,CX . Hence Y, XIICYX cY, ,Z Xy p=
Y, /X p,proving (b).

Proposition 2.12. (a) V™ is generated as an 5/ -algebra by the elements E(EN )
(ie[l,n], N>1). '
(b) V™ is generated as an 57 -module by the monomials .cr E. (Vo) (N, >

0).

Proof. Let V+ be the & -subalgebra of V'* generated by the E; (N ) (ieli, n],

N > 1). We prove by induction on A(f) that E(N S V+ for all ﬂ € R*. This
is clear if A(B) = 1, hence we can assume that h( B> 1 and that our assertion

is already proved for all g’ € R* with A(B') < h(B). Assume first that cg=1
(see §2.2). We can find i €[1, n] such that i < g(B) and (B, ;) = 1. Then

B-o€ R* and E;A_lzli € Vl+ for all M > 1 by the induction hypothesis. We
apply Lemma 2.5(d) with o = g — o, and o = a;; we are in the situation of
§2.3(el) since (o, ') =—1 and i < g(a) = g(B). We see that EéN) € V1+ for
all N> 1.
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Assume next that Cp 2 2. Then by §2.2(a) we must be in type E; and
B must be the highest root B,. We can apply Lemma 2.5(d) with o = f,,
o' = B, and a+c' = B,, and we see that Efgiv) is an & -linear combination

(I)E(N)E(N—l)

of products E By the induction hypothesis, the factors of these

products are in V1 Hence E = V+ This proves (a)

We now prove (b). Applymg repeatedly Lemma 2.11(b), we see that ¥, , -
X,, CY X . (R; is the first box in §2.9(a), Ry , is the last box.)
Clearly, Y, 10X is the &/ -module spanned by the monomials in the propo-
sition. On the other hand, Y, X, , = X, | is V" and, by (a), this equals
V* . The proposition is proved.

2.13. It is clear that there is a unique ring isomorphism

(2) e

which takes FOSN) to E ((!N) (e € R") and v to v~ . Hence from Proposition
2.12 we deduce:

(b) V™ is generated as an &/ -algebra by the elements FOEN )
(fell,n], N21),

(c) the products [[ cp+ F, () (deﬁning using the order on R* op-
posite to that defining [] E (N, ) generate V'~ asan . -module.

Proposition 2.14. V0 is generated as an &/ -module by the elements

3, 5, | K,; 0 K, ;0
(a) KIIKZZ...KH[ ltl :l[ f ],

n

where 6, € {0, 1} and t,€N.

Proof. Let on (resp. Vzo) be the % -submodule of ¥° generated by the ele-
ments (a) (resp. by the elements (a) with J, allowed to be arbitrary integers).
Then V20 is stable under left multiplication by K, and K, ! and also by [K;,;C]
(the last assertion follows from §2.3(g9), (g10)). Since V2O contains 1, we have
Vo = Vzo. From §2.3(gl)-(g5), we see that from m > 0:

me2 [ K50 _ too41 =1 pom+1 [ K50 2,m{K;;0
K; [ p ]—v(v v )K; {t+l]+v Kl.[ p ],

-m=1 | K500 -+t =1 -m [ K50 ~2t g —m+1 | K;; 0
K, [ p ]— v (v v )K; [t+l]+v K, [ p ]
This shows that by induction on m > 0

K™ [K"t; 0] € V10 forallm >0,

hence Vz0 C Vl0 . The reverse inclusion is clear and the proposition follows.
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2.15. We have obvious . -algebra homomorphisms V= — V', 6 ,and
V™ — V (identity on generators). Using muitiplication in % , we obtain an
& -linear map

(a) y evlevt s v.

Lemma 2.16. The map (a) in §2.15 is surjective.
Proof. From Proposition 2.12(a) we see that V is generated as an & -module
by monomials ¢,&,---&; , where each ¢; is a generator of type I (one of E (N)

ie[l,n], N2>1),ortype II (one of F(N), ie[l,n], N>1) oroftypeIII
(as in §2.3(c)). We define the defect of such a2 monomial as the number of pairs
t <t in [1, L] such that ¢, isof type I and ¢, is of type II. (We say that such
a pair ¢ < ¢ is bad). Assume that we have a monomial as above, with defect
> 1. Applying to it the relations §2.3(h3)-(h6) we see that our monomial is
equal to one of the same defect which has some bad pair of form ¢t < ¢+1. We
apply to the generators on the position ¢, f+ 1 the identity §2.3(h1) or (h2).
We see that our monomial is equal to an . -linear combination of monomials
of strictly smaller defect. Iterating this, we see that IV is generated as an &/-
module by monomials of defect 0. Using again §2.3(h3)-(h6) we see that any
monomial of defect 0 is equal to one in which all generators of type II precede
those of type III, which in turn precede those of type 1. Such a monomial is in
the image of §2.15(a). The proposition is proved.

Proposition 2.17. (a) V is generated as an s/ -algebra by the elements E((]N ),
FM, KF' (ie[l,n), N20).
(b) V is generated as an &/ -module by the elements

n
(N,) 5| K;;0 (N2
I =11 (x4 [ % °]) 1 2
a€R? i=1 ! a€R*

(where N, N; , 1,20 and 6,€ {0, 1}).

Proof. (b) follows from Lemma 2.16, Propositions 2.12(b) and 2.14, and
§2.13(c). Using Lemma 2.16, Proposition 2.12(a), and §2.13(b) we see that
V is generated as an & -algebra by the elements E(N) F™ K; 1 and [%i:¢]

a;

(iefl,n], N>0,t>0,ceZ). Let V] be the .M—subalgebra of V

generated by the elements E((1 F, %) and Kil (iell,n}, N>0). We

show by induction on ¢ > 0 that [K : ‘] € V,. When ¢ = 0, this follows from
§2.3(g2). For t > 1, we use §2.3(h2) and we see using the induction hypothesis
that [%::%] € ¥,. Using now §2.3(g4) and the induction hypothesis it follows

that [X,¢] € ¥, forall c. This proves (a).

2.18. Usmg the natural imbedding &% C &' we form the &’ -algebras ; ,
Vo,V M,, and V,,. by applying ()®, & o V', V7,V O and V. We
shall write E, and F, instead of E\"” and F".
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Proposition 2.19. V. isthe &/ "_algebra defined by the generators E ,F (a€
R"), and K., Kl."l (1 £i< n), and the following relations:

(al) E E =EE_ if(a,a)=0, i<gla), h'(a)€Z,
(32) Ea'Ea = UEaEa' + an+a' if (a s al) = —1 and
(a3) VELE, =E B, i < g() satisfy §2.3(el)
(ad) vE, «E =EE,_ or (e2),
(b1) F,F,=FF, if(e,a)=0, i<g(a), H(x)eZ,
-1 -1
(b2) FF,=v F F +v F, if (a,a) = -1 and
(b3) vF.F, .=F,  F, i< gz(a) satisfy §2.3(el)
(b4)  vF,,.F =FF, or (e2),
(c1) KK, =KK,
-1

(c2) KK =1,

K. -k
(d1) E,F, -F,E, =6\~

P ;o v -0

(d2) KE =vYE_K,,
(d3) KF, =v %FK,.

Proof. Clearly, V. isthe & "_algebra defined by the generators (a), (b), and (c)
and the relations (d1)-(d5 ), (f1)-(f5), (gl)—(g5), and (h1)-(h6) in §2.3. This
set (=.#) of relations contains the set of relations (al)-(d3) above as a subset,
My . In V., we have the following identities:

EM=EY/Ny, FM=F™MiNy  (aeRY),

—s+1 =1 ~c+s5-1
© [Ki;cJ =ﬁKiUC oK T
t v’ —v*

s=1
(ie[l,n], N,t>0,ce Z), which are consequences of §2.3(d1), (f1), (g2),
(g4), (85). It is then enough to show that the relations in .# — .4 with EC(IN ) ,
F O(N) , and [Kit?c] replaced by the expression above, are consequences of the
relations in .. This is routine for most relations except perhaps for §2.3(d3),
(f3), (h2) with N or M > 2. For §2.3(d3) we can make use of Lemma 1.6(b);
an analogous argument applies to §2.3(f3); we leave §2.3(h2) to the reader.
2.20. The same argument as in Proposition 2.19 gives the following.
(a) V;, (resp. V) is the & "-algebra defined by the generators E_ (resp.
F) (ae R™) and the relations 2.19(al)—(a4) (resp. 2.19(b1)—(b4)).

(b) V;}, is the & '-algebra defined by the generators K, and K; ! (i €
[1, n]) and the relations 2.19(cl), (c2).
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Lemma 2.21. The elements in Proposition 2.14(a) form an /'-basis for V. , .

Proof. They generate VM, by Proposition 2.14. Fix an integer ¢ > 1. Consider
the elements of V;., of the form given in Proposition 2.14(a) with index subject
t0 6,€{0,1}, 0<t, <q. (Thereare 2"(g+1)" such indices.) It is enough to
show that they span an &/ "-subspace X, of dimension 2"(g+1)". Let X, be
the subspace of V;’., spanned by the elements K,"‘K;Z - K,’, with —¢ < i, <
g+1,...,-g<i, <q+1. By§2.20(b) we have dimX; =2"g+1)". Itis
clear that X g = X; . Hence dim X 0 = 2"(g+1)" and the lemma is proved.

2.22. Since V3. is isomorphic (by Lemma 1.12(b) and §2.20(b)) to U2, we

see that we have the following variant of Proposition 1.13:
(a) The elements

1 . +
FWH(K? [K’;;ODE"' (w,¥' €Nt ,5,€{0,1},¢,20)
i=1

form an & '-basis of U, . (Here [%/°] € U, is defined by §2.20(e).)

3. PROPERTIES OF ROOTS

3.1. Forany i€|[l, n], we define a graph I', with alabelin [1, n] placed at
each vertex as follows.

Type A,: T, is
-~ 1D-(i=2)----- 2-1
Type D, (n>4): T, is

i=(i = 1)=(i = 2)=---=4-3

if i>3,and {i} if i=1or2.
Type Eg: Ty is

2-4-3-1-3  3-1-3-4-2 __
3—1-3—4\/\\/\/\ /N T4-3-1-3
/S _56-5-4-2-4- 2—4—5—6—5 7 \N\/ 4—5-6—7—8
24567 /NN /N /7 /N > 6-5-4-27
1282736257 N sle g1~

4/2\
7-6-5-47 \ / / \ \ / D567
N2-4-5 —6
77
Types Eg, E,, E;: T is
3-1-3-4-2
6-5 —4 \ / /\ 4-3-1
N2-4-5-6-5"
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I“5 is
3-1-3
5-4__ \/ N4
2-4-5
r,: 31
né 3
i

I is3-1, T, is {2},and T, is {1}.
The vertices of I'; are arranged in columns as shown, and we see that
(a) If k # 1 are the labels attached to two vertices in the same column of
I';, then a = 0.
(b) Two vertices of I'; (with labels k, /) are joined in TI'; if and only if
they lie in consecuuve columns and a, 0= -1.

3.2. For any subset Z of the set 77 of vertices of I', we define an element
w, € W as follows. For each n € Z, let s(n) be s, € W where k is the label
of n. Then w, = [],o, s(n); the factors are written in the natural order of
columns of I'; (first the factors with = in Zn (first column), then the factors
with m in ZN (second column), etc.). The s, with z in the same column
commute with each other by §3.1(a).

3.3. We define a partial order < on the set 2. If =, n' € 7, we say that
n < a' if there exists a sequence of vertices Ty, My, ..., n, With 7 ==, and
n = m,, such that forany 0<j<m-1, m,_, isjoined with z; and lies to
the right of 7, .

The following property of < can be easily verified.
(a) Let m,n' €7 be such that n £ ' and the column containing n is to

the left of the column containing =’ ; let k, k' be the labels of n,n'. Then
ak K =0.

From this and the definition in §3.2 we deduce the following.

(b) Let Z' and Z be two disjoint subsets of 7" such that n & n' whenever

n'e€Z', neZ,and n isina column to the left of that of «' . Then w,w, =
wzluz .
3.4. Let m, be avertex of I',. We define some subsets of 7 :
rl={neZinz2n}, [(Frl={ncZ|ntn}.

If #, <=, are joined in T';, we also define

A={neZ|\n}n,,n2n}, B={neZintn,,n2n,n#mn}.
Now §3.3(b) is clearly applicable with (Z', Z) = ([# z,1,[>=,1), or ([# «,],
A),or ({n}, B) and it yields
(a) Wigr) Wizn,) = Wy s
(b) Wign ) Wy = [winzl,

(c) w{nl}'w8=wA.
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From (b) and (c) we deduce
(d) Wit = Wign ) Wn,) " Ws -
We also note that
(e) if m € B has label k and =, haslabel /, then g, ,=0.

(Indeed, if 7 is in the same column as n,, then we may use §3.1(a) since
n # m,. If n is not in the same column as m,, then it is in a column to the
right of that of =,, since # > n, and n # = ; using 7 ¥ 7, and §3.3(a) it
again follows that ¢, ,=0.)

One can easily verify that

(f) lwy,)=#7.
Hence from (a), we see that both inequalities l(w[?:n,]) < #[# ] and
I(wlzn,]) < #[> m,] must be equalities. Thus, we have

(g) l(wlin.l) =#[#m], and similarily, l(w[?:nzl) =#[} n,].
From this and (b) we see that the inequality /(w,) < # B must be an equality
(h) Hwg) = #(B).

3.5. With the notation in 3.4, we see from §3.4(d), (h) that
l(w[inl]sq) = l(w[inl]) +1,
where g is the label of #, . It follows that
is a positive root.
One can verify that the correspondence 7, — B, given by (a), defines a
bijection
(b) 7 5 {BeRg(B) =1}

For any B € R* with g(8) = i, we shall denote by = 5 the corresponding
vertex of I';, by iﬂ the label of P and by wy the element Witz,) of W.

Thus, (a) can be rewritten as
(© B =wp(a,)-
The bijection (b) has the following property:

(d) the equivalence relation on 27 defined by the columns of I,

corresponds to the equivalence relation on {f € R"|g(8) = i}
defined by the boxes; moreover the natural order of the columns
of T'; is compatible with the order in §2.9(a) on the set of boxes.

For example, in type E;, the middle vertex of I'y (with label 4) corresponds
to the highest root. Moreover,

(e) if f =a,,then we=e,ip=1, and 7y = minimal element of
7 for <.
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3.6. Let B R* besuchthat g(f) =i andlet je[l, n] be such that j < i
and (£, j) € {0, —1}. Assume that, in type Eg, B is not the highest root.
One can verify that

(a) wy'(a,) € I; if, in addition (,a;) = -1 and B’ = B+ a;, then
w;l(aj) =o,.

3.7. Assume that we are in type E;, and that i = 8. Let B € R;‘,l . and
B’ € Ry |5 be such that B+ ' = B, (the highest root). Then i, = i, ; we
denote this common value by /. We have / € {2, 3, 5}. Let I',I” be such
that /, I’, I” is a permutation of 2, 3, 5.

Let Z be the set of all # € Z7 which are in one of the first 13 columns of
T let w' =w,. We have

(a) wy=w'y, lwg)=Iw)+1y), y=spsp,
(b) Wy = w's2s3s5s4z, l(wﬂr) =l(w)+4+1(z),
(c) wy = w'szs3ss , 1(w/30) =l(w')+4,
where

(d) z is a product of various s, with a ;=0.

4. THE ISOMORPHISM V —= U

Proposition 4.1. There is a unique '-algebra homomorphism V;,. — U,
which takes any E, (B €R") to Tw,(Ei,) (wg and iy asin §3.5).

Proof. We must only verify that the relations in Proposition 2.19(al)-(a4) are
verified.

Let B R" and je[l, n] besuch that A'(B)eZ, je[l,n], j<i,and
(B,a;)e{0, -1}

By §3.6(a) there exists A € [1, n] such that

(a) we(ay) = ;.

From Proposition 1.8(d) and §3.5(e) we see that

(b) Tw,,(Eh) =E = Twav(Ej).

We have

(C) (ﬂaaj)=(wﬁ(ajﬂ)’wﬂ(ak))=(aiﬂaah)’—_ah,iﬂ'

Assume first that (B, a;) = 0. Then @y, = 0, hence EhEi,, = Ei,Eh in
U, . Applying to this the algebra homomorphism Twﬂ : U, — U, and using

(b), we deduce
Twu, (E)) Tw,, (Ei,) = Tw,, (Ei,,)Twaj (E)).
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This shows that the relation in Proposition 2.19(al) is preserved.
Assume next that (£, a;) = —1. Then @, = —1 by (c), hence we have

the following identities in U,/ :
E,,Ei‘g = inﬂEh + vTiﬂ(Eh),
vE,T, (E,) =T, (E,)E,,
vTiﬂ(Eh)E.lj = Eiﬂ Ti,,(Eh)-

1
Applying to these identities the algebra homomorphism Tw,, : U — U and
using (b), we deduce

Twaj (E))- Tw,(Et,) = ”Tw,,(Ei,,) . Twa, (E;) + va’9 Ti,,(Eh) )
(d) vT, (E)-T, T, (E)=T,T, (E)-T, (E)),

vT, T, ()T, (E ) =T, (E )T, T, (E,).
Let ' = f +a,. By §3.6(a) we have
(C) h= iﬂl .

We can apply the discussion in §3.4to n, == p and m, =7y . (These are

joined in the graph since ai,,,,i, = ~1, by (e) and (c¢).) If B is as in that
discussion, we have (by §3.4(¢))

() ng (Eiﬂ:) = Eiﬂ: .
By §3.4(d), (g), (h), we have Twﬁ, (Eiﬂ,) = Tw,, Ti, TwB (Eiﬂ,) , hence
(8) T, T, E)=T,,E ) (byf) and (e).

Substituting (g) into (d), we obtain three identities which show that the rela-
tions in Proposition 2.19(a2)-(a4) (in the situation of Proposition 2.19(el)) are
preserved. It remains to show that the relations in Proposition 2.19(a2)-(a4)
(in the situation of Proposition 2.19(e2)) are preserved. By Remark 2.4 we can
assume that we are in type E;. Let f and B’ be as in §3.7. In the rest of this
proof, we use the notation in §3.7. In U, we have the identities
E,E, =vEE, +vT/(E,),
’UE4 : T[(E4) = T[(E4) -E,,
vT(E,)-E, = E,- T/E,).
Applying the algebra homomorphism Tw, : Uy, — U, and using I 5= [ (see
§3.7) we obtain the identities
Twﬂ(E4)Tw,,(Ei,) = vaﬂ(Eiﬂ)Twﬁ(E‘,) + vaBT,(E4) ,
(h) vT,, (E)- T, T(E) =T, T(E) - T, (E,),
vaﬂT,(E4) . Twﬁ(Ei,) = Tw,,(Eiﬂ) . TwﬂT,(E“) .
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We have
(E, )= w 5,5, JE) = Twﬁ 7‘517‘54T2(E,) (see §3.7(a), (b))
=T, T T, (E) (see §3.7(d))

wy”s)
=T, (E) (see§1.3(D),
T, (E,)=T,,(E)=T, T,E,).

w Bo

Substituting in (h), we obtain
T (E, T, (E )=vT, (Eiﬂ)Twﬁ,(Eip,) + vaﬂo(Eiﬂo)’

wp,
oT, (E )T (E )_ s, (Ei,o)'Tw,:(Ei,f)’

T, Weo (Eiﬁo ) Twﬁ (Eip) = T’”ﬂ (Ei# ) Twﬂo (E% )

which shows that the relations in Proposition 2.19(a2)-(a4) are verified in the
situation of Proposition 2.19(e2). The proposition is proved.

Proposition 4.2. There is a unique &' -algebra homomorphism Vy — U,
which takes E; to T, J(E.), Fp to T, (F,) (B € R™, ‘notation of §3. 5)

and K,.:‘=l to Kiil Jor all i.

Proof. The uniqueness is clear. To prove existence, we first define an &7'-
algebra homomorphism V. — U, as a composition V. — (V,.)® —
UJ? — U, (the first map as in §2.3(a), the second one as in Proposition 4.1,
and the third one given by € in Lemma 1.2(a)). This homomorphism takes
F p t0 Tw, (Eﬂ)’ It follows that the map on generators given in the statement

respects the relations in Proposition 2.19(b1)~(b4) of V. ; by Proposition 4.1 it
also respects the relations in Proposition 2.19(al)-(a4) of V.. The remaining
relations in Proposition 2.19(c1)—(d3) of V,,, areclearly respectedin E, — E,,

F, — F,. The proposition is proved.

Corollary 4.3. There is a unique </ -algebra homomorphism ® . V — U which
take Ej" to Twﬂ(Ef:’ ), FV 10 T, (F, >) (BeR',N>0), and K*' 10
Kii ! forall i.

Proof. The uniqueness follows from Proposition 2.17(a). To prove existence,
we consider the composition V' — V. — U, (the first mapis { - ¢{® 1, the
second one is given by Proposition 4.2). This satisfies the requirements, with
U replaced by U, . It remains to show that the image of our homomorphism

V — U, is contained in U ; this follows from the fact that the images of the
indicated ./ -algebra generators are contained in U, by Proposition 1.7.

4.4. Assume for example that we are in type 4, . Any B € R* can be written
uniquely as g = 5;5,_,---$;_,..,(a;_,,) for some m </ in [1, n]. The ho-
momorphism in Proposition 4.2 takes Eﬁ to Ts, TSI_l (E,_,) > Fﬂ to

T,T, T, (F_,),and K" to K;°".

Si—1 Siem+1

-T.
Si—m+1
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Theorem 4.5. (a) The elements in Proposition 2.17(b) form a basis of V' as an
& -module, their images under ®: V — U (in Corollary 4.3) form a basis of
U as an &/ -module and of U, as an & "-module.

(b) @ is an < -algebra isomorphism; it induces an s/'-algebra isomorphism

V, S0,

(c) Wehave U, &' =5 U,,..
Proof. The image of ® contains the set of &7 -algebra generators of U con-
sisting of E™, F™  and K*' (i €[1,n], N > 0), hence ® is surjective.
The elements in Proposition 2.17(b) form a set of % -module generators of V'
(see Proposition 2.17); they are mapped by ® to a basis of U_,/ by the variant
in §2.22(a) of Proposition 1.13. The theorem follows.

4.6. One can interpret Theorem 4.5(b) as providing a presentation of U by
generators and relations (those of V).

4.7. The same argument shows that & defines isomorphisms ¥* = U* and
¥~ =5 U™, and that the elements in Proposition 2.12(b) (resp. §2.13(c)) form
an . -basis for V™ (resp. V7).

From now on we shall identify V = U, V" =U",and V™ = U~ us-
ing the previous isomorphisms. We shall write U° for the subalgebra of U
corresponding to cvr.

Proposition 4.8. There is a unique Hopf algebra structure on the &/ -algebra U
with comultiplication defined by

AEM) = 3 W PEN YK 9 EP,

0<b<N

A(ITI(N)) = Z ,v_a(N_a)Iri(a) ® Ki“aIyi(N"a) ,
0<asN

AK)=K, ®K,.

(Here i€fl,n], N>20.)

Proof. From §0.4(b) we see that A satisfies the identities above on U, . The
proposition therefore follows from Theorem 4.5(c).

5. THE ALGEBRAS u, u

5.1. We fix an integer /' > 1. Let & be the quotient ring of .%/ by the ideal
generated by the /'th cyclotomic polynomial ¢y € Z[v]. (Thus, ¢, =v -1,
¢, =v+1, etc.) We shall denote the image of v €& andof [7] €% in &
by the same letters. Let / > 1 be defined by
[ ' ifl'isodd,
I')2 if ' is even.
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We then have (in &)

(a) g0 =0, o =1, W¥=1.
We shall need the following resuit.
) KO<N<I,0<M<I,N+M3>I, then [N;M}=0in95’.

Indeed, [YiM] [NJ[M]! =[N+ M} in & . In &, we have [N]' # 0,
[M1'#0,and [N+ M]}!=0. Since & is an integral domain, (b) follows.

5.2. We define the F-algebras U, , Uz, U% ,and Uy by applying ()®, %
to U, U™, U 0, and U. (Weregard & as an .« -algebra via the canonical
map & — % .) We could equally well define U;, ch; , U% ,and U, as the
A -algebras defined by the generators and relations of V¥, V7™, yo ,and V
respectively.

Let u*, u”, u’, and u be the B-subalgebras of U, U, Us,, and U
generated respectively by the elements EfN ) (1<i<n,0<N<I-1); F,.(N )
(1<i<n, 0SN<I-1); K, [%° (1<i<n, 0<,<I~1);and
EM, FM K* (1<i<n, 0<N<I-1).

5.3. We want to describe the algebras u*, u”, u’ ,and u in terms of gener-
ators and relations. For this purpose, we define -algebras i, o™, i’ , and

i by the generators and relations shown below.

4" : generators EéN) (e € R", 0 < N <[-1); relations (d1) from §2.3
with M and N satisfying M + N <[/ -1 and (d2)-(d5) from §2.3 with M
and N satisfying M, N <[ — 1, and the additional relations

(a) EMEM -0 N, M<I-1,N+M>I.

it : generators FOEN) (e € R, 0 < N <[-1); relations (f1) from §2.3
with M and N satisfying M + N <[/ -1 and (f2)~(f5) from §2.3 with M
and N satisfying M, N </ -1, and the additional relations
(b) FMFM 0 N, M<I-1,N+M>1.

-0, -1 K;;c ; .

i : generators K;, K[, [%] (0<t<l-1,ceZ, 1<i<n);
relations (from §2.3)(g7); (g5) (only if [/ > 2); (g6), (g9), (gl0) with t </ —-1;
(g8) (with t + ¢ < [ —1); and the additional relations (also from §2.3): if
t,f <1-1, t+1¢ > 1, the left-hand side of (g8) is zero; if / = 1, the
right-hand side of (g5) is zero.

{i: generators are those of 4", i, i° together; relations are those satisfied
in &7, @~ , #°; in addition we have the relations (h1)~(h6) from §2.3 in which
N, M ,and t arerestrictedtobe </-1.
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5.4. We have the following results.
(a) &" is generated as a .Z-algebra by the elements E(N ) (1<i<n,

0 < N</-1) and as a &-module by the elements [oert E(N )

(O<N,<I-1).

i~ is generated as a % -algebra by the elements Fa(N ) (1<i<n, 0L

N < [-1) and as a %#-module by the elements [] e+ FOEN“) 0 <

N, <I-1).

(c) #° is generated as a Z-module by the elements I, (Kf" [K",:O]) ,0<
t;,<l-1,06,=0,1.

(d) 4 is generated as a “-algebra by the elements E(N F, M) ,and K; £l
(0KN<I-1,1<i<n) and as a &F-module by the elements

(b)

1 =11 (ke[

a€ER*

e

l

(0SN <I1-1,0<N,<I-1,0<,<1-1,6=0,1).
(The products over o are defined as in §§2.9 and 2.13(c).)
Although these results are not consequences of those in §2, they are proved
by repeating essentially word by word the proofs of the corresponding results
in §2.

-"—

5.5. There are unique F-algebra homomorphisms 4+ — Ug, 1

2’ — Ug ,and i — U, which take the generators given in §5.3 to the generators
with the same name of U, . (This follows immediately from the definitions and
from §5.1(b); here we think of U, as V' ® % .) These homomorphisms carry
the set of % -module generators of the four algebras, described in §5.4, onto a
part of a % -basis of U, (see Theorem 4.5(a)). Hence these homomorphisms
are injective and the sets of %-module generators given in §5.4 are actually
B -bases. It is clear from the definition in §5.2, that their image is respectively

ut,u, u’, u. Hence we have proved the following result.

- Ug,

Theorem 5.6. (a) The homomorphisms in §5 5 define #B-algebra isomorphisms

ﬁ+-—~—>u CiT S, 10 2 and 4 S
) ut, u, W0 and u are free B-modules of rank 1'%, IR Lo@h"”, and
27 [\ pespectively.

This can be regarded as providing a presentation of u™, u™, w’ and u by
generators and relations.

5.7. We denote the quotient field & ®, Q of & by A’ (a cyclotomic field).

Using the inclusion & c &’ we can form the %’ -algebras 'u™, 'u™, u°, u,

+

and U by applying ()®, % to u”, u~, u’, u,and U,
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From the presentations in Theorem 5.6, we can deduce, as in Proposition
2.19, and §2.20 the following presentations:

‘u” is defined by generators E, (a € R") and relations (al)—(a4) in Propo-
sition 2.19 and Ei =0.

"u” is defined by generators F, (o € R") and relations (b1)-(b4) in Propo-
sition 2.19 and FaI =0.

" is defined by generators K, (i € [1, n]) and relations (cl), (c2) in
Proposition 2.19 and Kl.zl =

'u is defined by generators E,, F, (e € R"),and K, (1 <i<n) and

relations (al)—(d3) in Proposition 2.19 and E. =0, F. =0, K =1

5.8. From§§5.4 and 5.5 we deduce that ‘u*, 'u™, 'u®, and 'u may be regarded
as B'-subalgebras of U, which admit the following bases as %'-vector spaces:

Wi J[EF (0<N <I-1),
ocR?

Wi J[Ee (osN <i-1,
acR*

n
Wi JIkY (0swN <2-1),

(=]
IA

N, <2-1).

In particular, ‘u*, ‘u™, and u® are subalgebras of u.

5.9. We wish to study the ‘u-modules. They will be assumed to be finite
dimensional over %&’. We shall assume that 1 > 1. Much of our treatment

will imitate that in Curtis [3]. Let v’ = (- 1) v € & ; then v’ is a primitive
(2D)th root of 1.

Since the K, commute with K = 1 in 'u, any 'u-module M has a
canonical decomposition M =@M, where h=(h,,.... h,)) € (z/2)" and

h—{xeM|Kx—v ix, 1<i<n}.

“The A, are the “weight spaces” of M and the A are the weights.

Let M6= {(xe MIE,x=0VaeR"}.

Lemma 5.10. (a) Let I* (resp. I”) be the ideal in 'v* (resp. 'u™) spanned as
a B'-vector space by the nonempty words in E, (resp. F)), a € R™. Then any
element in I (resp. I”) is nilpotent.

(b) If M #0, then M° NM, # 0 for some weight h.

. 2 . +
Proof. Let us consider a sequence o ,a°,...,a in R" where r >

({=1) X cg+ h(a). By §4.7 we can write an identity in U, ;. expressing the prod-
uct E E.---E  asan & -linear combination of basis elements [] .- E((!Na) ;

r
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moreover from the homogeneity of the relations defining U, ;. it is clear that we
may assume that only basis elements satisfying >° o+ N A(a) = 3° h(a') will
occur in the linear combination. For such basis elements we have 3_ .+ N _h(a)
>r>(-1)T cz h(e), hence N, > for at least one «. Our identity in Uy,
gives rise to an identity in U; . Butthen E \E . ---E , isin u, hence is a Z-
linear combination of elements [] - EiN") withall N </-1. It follows that
E,E.---E, =0 in Ug. Hence the product of any r elements in I is zero.
In particular, any element of I* is nilpotent. The same argument applies to
I" , and (a) is proved. We now prove (b). By (a), the operators 1+¢: M — M

(¢ € I'") form a group consisting of unipotent elements. Hence, by Kolchin’s
theorem there exists a nonzero vector x € M such that (1 + &)x = x for all

& e I'. In particular we have Ex=0 forall a€ R*. Thus M° # 0. Since
M° is clearly stable under all K, : M — M, we deduce that M° N M, #0 for
some k. The lemma is proved.

Proposition 5.11. For any simple 'w-module M there is a unique h € (Z/20)"
such that M°nM, , # 0. The correspondence M — h defines a bijection between

the set of isomorphism classes of simple 'u-modules and the set (ZJ21)" .

Proof. Let h=(h,, ..., h) € (Z/2])". Consider the 'u-module % = "u/.7,
where ¥ is the left ideal of 'u generated by the elements E, (a€ R") and
K,-v'" (1<i<n).

From §5.8 we see that £ % is a free 'u”-module with generator 1, the image
of 1€ 'uin #%. Let #/ =1"-1C.#% (I" asin Lemma 5.10). We have
A= oB'. Any element x € 4 b4 generates .# b asa ‘u"-module.
(Indeed we can write x = A(E+ 1)1, where A€ &' — {0} and €I . Now &
is nilpotent by Lemma 5.10(a), hence A(£ + 1) is invertible in 'u™ ; we reduced
to the case where x = 1, which is obvious.)

It follows that any ‘u-submodule of .# % is contained in ./ ; hence so is the
sum of all proper 'u-submodules. Therefore .#% has a unique maximal ’u-
submodule /nh;ax; it is contained in .# . Hence F* = .# }l//ﬁu is a simple
'w-module. It satisfies (& g)o N& i) , # 0 this intersection contains the image
of 1.

Assume that 4’ € (Z/2])" satisfies (.‘Z!'-)0 n (.?!'-)h, # 0 and let X be a
nonzero vector in this intersection. We can find x € (# h) p such that x — X

under the canonical map £ b, ot Clearly X generates Ztoasa 'u-
module, hence ‘v -x+#L = #% If h' # h then x € # ,hence 'u™-x €4 ;
we have also leu c A , hence the previous sum is contained in A . This
contradiction shows that ' = h .

In particular, we see that & % and & 3 are isomorphic as 'u-modules if and
onlyif h=4h'.
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Now let M be any simple 'u-module. Choose % as in Lemma §5.10(b) and
choose x € M° NM,, x # 0. Then 'w - M, & — &x, factors through

a nonzero 'u-module homomorphism ¢ : .#° b _, M. Since M is simple, ¢
must be onto and must vanish on /lnh;ax . Hence ¢ defines a surjective ho-

momorphisms ZE . M which is necessarily an isomorphism of 'u-modules.
This completes the proof.

5.12. The formulas in Proposition 4.8 define Hopf algebra structures on U,
Ug: , u, and ‘u.

6. RELATION WITH THE ALGEBRA U
6.1. Let Ki,t = Ki—’[K:;O] e U° (i €efl,n], t >20); and let U° be the

&/ -submodule of U® spanned by the elements [1._,K; , ,where t,>0.

i’

Lemma 6.2. (a) 0% isan & -subalgebra of U,
(b) For any integer m > 0, we have

K2 [m] == DHee=1)/2 . 0
" Z( 1) — i K, =K, (inU).
=0

Proof. From §2.3(g8) we see that for t >0 and ¢ > 1,

'

t - /

_ et~ lt+j~1 - [t+1

(C) Ki,tKi,t' = Z(‘l) v [ j ]Kz sz t'—j +v { t ]Ki,u—t"
Jj=1

This shows by induction on ¢ that K, K s € U° and (a) follows.

The proof of (b) is left to the reader.

6.3. We now fix /' and / as in §5.1 and assume that I' =1 is odd; # and
%' are as in §§5.1 and 5.7.

Lemma 6.4. (a) Assume t =1 +1'1, 0<¢ <I-1, ' >0. Then
R
Ki,z = Ki,z’Ki,t"l (inUg).
(b) The elements []._, K,.I's" M., K, , (t,20,6,€{0,1}) (of U;) form a
B-basis of Uy
Proof. (a) follows immediately from §2.3(g3) with ¢ and ¢ replaced by ¢/

and ¢ ; note that L
[’ L } 0 ingZ,

K;; —t"l K01 . o
[ t/ ]=[ lt/ ] ang.

We now prove (b). Let /# be the #-submodule of Ugog generated by the
elements in (b). From the identity Kizl =1 in Ug? and from Lemma 6.2(a) we

and
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see that # is a % -subalgebra of U; . By Lemma 6.2(b) with m = 1(/ - 1),
we have K, ..., K, € # . Hence .# contains also [%:0] = K;-Ki’t (t>0).

Since U; is generated as a %-algebra by the elements K, and [%:0] (1 <

i<n,t>0), it follows that .# contains U;, , hence M = U%, . It remains
to show that the elements in (b) are linearly independent. It is enough to show

that they are linearly independent over &’ in U;, .
For any sequence 7 = (£, ..., 7)) in N*,let U} be the &’'-subspace of

? Il
U%, spanned by the basis elements

u ’y n K0 [

(c) [JEs [1,,” ,} 0<t<1,8,€{0,1}).
i=1 i Lt

Clearly Ug = @,(,U%) and dim,( Ug:) =2"I".

Consider the 21 lements

X

(d) H K HK, ey (0<6<1,6,€{0,1})

for fixed 7. We will show that

(e) the elements (d) are contained in IUg,

This implies that the elements (c) for various 7 form a %'-basis of U %,
since we already know that they span U;,

Let %, be the &’-subspace of U%, spanned by the 2"/” elements []._, K}’
x T, Ki,u,” 0 <2).

From (a) we see that TU;, is contained in .#; for dimension reasons, we
must have U ;, = /¥, . From (a) we also see that the elements (d) are contained
in /_; hence they are contained in rU%, . The lemma is proved.

6.5. We note that the elements Kf -1, Ké -1, ..., K; —1 arecentralin Ug,
u, Ug, ‘u, since v'=1in & (we are using our assumption /' =/ = odd ).
Therefore the left ideal generated by these elements in one of our four rings is
a two-sided ideal; factoring out by this two-sided ideal we get respectively the
F-algebras Uy, i, and the F'-algebras Uy , il
We shall denote the images of E_, F_, etc. in (~Jg , 1, ffg, , 't by the same
letters. From the results in §5 and from Lemma 6.4(b) we deduce:
(a) the elements [] g F,,EN")H}";,K,-,,_ Mocr EiN;) (N,,N.,t, > 0)
form a %B-basis of U, and a Z'-basis of (79, )
(b) The elements [T . F\"* [T, K, § HaemEN) (O<N,, N

a’l

<0
form a %-basis of ii and a B’ -ba51s of 'ii.
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In particular, we have

Up®y B =Ugy, 00,% =1,
ﬁCUg, ,ﬁCUgl

It is clear that U PR T U, Ug' » ‘% have natural Hopf algebra structure so that the

canonical maps U, — Ug, u—1i, Ug — Ug ,and 'u — & are compatible

with the comultiplication.

6.6. From the definition of 'ii, we see that the simple 'ti-modules may be

identified with the simple ‘u-modules in which K{ R Ké s eees K,[, act as identity.
Hence, using Proposition 5.11, we have a commutative diagram

set of simple 'ii-modules up to _~ @/

isomorphism
1 1

set of sin}ple 'w-modules up to =, (z/2)"

isomorphism 5.11
where j(h , ..., h) =(2h,, ..., 2hH,).
6.7. Let U, and UQ be the rings obtained from U by applying @ _, Z and
®, O, where Z and Q are regarded as & -algebras with v acting as 1. These
are special cases of U, and Uy in the case where [ = ' = 1. The definition of
§6.5 is applicable and gives two rings INJZ , (7Q = fJZ®Q obtained by dividing U,
and UQ by the left {or two-sided) ideal generated by K, -1, K,-1, ..., K, ~1.

Let U and UQ be as in §0.1.

(a) There is a unique Q-algebra homomorphism _UQ — (7Q such
that E,~E,, F,—F,, and Hi—EF,-FE, (1<i<n).

We must verify that the relations in §0.1(b1)~(b5) are preserved. The only
nontrivial verification is that of §0.1(b2).
In U, we have

K-k K -k
(v+1) (—————E -E. ;f'l)

v—-v v—-v

v—-v

v—1 o vT% -
+Ej(Ki—1)(l-v__1+K’- _i_:F .

This gives rise to an identity in (~/Q which shows that §0.1(b2) (for E ; ) is
preserved; an analogous argument applies to §0.1(b2) for F
The homomorphism (a) takes $H.(H,—1)---(H, - t+ 1)

(D 1) ()
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which by [9, 4.3] is equal to X g in I~JQ . Hence (a) takes a basis of TJ_Q given
by the Poincaré-Birkhoff-Witt theorem onto the basis of UQ given by §6.5(a)
(for / =1). It follows that
(b) the homomorphism (a) is an algebra isomorphism .

It is clear that (a) takes E—(N) to E(N ) and F —fN) to F; ™ | hence it defines an
isomorphism of the subring generated by the E; EM and F _(N)
generated by the EfN) and Fi . Thus

onto the subring

(c) the isomorphism (a) restricts to a ring isomorphism U = (72 .

It is clear that this is compatible with the comultiplications.

In the remainder of this section we assume that / and /' in §6.3 are both
equal to p, an odd prime. Applying &, F, ", 1o the isomorphism (c), we get an
Fp-algebra isomorphism:

(d) UFp =, ﬁFp, where U = U ®, F, and (~/Fp =U,®, F,.

Consider the ring homomorphism % — FI7 whichtakes z€ Z t0o zmod p € Fp
and v to 1. This is well defined since the value at 1 of the cyclotomic polynomial
d)p 1s p, hence is zero in Fp .

Let m be the kernel of & — F, (a maximal ideal of # ). Tensoring the

exact sequence 0 — m — Z — Fp — 0 with (~J$ or it over % we obtain
isomorphisms of F, -algebras:

(e) Uy/mUy = Uy @4 F,
® i/mi > iQg4 F,.

Let UFp =U®, Fp where v acts trivially on Fp . By definition,

(8)
{ Ug ®g F, = Uz modulo ideal generated by K} — 1, K5 -1, ..., K} -1,
P

U, = U, modulo ideal generated by K, — 1, K, -1, ..., K, ~ 1.

»

In U,, hence in UFp = U, ®; F,, we have K,.2 =1 (since K, — Ki_1 =
(v—-v"")[K:°] = 0). It follows that K’ —~1 =K, -1 in Ur, and from (g) we
obtain an Fp-algebra isomorphism
(h) Up®g F, = Uy

The subalgebra @ of _UFp (see §0.1) and the subalgebra i® F, of Ug ®F,

are mapped by (d) and (h) onto the same subalgebra of U ¢ » hamely the one
spanned as an F -vector space by the elements

HF”)HK,, [MEY™ ©<N,N,.t,<p).

a€R* aER*
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Combining these two maps we obtain an isomorphism of F,-algebras

(1)

ﬁ®Fp-l»ﬁ.

Using (d), (h), (e), (f), and (i) we obtain the following result.

Theorem 6.8. There are canonical (Hopf algebra) isomorphisms

Ug/mU, = Ur, » i/mit = 1.

(Here the left-hand sides are defined in terms of quantum groups and the right-

hand
6.9.

sides are classical algebras.)

From Theorem 6.9 and §§6.5(b) and 6.6, we see easily that the assertions

in §0.3 hold.

10.
11,

12.
13.

14.

15.
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