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Abstract It is shown that Nichols algebras over alternating groups Am (m ≥ 5) are infi-
nite dimensional. This proves that any complex finite dimensional pointed Hopf algebra
with group of group-likes isomorphic to Am is isomorphic to the group algebra. In a sim-
ilar fashion, it is shown that the Nichols algebras over the symmetric groups Sm are all
infinite-dimensional, except maybe those related to the transpositions considered in Fomin
and Kirillov (Progr Math 172:146–182, 1999), and the class of type (2, 3) in S5. We also
show that any simple rack X arising from a symmetric group, with the exception of a small
list, collapse, in the sense that the Nichols algebra B(X,q) is infinite dimensional, q an
arbitrary cocycle.
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226 N. Andruskiewitsch et al.

1 Introduction

1.1. In the early 90’s, S. Montgomery raised the question of finding a non-trivial finite-
dimensional complex pointed Hopf algebra H with non-abelian group G; here “non-trivial”
means that H is neither a group algebra, nor is cooked out of a pointed Hopf algebra with
abelian group by some kind of extension. This question was addressed by A. Milinski and
H.-J. Schneider around 1995, who produced two examples, one with G = S3, another with
G = S4. The main point was to check that a quadratic algebra Bm built from the conjugacy
class of transpositions in Sm is finite-dimensional. They were able to do it for m = 3, 4
using Gröbner bases. These results were published later in [27]. Independently, S. Fomin
and K. N. Kirillov considered closely related quadratic algebras Em , also constructed from
the transpositions in Sm , and they determined the dimensions of E3,E4 and E5 [14]. With
the introduction of the Lifting method, see [9], it became clear that Bm and Em should be
Nichols algebras. This was indeed checked in [27] for m = 3, 4 and by the third named
author for m = 5 [19].

1.2. In this paper, we work over the field C of complex numbers. If G denotes a finite group,
to classify all complex pointed Hopf algebras H with group of group-likes G(H) � G and
dim H < ∞, we need to determine the irreducible Yetter-Drinfeld modules over CG such
that the dimension of the corresponding Nichols algebras is finite. In other words, recalling
that irreducible Yetter-Drinfeld modules are parameterized by pairs (O, ρ)–O a conjugacy
class of G, σ ∈ O fixed, ρ an irreducible representation of the centralizer CG(σ )—and denot-
ing by B(O, ρ) the associated Nichols algebra, we need to know for which pairs (O, ρ) is
dim B(O, ρ) < ∞. Assume that G = Sm . Then Bm and Em correspond to O = Om

2 , the con-
jugacy class of the transpositions, andρ the one-dimensional representations of the centralizer
� Sm−2 × S2, ρ = ε ⊗ sgn or ρ = sgn ⊗ sgn respectively. If m ≥ 6, it is still open whether:

• Bm and Em are Nichols algebras,
• the dimensions of Bm and Em are finite,
• the dimensions of B(Om

2 , sgn j ⊗ sgn), j = 1, 2 are finite.

1.3. Recently, there was some progress on pointed Hopf algebras over Sm :

• The classification of the finite-dimensional Nichols algebras over S3, respectively, S4, is
concluded in [7].

• The classification of finite-dimensional pointed Hopf algebras with group S3, respectively,
S4, is concluded in [7], resp. [20].

• Most of the Nichols algebras B(O, ρ) over Sm have infinite dimension, with the exception
of a short list of open possibilities [1,5].

Our first main result adjusts drastically the list given in [5, Th. 1]. See §4.1 for the unex-
plained notation.

Theorem 1.1 Let m ≥ 5. Let σ ∈ Sm be of type (1n1 , 2n2 , . . . ,mnm ), let O be the conjugacy
class of σ and let ρ = (ρ, V ) ∈ ĈSm (σ ). If dim B(O, ρ) < ∞, then the type of σ and ρ are
in the following list:

(i) (1n1 , 2), ρ1 = sgn or ε, ρ2 = sgn.
(ii) (2, 3) in S5, ρ2 = sgn, ρ3 = −→χ0 .

(iii) (23) in S6, ρ2 = −→χ1 ⊗ ε or −→χ1 ⊗ sgn.

Actually, the rack O2 in S6 is isomorphic to O23 , since any map in the class of the outer
automorphism of S6 applies (1 2) in (1 2)(3 4)(5 6) [26]. Thus, case (iii) is contained in (i).
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Finite-dimensional pointed Hopf algebras with alternating groups are trivial 227

The remaining cases can not be treated by consideration of Nichols algebras of subracks, see
Remark 4.2.

1.4. The main results in this paper are negative, in the sense that they do not provide any new
example of finite-dimensional pointed Hopf algebra. In fact, very few examples of finite-
dimensional non-trivial pointed Hopf algebras with non-abelian group are known, see [19];
at the present moment, it is not clear what is the class of non-abelian finite groups that may
afford finite-dimensional pointed Hopf algebras. Therefore, it is important to narrow down
as many examples as possible in order to have a feeling of what this class might be. Here is
our second main result.

Theorem 1.2 Let G = Am,m ≥ 5. If O is any conjugacy class of G, σ ∈ O is fixed and
ρ ∈ ĈG(σ ), then dim B(O, ρ) = ∞.

In order to state the consequences of this result for pointed Hopf algebras, it is convenient
to introduce the following terminology.

Definition 1.3 We shall say that a finite group G collapses if for any finite-dimensional
pointed Hopf algebra H , with G(H) � G, necessarily H � CG.

Let G be a finite group. The category of Yetter-Drinfeld modules over the group alge-
bra CG is written CG

CGYD. The following result is a well-known consequence of the Lifting
Method [9]; we sketch a proof for the sake of the generic reader. See [9] for more details and
unexplained notation.

Lemma 1.4 The following statements are equivalent:

(1) If 0 �= V ∈ CG
CGYD, then dim B(V ) = ∞.

(2) If V ∈ CG
CGYD is irreducible, then dim B(V ) = ∞.

(3) G collapses.

Proof (Sketch). (1) 	⇒ (2) is clear; (2) 	⇒ (1) because any finite-dimensional V ∈ CG
CGYD

contains an irreducible submodule. (3) 	⇒ (1): If 0 �= V ∈ CG
CGYD has dim B(V ) < ∞,

then H := B(V )#CG is a finite-dimensional pointed Hopf algebra with G(H) � G but
H �� CG.

(1) 	⇒ (3): Let H be a pointed Hopf algebra with G(H) � G. Let gr H be the graded
Hopf algebra associated to the coradical filtration of H . It is known that gr H � R#CG,
where R = ⊕n≥0 Rn is a graded Hopf algebra in the braided category CG

CGYD; that R0 = C

and V = R1 coincides with the space P(R) of primitive elements in R; and that the Nichols
algebra B(V ) is isomorphic to the subalgebra of R generated by R1. Let n be the lowest
positive integer with Rn �= 0; clearly, Rn ⊂ P(R). Hence, R �= C implies V = R1 �= 0.
Now assume that H is finite-dimensional; then R and a fortiori B(V ) are finite-dimensional.
Hence V = 0 by hypothesis, R = C by the preceding argument, and H � gr H � CG. �
We conclude from Theorem 1.2:

Theorem 1.5 If m ≥ 5, then the alternating group Am collapses.

This result was known for the particular cases m = 5 and m = 7 [2,13]. We prove it
for m ≥ 6. Since A3 is abelian, finite dimensional Nichols algebras over it are classified,
there are 25 of them; this can be deduced from [8, Th. 1.3], [10, Th. 1.8]. Nichols algebras
over A4 are infinite-dimensional except for four pairs corresponding to the classes of (1 2 3)
and (1 3 2) and the non-trivial characters of Z/3 [2, §2.2]. Actually, these four algebras are

123



228 N. Andruskiewitsch et al.

connected to each other either by an outer automorphism of A4 or by the Galois group of
Q(ζ3)|Q (the cyclotomic extension by third roots of unity). Therefore, there is only one pair
to study for A4.

1.5. Our ultimate goal, towards the classification of finite-dimensional pointed Hopf algebras,
is to answer the following question.

Question 1 For any finite group G and for any V ∈ CG
CGYD, determine if dim B(V ) < ∞.

Since the category CG
CGYD is semisimple, the question splits into two cases:

(i) V irreducible,
(ii) V completely reducible, i.e. direct sum of (at least 2) irreducibles.

Case (i) was addressed in several recent papers for some groups and some conjugacy
classes [1–3,5,11,15,16]; case (ii) was considered in [7,24]. Of course, the Nichols algebras
of the simple submodules of a completely reducible V such that B(V ) is finite-dimensional,
should be finite-dimensional too. But the interaction between the two cases goes also in the
other way. To explain this, we need to recall that Question 1 can be rephrased in terms of
racks. Indeed, the Nichols algebra of a Yetter-Drinfeld module depends only on its braiding,
which in the case of a group algebra is defined in terms of the conjugation. A rack is a set with
a binary operation satisfying the basic properties of the conjugation in a group (see Sect. 2.3
below). Then Question 1 is equivalent to the following one, see [6].

Question 2 For any finite rack X, for any n ∈ N, and for any non-principal 2-cocycle q as
in page 231, determine if dim B(X,q) < ∞.

In fact, the consideration of Question 2 is more economical than the consideration of
Question 1, since different Yetter-Drinfeld modules over different groups may give rise to
the same pair (X,q), X a rack and q a 2-cocycle. This point of view, advocated in [6,18],
is analogous to the similar consideration of braided vector spaces of diagonal type in the
classification of finite-dimensional pointed Hopf algebras with abelian group.

The consideration of Question 2 has another advantage. A basic and useful property of Nic-
hols algebras says that, if W is a braided subspace of a braided vector space V , then the Nichols
algebra B(W ) is contained in the Nichols algebra B(V ). For instance, consider a simple V =
M(O, ρ) ∈ CG

CGYD—say dim ρ = 1 for simplicity. If X is a proper subrack of O, then M(O, ρ)
has a braided subspace of the form W = (CX, cq), which is clearly not a Yetter-Drinfeld
submodule but can be realized as a Yetter-Drinfeld module over smaller groups, that could
be reducible if X is decomposable. If we know that dim B(X, q) = ∞, say because we have
enough information on one of these smaller groups, then dim B(O, ρ) = ∞ too.

Both Questions have the common drawback that there is no structure theorem neither for
finite groups nor for finite racks. Therefore, and in order to collect evidence about what groups
or what racks might afford finite-dimensional Nichols algebras, it is necessary to attack dif-
ferent classes of groups or of racks. Prominent candidates are the finite simple groups and
the finite simple racks. Finite simple racks have been classified in [6, Th. 3.9, Th. 3.12] (see
also [25]); explicitly, any simple rack is isomorphic to one and only one of the following:

(i) |X | = p a prime, X � Fp a permutation rack, that is x � y = y + 1.
(ii) |X | = pt , p a prime, t ∈ N, X � (Fp

t , T ) is an affine crossed set where T is the
companion matrix of a monic irreducible polynomial of degree t , different from X
and X − 1.
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Finite-dimensional pointed Hopf algebras with alternating groups are trivial 229

(iii) |X | is divisible by at least two different primes, and X is twisted homogeneous. That
is, there exist a non-abelian simple group L , a positive integer t and x ∈ Aut(Lt ),
where x acts by x · (l1, . . . , lt ) = (θ(lt ), l1, . . . , lt−1) for some θ ∈ Aut(L), such that
X = Ox (n) is an orbit of the action ⇀x of N = Lt on itself (n �= m−1 if t = 1 and x
is inner, x(p) = mpm−1). Furthermore, L and t are unique, and x only depends on its
conjugacy class in Out(Lt ). Here, the action⇀x is given by p ⇀x n = p n (x · p−1).

In particular, non-trivial conjugacy classes in finite simple groups, and conjugacy classes
in symmetric groups of elements not in the alternating subgroup are simple racks. Therefore,
it is natural to begin by families of simple groups.

1.6. To prove Theorems 1.1 and 1.2, we first establish Theorem 4.1, namely that
dim B(X, q) = ∞ for many conjugacy classes X in Sm or Am and any cocycle q . This
relies on a result on Nichols algebras of reducible Yetter-Drinfeld modules [24, Th. 8.6], this
paper being a sequel to, and based on the results of, [7]. Indeed, let us say (informally) that
a rack collapses if dim B(X, q) = ∞ for any cocycle q; see the precise statement of this
notion in Def. 2.2. To translate one of the hypothesis of [24, Th.8.6] to rack-theoretical terms,
we introduce the notion of rack of type D. We deduce from [24, Th.8.6] our Th. 3.6, that says
that any rack of type D collapses. It is easy to see that if π : Z → X is an epimorphism of
racks and X is of type D, then so is Z . But any indecomposable rack Z has a simple quotient
X ; this justifies further why we look at simple racks, starting with non-trivial conjugacy
classes in simple groups. This is one of the consequences of the study of Nichols algebras of
decomposable Yetter-Drinfeld modules in the analogous study of indecomposable ones. We
stress that the computation of a second rack-cohomology group is a difficult task. By [12], it
coincides with a first group-cohomology group, but this does not make the problem easier.
Two of us have developed a program for calculations with racks, that in particular computes
the rack-cohomology groups [21]. The point of view taken in this article allows to disregard
sometimes these considerations.

Actually, we give in Th. 4.1 a list of conjugacy classes in Sm or Am which are of type D;
hence, if X belongs to this list and π : Z → X is an epimorphism of racks, then the Nichols
algebra B(Z , q) has infinite-dimension for an arbitrary cocycle q .

To consider the cases left open in Th. 4.1 we use techniques of abelian subracks from our
previous papers—see Lemma 4.4.

The paper is organized as follows. After Sect. 2 with Preliminaries, we present our appli-
cations of [24, Th. 8.6] in Sect. 3. In Sect. 4 we prove Th. 4.1 and then complete the proofs
of Ths. 1.1 and 1.2.

1.7 Glossary

We have found useful to introduce several notations concerning racks and groups in relation
with the finite-dimensional Hopf algebras and Nichols algebras. We collect here these new
terms.

• A finite group G collapses1 if for any finite-dimensional pointed Hopf algebra H , with
G(H) � G, necessarily H � CG. Equivalently, for any 0 �= V ∈ CG

CGYD, dim B(V ) =
∞. See Def. 1.3, p. 227.

• A finite rack X collapses if for any finite faithful cocycle q, the Nichols algebra B(X,q)
is infinite dimensional. See Def. 2.2, p. 232.

• A finite rack X is of type B if it satisfies condition (B) in Lemma 2.3, p. 232.

1 This was referred to as of type B in [15].

123



230 N. Andruskiewitsch et al.

• A finite rack X is of type D if it contains a decomposable subrack Y = R
∐

S such that
r � (s � (r � s)) �= s, for some r ∈ R, s ∈ S.2 See Def. 3.5, p. 234.

• A finite group G is of type D if all its non-trivial conjugacy classes are of type D.
See [4].

2 Preliminaries

2.1 Notation

Let G be a group, σ ∈ G. We write |G|, respectively, |σ |, for the order of G, respectively,
σ ; Oσ = OG

σ for the conjugacy class of σ in G, with a superscript G if emphasis is needed.
Also, Ĝ is the set of isomorphism classes of irreducible representations of G. If X is a set,
CX is the vector space with a basis (ex )x∈X .

A braided vector space is a pair (V, c), where V is a vector space and c ∈ GL(V ⊗ V ) is
a solution of the braid equation: (c ⊗ id)(id ⊗c)(c ⊗ id) = (id ⊗c)(c ⊗ id)(id ⊗c). If (V, c)
is a braided vector space, then B(V ) denotes its Nichols algebra. See [9, p. 22].

2.2 Yetter-Drinfeld modules

Let G be a group. A Yetter-Drinfeld module over the group algebra CG is a G-module M
provided with a G-grading M = ⊕g∈G Mg such that h · Mg = Mghg−1 for all g, h ∈ G. The

category CG
CGYD of Yetter-Drinfeld modules over the group algebra CG is a braided category;

in particular any M ∈ CG
CGYD is a braided vector space with c ∈ GL(M ⊗ M) given by

c(m ⊗ n) = g · n ⊗ m, for m ∈ Mg (g ∈ G), n ∈ M. (1)

The support of M ∈ CG
CGYD is supp M = {g ∈ G : Mg �= 0}.

Assume that G is finite. Then the category CG
CGYD is semisimple and its irreducible objects

are parameterized by pairs (O, ρ), where O is a conjugacy class of G, σ ∈ O fixed, ρ an
irreducible representation of the centralizer CG(σ ) of σ . If M(O, ρ) denotes the irreducible
Yetter-Drinfeld module corresponding to a pair (O, ρ) and V is the vector space affording
the representation ρ, then M(O, ρ) is the induced module IndG

CG (σ )
ρ with the grading given

by the identification IndG
CG (σ )

ρ = CG ⊗CG (σ ) V � CO ⊗C V . If σ ∈ G and ρ ∈ ĈG(σ ),
then ρ(σ ) is a scalar denoted qσσ . The Nichols algebra of M(O, ρ) is denoted B(O, ρ).

Notice that M(O, ρ) can be defined and is a Yetter-Drinfeld module for any representation
ρ of CG(σ ).

2.3 Racks

We briefly recall the definition and main properties of racks; see [6] for details, more infor-
mation and bibliographical references.

A rack is a pair (X, �) where X is a non-empty set and � : X × X → X is an operation
such that

the map ϕx = x � is invertible for any x ∈ X, and (2)

x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ X. (3)

2 Here D stands for decomposable, and B for the class that produces nothing.
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Finite-dimensional pointed Hopf algebras with alternating groups are trivial 231

A morphism of racks is a map of the underlying sets f : X → Y such that f (x � y) =
f (x) � f (y) for all x, y ∈ X . Note that for any rack X , the map ϕ : X → SX given by
x �→ ϕx as defined above, is a morphism of racks. Really, there is an hierarchy

{racks} ⊃ {quandles} ⊃ {crossed sets},
where a quandle is a rack X such that x �x = x for all x ∈ X ; and a crossed set is a quandle X
such that x � y = y implies y � x = x , for any x, y ∈ X . The permutation rack mentioned in
page 228, class (i) of the classification, is not a quandle. We are only interested in conjugacy
classes and their subracks, which are all crossed sets.

Here are some examples and basic notions of racks.

• A group G is a rack (actually, a crossed set) with x � y = xyx−1, x, y ∈ G. Furthermore,
if X ⊂ G is stable under conjugation by G, that is a union of conjugacy classes, then it
is a subrack of G; e. g., the support of any M ∈ CG

CGYD is a subrack of G.
• If A is an abelian group and T ∈ Aut(A), then A becomes a rack with x � y =

(1 − T )x + T y. It will be denoted by (A, T ) and called an affine rack.
• A rack X is decomposable iff there exist disjoint subracks X1, X2 ⊂ X such that

Xi � X j = X j for any 1 ≤ i, j ≤ 2 and X = X1
∐

X2. Otherwise, X is indecom-
posable.

• A decomposition of a rack X is a family (Xi )i∈I of pairwise disjoint subracks of X such
that X = ∐

i∈I Xi and X � Xi = Xi for all i ∈ I .
• A rack X is said to be simple iff card X > 1 and for any surjective morphism of racks

π : X → Y , either π is a bijection or card Y = 1.

2.4 Cocycles

Let X be a rack, n ∈ N. A map q : X × X → GL(n,C) is a principal 2-cocycle of degree
n if

qx,y�zqy,z = qx�y,x�zqx,z,

for all x, y, z ∈ X . Here is an equivalent formulation: let V = CX ⊗ C
n and consider the

linear isomorphism cq : V ⊗ V → V ⊗ V ,

cq(exv ⊗ eyw) = ex�yqx,y(w)⊗ exv,

x, y ∈ X, v, w ∈ C
n . Then q is a 2-cocycle iff cq is a solution of the braid equation. If this

is the case, then the Nichols algebra of (V, cq) is denoted B(X, q).
More generally, let (Xi )i∈I be a decomposition of a rack X and let n = (ni )i∈I be a

family of natural numbers. Then a non-principal 2-cocycle of degree n, associated to the
decomposition (Xi )i∈I , is a family q = (qi )i∈I of maps qi : X × Xi → GL(ni ,C) such that

qi (x, y � z)qi (y, z) = qi (x � y, x � z)qi (x, z), (4)

for all x, y ∈ X, z ∈ Xi , i ∈ I . Again, this notion is related to braided vector spaces. Given a
family q, let V = ⊕i∈I CXi ⊗C

ni and consider the linear isomorphism cq : V ⊗V → V ⊗V ,

cq(exv ⊗ eyw) = ex�yqi (x, y)(w)⊗ exv,

x ∈ X j , y ∈ Xi , v ∈ C
n j , w ∈ C

ni . Then q is a 2-cocycle iff cq is a solution of the braid
equation. If this is the case, then the Nichols algebra of (V, cq) is denoted B(X,q).

Let X be a rack, q a non-principal 2-cocycle and V as above. Define a map g : X → GL(V )
by
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232 N. Andruskiewitsch et al.

gx (eyw) = ex�yqi (x, y)(w), x ∈ X, y ∈ Xi , i ∈ I. (5)

Note that g : X → GL(V ) is a morphism of racks.
The next result shows why Nichols algebras associated to racks and cocycles are impor-

tant for the classification of pointed Hopf algebras. It says that Questions 1 and 2 in the
Introduction are indeed equivalent.

Theorem 2.1 [6, Th. 4.14]

(i) Let X be a finite rack, (Xi )i∈I a decomposition of X,n ∈ N
I and q a 2-cocycle as

above. If G ⊂ GL(V ) is the subgroup generated by (gx )x∈X , then V ∈ CG
CGYD. If the

image of qi generates a finite subgroup of GL(ni ,C) for all i ∈ I , then G is finite.
(ii) Conversely, if G is a finite group and V ∈ CG

CGYD, then there exist a rack X, a decom-
position X = ∐

i∈I Xi ,n ∈ N
I and non-principal 2-cocycle q such that V is given as

above and the braiding c ∈ Aut(V ⊗ V ) in the category CG
CGYD coincides with cq.

If X is indecomposable, then there is only one possible decomposition and only principal
2-cocycles arise. Conversely, the proof of [6, Th. 4.14] shows that if V ∈ CG

CGYD as in part
(ii) is irreducible, then the cocycle q is actually principal.

For an easy way of reference, we shall say that a cocycle q is finite if the image of qi

generates a finite subgroup of GL(ni ,C) for all i ∈ I .
Parallel to the approach to the classification of finite-dimensional pointed Hopf algebras

group-by-group, we envisage the approach to the classification of finite-dimensional Nichols
algebras rack-by-rack. It is then natural to introduce the following terminology.

Let X be a finite rack and q a 2-cocycle. First, we shall say that (X,q) is faithful if the
morphism of racks g : X → GL(V ) defined in (5) is injective; if X is clear from the context,
we shall also say that q is faithful. Recall that a rack X is faithful if ϕ : X → SX is injective
[6, Def. 1.11]; clearly, if X is faithful, then (X,q) is faithful for any q.

Definition 2.2 We shall say that a finite rack X collapses if for any finite faithful cocycle q
(associated to any decomposition of X and of any degree n), dim B(X,q) = ∞.

Here is a useful reformulation of the preceding definition.

Lemma 2.3 Let X be a finite rack. Assume that

(B) For any finite group G and any M ∈ CG
CGYD such that X is isomorphic to a subrack of

supp M, dim B(M) = ∞.

Then X collapses. The converse is true if X is faithful.

Proof Assume (B). Let q be a finite faithful cocycle. By Th. 2.1 (i), the braided vector space
(V, cq) arises from a Yetter-Drinfeld module over a finite group �; since q is faithful, X can
be identified with supp V .

Now assume that X is faithful and collapses. Let G,M as in (B). The rack Y constructed
in Th. 2.1 (ii) is Y = ∐

i∈I Oi , where M = ⊕i∈I Mi is a decomposition in irreducible sub-
modules and Oi = supp Mi . In general, supp M �= Y , but there is an injective morphism
of racks supp M ↪→ Y , which induces an injective morphism of racks X ↪→ Y . Since X is
faithful, the restriction of the cocycle q on Y to X is a cocycle on X whence it is faithful.
Finally observe that B(X,q|X ) can be embedded in B(M). �
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Finite-dimensional pointed Hopf algebras with alternating groups are trivial 233

3 Techniques

From now on, we shall consider any group G as a rack with the operation given by conjuga-
tion.

3.1 The technique of a suitable subgroup

If W is a braided subspace of a braided vector space V , then B(W ) ↪→ B(V ) [9, Cor. 2.3].
Let G be a group, M ∈ CG

CGYD. Here are two ways of getting braided subspaces of M :

• If Y is a subrack of supp M , then MY := ⊕y∈Y My is a braided subspace of M .
• Let H be a subgroup of G and let σ ∈ H . If ρ is a representation of CG(σ ), then

M(OH
σ , ρ|CH (σ )) is a braided subspace of M(OG

σ , ρ).

These ways are actually closely related by the following result.

Lemma 3.1 If Y is a subrack of supp M and K is the subgroup of G generated by Y , then
MY is an object in CK

CK YD.

Proof By construction, MY is K -graded. Furthermore, if k ∈ K and y ∈ Y , then k · My =
Mk�y ⊂ MY since Y is closed under conjugation by K . �

Assume now that G is a finite group, and let σ, ρ and H be as above. Then ρ|CH (σ ) =
τ1 ⊕ · · · ⊕ τs where τ j ∈ ĈH (σ ), 1 ≤ j ≤ s. Therefore, we have the following criterium.

Lemma 3.2 Keep the notation above.

(i) If dim B(OH
σ , λ) = ∞ for all λ ∈ ĈH (σ ), then dim B(OG

σ , ρ) = ∞ for all ρ ∈ ĈG(σ ).
(ii) Let σ1, σ2 ∈ OG ∩ H. Let Oi = OH

σi
and assume that O1 �= O2. If dim B(M(O1, λ1)⊕

M(O2, λ2)) = ∞ for all pairs λ1 ∈ ĈH (σ1), λ2 ∈ ĈH (σ2), then dim B(OG , ρ) = ∞
for all ρ ∈ ĈG(σ ).

3.2 The splitting technique

We begin by stating the following result of Heckenberger and Schneider, whose proof uses
the main Theorem of [7].

Theorem 3.3 [24, Th. 8.6 (1)] Let G be a finite group, M(O, ρ),M(O′, ρ′) irreducible
objects in CG

CGYD such that dim B(M(O, ρ) ⊕ M(O′, ρ′)) < ∞. Then for all r ∈ O, s ∈
O′, (rs)2 = (sr)2.

We use the previous Theorem as in the following Proposition.

Proposition 3.4 Let G be a finite group and O a conjugacy class in G. Assume that there
exist σ1, σ2 in O such that (σ1σ2)

2 �= (σ2σ1)
2. If there exists a subgroup H such that σ1 and

σ2 are not conjugate in H, then B(O, ρ) = ∞.

Proof It follows by Theorem 3.3 and Lemma 3.2 (ii). �
We now aim to state a rack-theoretical version of Prop. 3.4. Let G be a group, r, s ∈ G.

Then (rs)2 = (sr)2 ⇐⇒ r � (s � (r � s)) = s. We next introduce a notion that is central in
our considerations.
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Definition 3.5 Let (X, �) be a rack. We say that X is of type D if there exists a decomposable
subrack Y = R

∐
S of X such that

r � (s � (r � s)) �= s, for some r ∈ R, s ∈ S. (6)

Here D stands for ‘a rack with a decomposable subrack satisfying (6)’.

Theorem 3.6 If X is a finite rack of type D, then X collapses.

Proof We shall prove that X is, more generally, of type B as in Lemma 2.3. Let Y ⊆ X, Y =
R

∐
S a decomposition as in Definition 3.5. Let G be a finite group, M ∈ CG

CGYD such that
X is isomorphic to a subrack of supp M . We identify X to this subrack, and then we can take
MR and MS , which are non trivial objects in CK

CK YD, K the subgroup of G generated by Y .
We may assume that MR and MS are irreducible; otherwise, we replace them by irreducible
submodules. Now, dim B(MR ⊕ MS) = ∞ by Th. 3.3, and then dim B(M) = ∞. �

Being of type D is an ubiquitous notion:

(i) If Y ⊆ X is a subrack of type D, then X is of type D.
(ii) If Z is a finite rack and admits a rack epimorphism π : Z → X , where X is of type D,

then Z is of type D. For, π−1(Y ) = π−1(R)
∐
π−1(S) is a decomposable subrack of

Z satisfying (6).

Let now X be any finite rack. If some indecomposable component [6, Prop. 1.17] is of type
D, then X is of type D. Assume then that X is indecomposable; then it admits a projection
of racks π : X → Y with Y simple. Thus, it is of primary interest to solve the following
problem.

Question 3 Determine all simple racks of type D.

In this paper we consider simple racks arising as conjugacy classes of the alternating or
symmetric groups. In subsequent papers, we shall investigate other simple racks; our paper
[4] is devoted to conjugacy classes in sporadic groups.

Here are some useful observations to detect conjugacy classes of type D.

Lemma 3.7 (a). If X is of type D and Z is a quandle, then X × Z is of type D.
(b). Let K be a subgroup of a finite group G, τ ∈ K and κ ∈ CG(K ). We consider the map

Rκ : K → G, g �→ g̃ := gκ . Then the conjugacy class O of τ computed in K can be
identified with a subrack of the conjugacy class Õ of τ̃ in G. Therefore, if O is of type
D, then Õ is of type D.

Proof (a). If r, s ∈ X and z ∈ Z , then (r, z) � (s, z) = (r � s, z) because Z is a quandle. The
rest is straightforward. (b) follows because the map Rκ is a morphism of racks. �

We need the following definition to state our next result.

Definition 3.8 Let G be a finite group, O a conjugacy class in G, σ ∈ O. Classically, σ ∈ G
and O are real if σ−1 ∈ O. If σ is conjugated to σ j �= σ for some j ∈ N, then we say that σ
and O are quasi-real of type j . Clearly, any real σ , which is not an involution, is quasi-real
of type |σ | − 1.

Proposition 3.9 Let G be a finite group and g = τκ ∈ G, where τ and κ �= e commute. Let
K = CG(κ) � τ ; then κ ∈ CG(K ). Hence, the conjugacy class O of τ in K can be identified
with a subrack of the conjugacy class Õ of g in G via the morphism Rκ as in the preceding
example. Assume that
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• Õ and O are quasi-real of type j ,
• the orders N of τ and M of κ are coprime,
• M does not divide j − 1,
• there exist r0, s0 ∈ O such that r0 � (s0 � (r0 � s0)) �= s0.

Then Õ is of type D.

Proof Observe first that (κ j x) � (κh y) = κh(x � y) for any x, y ∈ K , j, h ∈ Z. Let
R = Rκ (O), S = Rκ j (O); R and S are subracks of Õ by Lemma 3.7. For,

S = Rκ j (O)
O quasi-real= Rκ j (O

K
τ j ) = OK

τ jκ j ⊆ OG
τ jκ j

Õ quasi-real= Õ.

We next claim that R and S are disjoint. Indeed, if z = κx = κ j y, where x, y ∈ O,
then the order of κ j−1 = xy−1 divides both N and M (note that x and y commute); hence
κ j−1 = e, a contradiction. Now r = κr0 ∈ R, s = κ j s0 ∈ S satisfy (6). �
Remark 3.10 Theorem 3.6 generalizes [3, Cor. 4.12]. Indeed, if O is the octahedral rack and
O(2) is a disjoint union of two copies of O, see [3], then O(2) is of type D. For the other
techniques in [3], see Example 3.18.

3.3 Some constructions of racks

We now present a general construction that might be of independent interest. Let X be a rack,
with operation x � y = ϕx (y), and let j an integer. Let X [ j] be a disjoint copy of X , with a
fixed bijection X → X [ j], x �→ x [ j], x ∈ X . We define a multiplication � in X [ j] by

x [ j] � y[ j] = (ϕ
j
x (y))

[ j], x, y ∈ X. (7)

Notice that X [ j][k] � X [ jk], for j, k ∈ Z\{0}.
Lemma 3.11 (i) X [ j] is a rack, called the j-th power of X.

(ii) The disjoint union X [1, j] of X and X [ j] with multiplication such that X and X [ j] are
subracks, and

x � y[ j] = (x � y)[ j], x [ j] � y = ϕ
j
x (y), x, y ∈ X, (8)

is a rack.

X [1, j] is a particular case of an amalgamated sum of racks. The rack X [−1] will be called
the inverse rack of X and will be denoted X ′; the corresponding bijection is denoted x �→ x ′.
Note X ′′ � X . The rack X [1,1] will be denoted X (2) in accordance with [3].

Proof We first show (i) for j = −1. The self-distributivity (3) holds iff ϕxϕy = ϕx�yϕx

for all x, y ∈ X , iff ϕ−1
ϕ−1

x (u)
ϕ−1

x = ϕ−1
x ϕ−1

u for all x, u ∈ X (setting u = x � y); this is

in turn equivalent to the self-distributivity for X ′. We next show (i) for j ∈ N. We check
inductively that ϕxϕ

j
y = ϕ

j
x�yϕx , ϕ

j
xϕy = ϕ

ϕ
j
x (y)

ϕ
j
x . Hence ϕ j

xϕ
j
y = ϕ

j

ϕ
j
x (y)

ϕ
j
x , and we have

self-distributivity for X [ j]. Combining these two cases, we see that self-distributivity holds
for X [ j], for any j ∈ Z\{0}. The proof of (ii) is straightforward. �
Example 3.12 Let j ∈ Z\{0}. Assume that X is a subrack of G such that the map η j : X →
G, x �→ x j , is injective. Then the image X j of η j is also a subrack, isomorphic to the rack
X [ j]. If X ∩ X j = ∅, then the disjoint union X ∪ X j is a subrack of G isomorphic to X [1, j].
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3.4 Affine double racks

Let (A, T ) be a finite affine rack, see page 231. We realize it as a conjugacy class in the
following way. Let d = |T |. Consider the semidirect product G = A � 〈T 〉. The conjugation
in G gives

(v, T h) � (w, T j ) = (T h(w)+ (id −T j )(v), T j ). (9)

Let Q j
A,T := {(w, T j ) : w ∈ A}, j ∈ Z/d , a subrack of G isomorphic to the affine

rack (A, T j ). Let Q[1, j]
A,T be the disjoint union Q1

A,T ∪ Q j
A,T , j ∈ Z/d; this is a rack with

multiplication (9); it is called an affine double rack. If j �= 1, it can be identified with a
subrack of G.

Remark 3.13 If ( j)T = ∑ j−1
i=0 T i is an isomorphism, then Q j

A,T � (Q1
A,T )

[ j]. Indeed, the

map (Q1
A,T )

[ j] → Q j
A,T , (v, T ) �→ (v, T ) j = (( j)T v, T j ), is a rack isomorphism. Hence,

Q[1, j]
A,T is isomorphic to (Q1

A,T )
[1, j], cf. Lemma 3.11.

Let AT = ker(id −T ) be the subgroup of points fixed by T .

Remark 3.14 Assume that AT = 0. Then QA,T = Q1
A,T is indecomposable and it does not

contain any abelian subrack with more than one element.

For, assume that QA,T = R
∐

S is a decomposition, with (0, T ) ∈ R. But then R �
(v, T ) � (0, T ) = ((id −T )(v), T ) for any v ∈ A; since id −T is bijective, QA,T = R. The
second claim follows at once from (9).

Lemma 3.15 Let j ∈ Z/d. The rack Q[1, j]
A,T is of type D, provided that

(id +T j+1)(id −T ) �= 0. (10)

Proof Let R = Q1
A,T , S = Q j

A,T , r = (0, T ) ∈ R. Then Q[1, j]
A,T = R

∐
S. We check (6).

Pick v /∈ ker(id +T j+1)(id −T ) and s = (v, T j ) ∈ S. Then

r � (s � (r � s)) = ((T − T j+1 + T j+2)(v), T j ) �= s,

since (id −T + T j+1 − T j+2)(v) �= 0. �
3.5 Applications of affine double racks

If X a rack that contains a subrack isomorphic to Q[1, j]
A,T , for some affine rack satisfying (10),

then X is of type D (therefore it collapses). We now present a way to check this hypothesis.
Recall the notion of quasi-real element of a finite group, see Definition 3.8.

Proposition 3.16 Let G be a finite group, O ⊂ G a conjugacy class which is quasi-real of
type j ∈ N. Let (A, T ) be an affine rack, and let ψ : A → O be a monomorphism of racks.
If id −T j is an isomorphism and id +T j+1 �= 0, then O is of type D.

Proof Since id −T j = (id −T )( j)T , both Remarks 3.13 and 3.14 apply. If Y = ψ(QA,T ),
then Y ∩ Y j = ∅. If not, pick y ∈ Y ∩ Y j , y = x j for some x ∈ Y . Then x = x j , because
Y does not contain any abelian subrack with more than one element. But this contradicts
the definition of quasi-real. Hence O contains a subrack isomorphic to Q1

A,T ∪ Q j
A,T by

Example 3.12, which is isomorphic to Q[1, j]
A,T by Remark 3.13. Now the statement follows

from Lemma 3.15. �
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Assume for the rest of this Subsection that (A, T ) is a simple affine rack; that is, A = F
t

p , p
a prime, and T ∈ GL(t,Fp)− {id} of order d , acting irreducibly.

In this context, Lemma 3.15 specializes as follows.

Lemma 3.17 If j ∈ Z/d, then Q[1, j]
A,T is of type D, provided that

j �=
{

d
2 − 1, if p is odd,

d − 1, if p = 2.
(11)

Proof Since T �= id is irreducible, (id +T j+1)(id −T ) = 0 implies T j+1 = − id. If p = 2,
then j + 1 = d; if p > 2, then j + 1 is the unique element of order 2 in Z/d , thus d is even
and j = d

2 − 1. In other words, (11) implies (10); hence Lemma 3.15 applies. �
Example 3.18 Let G be a finite group, O ⊂ G a conjugacy class which is quasi-real of
type j ∈ N. Let (A, T ) be an affine simple rack with |T | = d , and let ψ : A → O be a
monomorphism of racks. If j �= d

2 − 1 when p is odd, or if j �= d − 1 when p = 2, then O

is of type D. Notice that the first case in (11) always holds if d is odd or 2.

If A = Z/p, p a prime, and T has order 2, then Q1
A,T is called a dihedral rack and denoted

D p in accordance with [3, Def. 2.2]; thus Q[1,1]
A,T is denoted D

(2)
p . Therefore, the splitting tech-

nique includes (without having to resort to look for cocycles) the case of quasi-real orbits
containing a dihedral subrack [3, Cor. 2.9].

4 Simple racks from Sm and Am

4.1 Notations on symmetric groups

Let σ ∈ Sm . We say that σ ∈ Sm is of type (1n1 , 2n2 , . . . ,mnm ) if the decomposition of σ
as product of disjoint cycles contains n j cycles of length j , for every j, 1 ≤ j ≤ m. Let
A j = A1, j · · · An j , j be the product of the n j ≥ 0 disjoint j-cycles A1, j , . . . , An j , j of σ .
Then

σ = A1 · · · Am; (12)

we shall omit A j when n j = 0. The even and the odd parts of σ are

σe :=
∏

j even

A j , σo :=
∏

1< j odd

A j . (13)

Thus, σ = A1σeσo = σeσo; we define σo in this way for simplicity of some statements and
proofs. We say also that σ has type (1n1 , 2n2 , . . . , σo), for brevity, to point out the number
of even cycles or fixed points, with arbitrary cycles of odd lengths. For instance, the type of
σ is (2, 42, σo) means that σ fixes no point, has exactly one cycle of length 2, exactly two
cycles of length 4 and any other cycle has odd length.

We now recall the notation on representations of the centralizer needed in the statement
of Theorem 1.1. See [5, Sect. 2.2] for more details. First, the centralizer S

σ
m = CSm (σ ) =

T1 × · · · × Tm , where

Tj = 〈A1, j , . . . , An j , j 〉 � 〈B1, j , . . . , Bn j −1, j 〉 � (Z/j)n j � Sn j , (14)
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1 ≤ j ≤ m. We describe the irreducible representations of the centralizers. If ρ = (ρ, V ) ∈
ĈSm (σ ), then ρ = ρ1 ⊗ · · · ⊗ ρm , where ρ j ∈ T̂ j has the form

ρ j = Ind
(Z/j)n j �Sn j

(Z/j)n j �S
χ j
n j

(χ j ⊗ μ j ), (15)

with χ j ∈ ̂(Z/j)n j and μ j ∈ Ŝ
χ j
n j —see [28, Sect. 8.6]. Here S

χ j
n j is the isotropy subgroup

of χ j under the induced action of Sn j on ̂(Z/j)n j . Actually, χ j is of the form χ(t1, j ,...,tn j , j ),

where 0 ≤ t1, j , . . . , tn j , j ≤ j − 1 are such that

χ(t1, j ,...,tn j , j )(Al, j ) = ω
tl, j
j , 1 ≤ l ≤ n j , (16)

with ω j := e
2π i

j , where i denotes the imaginary unit. Assume that deg(ρ) = 1; that is,
deg(ρ j ) = 1, for all j . Then S

χ j
n j = Sn j , μ j = ε or sgn ∈ Ŝn j , for all j . Hence, we have

that t j := t1, j = · · · = tn j , j , for every j , and ρ j = χ j ⊗ μ j . In that case, we will denote
χ j = χ(t j ,...,t j ) by −→χt j .

4.2 The collapse of simple racks from Sm or Am

Let m ≥ 5. In this Subsection, we show that many simple racks arising as conjugacy classes
in Sm or Am collapse. We fix σ ∈ Sm be of type (1n1 , 2n2 , . . . ,mnm ) and let

O =
{
(a) the conjugacy class of σ in Sm, if σ /∈ Am,

(b) the conjugacy class of σ in Am, if σ ∈ Am .

Thus O is a simple rack. If σ is in Am , then either O
Sm
σ splits as a disjoint union of two

orbits in Am , or else O
Sm
σ = O

Am
σ . This last possibility arises when either ni > 0 for some i

even, or else ni > 1 for some i odd. In any case, if O
Am
σ is of type D, then so is O

Sm
σ .

Theorem 4.1 If the type of σ is NOT in the list below, then O is of type D, hence it collapses.

(a) (2, 3); (23); (1n, 2).
(b) (32); (22, 3); (1n, 3); (24); (12, 22); (1, 22); (1, p), (p) with p prime.

Proof We proceed in several steps.

Step 1 (Reduction by juxtaposition) Let m = p + q, μ ∈ Sp, τ ∈ Sq and σ = μ ⊥ τ ∈ Sm

the juxtaposition. If O
p
μ is of type D, then Om

σ also is. In the same vein, if μ ∈ Ap and its
conjugacy class in Ap is of type D, and τ ∈ Aq , then the conjugacy class of σ = μ ⊥ τ ∈ Am

is of type D.

This is so because the inclusion Sp ×Sq ↪→ Sm induces an inclusion of racks O
p
μ×O

q
τ ↪→

Om
σ . With this inclusion, the result follows from Lemma 3.7.
This statement can be be rewritten as follows: Let μ ∈ Sp , with p ≤ m and μ is of type

(1h1 , 2h2 , . . . , ph p ) with h j ≤ n j , 1 ≤ j ≤ p, and let

O′ =
{

the conjugacy class of μ in Sp, if μ /∈ Ap,

the conjugacy class of μ in Ap, if μ ∈ Ap.

If O′ is of type D, then O is of type D.

Step 2 If the type of σ is (m) with m ≥ 6 not prime, then O is of type D.
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Let σ = (1 2 3 4 · · · m). We study different cases.
(i) m ≥ 6 is even.
If m = 6, take τ = (1 2 5 6 3 4). It is straightforward to check that σ and τ are not

conjugate in H = 〈σ, τ 〉 and that (στ)2 �= (τσ )2.
If m > 6, take τ = (1 3) � σ = (3 2 1 4 · · · m). Then τστσ (1) = 1 and στστ(1) = 7.

Therefore, (στ)2 �= (τσ )2. Let H = 〈σ, τ 〉 be the subgroup of Sm generated by σ and τ .
Note that H = 〈σ, τ 〉 = 〈σ, τσ−1〉 = 〈(1 2 · · · n), (1 3)(2 4)〉. It is easy to see that

the elements in H can be written as products (μ1 × μ2)σ
i , where μ1 ∈ S{1,3,5,...,m−1},

μ2 ∈ S{2,4,6,...,m} and the signs sgn(μ1) = sgn(μ2). Now, if x ∈ Sm is such that x � σ = τ ,
then x = (1 3)σ i for some i , which does not belong to H . Hence, σ and τ belong to different
conjugacy classes in H .

(ii) m ≥ 5 odd and divisible by a non-trivial square number. Let m = h2k, with h ≥ 3.
For 1 ≤ i ≤ hk, let ri = (i (hk + i) (2hk + i) · · · ((h − 1)hk + i)), and consider τ = r1 � σ .
Then σ and τ are conjugate in Am , but they are not conjugate in H = 〈σ, τ 〉. To see this,
notice that σr−1

1 σ−1 = r−1
2 , and then, as in the proof of case (i),

H = 〈σ, τσ−1〉 = 〈σ, r1r−1
2 〉

Then H ⊆ G := 〈σ, r1, . . . , rhk〉. Actually, since σ hk = r1r2 · · · rhk,G is an extension

1 → 〈r1, . . . , rhk〉 � (Z/m)hk → G → Z/hk → 1.

Any element in G can be written uniquely as a product r i1
1 · · · r ihk

hk σ
j , where 0 ≤ j < hk.

We can consider then the homomorphism α : G → Z/h, given by α(r i1
1 · · · r ihk

hk σ
j ) =

ωi1+i2+···+ihk , where ω is a generator of Z/h. This homomorphism is well defined, since
α(σ hk) = α(r1r2 · · · rhk) = ωhk = 1. On the other hand, the centralizer of σ in Am is the
subgroup generated by σ . Thus, for σ and τ to be conjugate in H , there should exist an
integer j such that r1σ

j ∈ H . But it is clear that H is in the kernel of α, while α(r1σ
j ) = ω.

(iii) m ≥ 9 odd and divisible by at least two primes.
Express σ = τκ , where τ �= e and κ �= e are powers of σ , the orders N of τ and M of

κ are coprime and N > 3 is prime. Note that m = N M and the type of κ is (M N ), hence
K = CAm (κ) � (Z/M)N

� AN . Let Õ = O
Am
σ and O = OK

τ . It is known that Õ is quasi-real
of type 4.

We will prove that:

• O is quasi-real of type 4,
• there exist r0, s0 ∈ O such that r0 � (s0 � (r0 � s0)) �= s0.

For the first item, we write τ = (v, α) ∈ (Z/M)N
� AN . Since |τ | = N , (α)N (v) = 0,

where (α)N := id +α+ α2 + · · · + αN−1, and |α| = N , i. e. a N -cycle in AN , because N is
prime. Letβ ∈ AN such thatβ�α = α4. We will show that there exists u ∈ (Z/M)N such that
(u, β)�(v, α) = (v, α)4. The last amounts to (α)4v−βv = (id −α4)u for some u ∈ (Z/M)N .
Notice that Im(id −α4) = ker((α4)N ) = ker((α)N ). Thus (α)4v − βv ∈ Im(id −α4) if and
only if (α)Nβv = 0. But the last follows from (α)Nβ = β(α)N .

For the second item, let r0 := τ = (v, α). Observe that s0 := (v + (id −α)(u), α) ∈ O

for any u ∈ (Z/M)N . Now

((v, α)(v + (id −α)(u), α))2 = (
(id +α)(v)+ (α − α2)(u), α2)2

= (
(id +α2)(id +α)(v)+ (id +α2)(α − α2)(u), α4)

((v + (id −α)(u), α)(v, α))2 = (
(id +α)(v)+ (id −α)(u), α2)2

= (
(id +α2)(id +α)(v)+ (id +α2)(id −α)(u), α4) .
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Then (r0s0)
2 = (s0r0)

2 iff (id +α2)(id −α)2(u) = 0. Now the order of α is the odd prime
N , hence there exists some u such that3 (id +α2)(id −α)2(u) �= 0; thus (r0s0)

2 �= (s0r0)
2,

that is r0 � (s0 � (r0 � s0)) �= s0.
Assume that M > 3. Now, Õ is of type D by Proposition 3.9.
Assume that M = 3. We will see that there exists j such that j ≡ 2 mod 3 and σ j ∈ Õ.

Let k be relative prime to m and λk : Z/mZ → Z/mZ the map i mod m �→ ki mod m.
We can think λk as a permutation of Sm in the obvious way. Then

λk � σ = σ k . (17)

Indeed, for all i, 1 ≤ i ≤ m, we have

(λk � σ)(i) = λkσλ
−1
k (i) = λkσ(k

−1i mod m) = λk(k
−1i + 1 mod m)

= k(k−1i + 1) mod m = i + k mod m = σ k(i).

Claim 1 The following are equivalent:
(a) σ k ∈ Õ, (b) sgn(λk) = 1, (c) J (k,m) = 1,

where J (k,m) means the Jacobi symbol of k mod m.

Proof By (17) (a) is equivalent to λk = ασ i , for some α ∈ Am and i ∈ {0, . . . ,m − 1}.
This condition amounts to λk ∈ Am , which means that (b) holds. [29, Th. 1] says that (b) is
equivalent to (c). This last equivalence is Zolotarev’s Lemma when m > 2 is prime – see
[30]. �

Let k ∈ Z such that k is not a quadratic residue modulo N ; it is well-known that there are
N−1

2 of such k’s with 1 ≤ k ≤ N − 1. By Chinese Remainder Theorem there exists j , with
0 ≤ j < m, such that j ≡ 2 mod 3 and j ≡ k mod N .Thus J ( j, 3) = −1 = J ( j, N ),
and J ( j,m) = J ( j, 3)J ( j, N ) = 1. Hence, j ≡ 2 mod 3 and σ j ∈ Õ as desired.

Now, τ j = ((α) jv, α
j ) �∈ O because α j �∈ O

AN
α . So, if we identify α with the N -cycle

(1 2 · · · N ) in AN and α̃ := (1 3)�α, then α j and α̃ are conjugate in AN and (αα̃)2 �= (̃αα)2.
Set r0 = τ, s0 = (v, α̃), R = O · κ, S = OK

τ j · κ j = OK
τ j · κ−1. Then s0 ∈ OK

τ j , (r0s0)
2 �=

(s0r0)
2, R

⊔
S is an indecomposable subrack of Õ and (rs)2 �= (sr)2, with r = r0κ = σ

and s = s0κ
−1. Therefore, Õ is of type D.

Step 3 The class of type (n, p) in An+p is of type D if both n and p are odd, n ≥ 3 and
p ≥ 5.

We take σ1 = (1 2 · · · n)(n + 1 n + 2 · · · n + p), σ2 = (1 2)(n + 1 n + 3) � σ1. Then
consider the subgroup H = 〈σ1, σ2〉 ⊆ An × Ap . Let π : An × Ap → Sp be the projection
to the second component, and notice that π(σ1), π(σ2) belong to different conjugacy classes
in Ap . Then, (σ1σ2)

2 �= (σ2σ1)
2 and they are not conjugate in H , since both statements hold

in π(H).

Step 4 If the type of σ is (12, j) with j > 5 odd, then O is of type D.

The class O
S j
j splits as a union O1

∐
O2 of 2 classes in A j ; if R = O1 ×{( j + 1)( j + 2)},

S = O2 × {( j + 1)( j + 2)}, then Y = R
∐

S is a subrack of O and satisfies (6) since it
generates the subgroup A j .

3 Here one may simply work in a vector space over some quotient field of Z/M .
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Table 1 Some classes of type D
from the literature

Type Subrack Reference

(1, 2, σo), σo �= id D
(2)
3 [3, Ex. 3.9]

(23, σo), σo �= id D
(2)
3 [3, Ex. 3.12]

(4, σo), σo �= id O(2) [5, Prop. 3.7]

(42) O(2) [5, Proof of Prop. 3.5]

Step 5 If the type of σ is as in Table 1, then O is of type D.

This follows from previous works as explained in Table 1.

Step 6 If the type of σ is (2, j), where j > 3 is odd, then O is of type D.

Choose σ = (1 2)(3 4 5 6 · · · j + 2). Set σ1 = σ, h = (3 5) and σ2 = h � σ . Then,
σ2 = (1 2)(5 4 3 6 · · · j + 2). We claim

(a) (σ1σ2)
2 �= (σ2σ1)

2.
(b) H := 〈σ1, σ2〉 � Z/2 × A j .
(c) The conjugacy classes of σ1 and σ2 in H are distinct.

(a) follows since (σ2σ1)
2(3) = 3, whereas (σ1σ2)

2(3) = 4 if j = 5 and (σ1σ2)
2(3) = 9

if j ≥ 7. (b) follows because the j-cycles (3 4 5 6 · · · j + 2) and (5 4 3 6 · · · j + 2) generate
AI , I = {3, 4, 5, . . . , j +2}. (c) follows since the conjugacy class of one cycle of odd length
splits into two classes in AI .

Step 7 If the type of σ is (2, 32), then O is of type D.

The set formed by σ1 = (1 2 3)(4 5 6)(7 8), σ2 = (1 6 3)(2 4 5)(7 8), σ3 = (1 6 4)(2 3 5)
(7 8) and σ4 = (1 2 4)(3 5 6)(7 8), is the affine rack associated to the tetrahedron, i.e. Q1

F
2

2 ,T
with |T | = 3. The Step follows from Ex. 3.18.

Step 8 If the type of σ is (1, 4), then O is of type D.

The group H = F5 � F
×
5 � F5 � Z/4 acts on F5 by translations and dilations; if we

identify {1, . . . , 5} with F5, then the translation by 1 is the 5-cycle (1 2 3 4 5), the dilation by
2 is σ and H is isomorphic to a subgroup of S5. Thus O contains a subrack isomorphic to
Q1

F5,T
with |T | = 4. The Step follows from Ex. 3.18.

Step 9 If the type of σ is (2, 4), then O is of type D.

Let H be the subgroup of A6 generated by (1 3 6), (2 4 5) and σ . Since (1 3 6) and (2 4 5)
span a subgroup isomorphic to F

2
3, σ �(1 3 6) = (2 4 5) and σ �(2 4 5) = (1 6 3), we conclude

that H is isomorphic to F
2
3 � 〈T 〉, where T 2 = − id. Thus O contains a subrack isomorphic

to Q1
F

2
3 ,T

with |T | = 4. The Step follows from Ex. 3.18.

Step 10 If the type of σ is as in Table 2, then O is of type D.

We list σ1, σ2 and H = 〈σ1, σ2〉 in Table 2; a straightforward computation shows that
(σ1σ2)

2 �= (σ2σ1)
2 and that the conjugacy classes of σ1 and σ2 in H are distinct.
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Table 2 Some classes of type D in Am or Sm

O σ1 σ2 H = 〈σ1, σ2〉

(13, 22) (4 5)(6 7) (1 2)(3 7) D6

(1, 32) (2 3 4)(5 6 7) (1 2 5)(3 4 6) Z/7 � Z/3

(33) (1 2 3)(4 5 6)(7 8 9) (1 2 4)(3 5 6)(7 9 8) A4 × Z/3

(25) (1 2)(3 4)(5 6)(7 8)(9 10) (1 3)(2 4)(5 7)(6 9)(8 10) D6

(1, 23) (2 3)(4 5)(6 7) (1 6)(2 4)(3 5) D6

Final Step. Assume now that O is not of type D; we apply systematically Step 1. By Step 2,
n j = 0 if j ≥ 6 is not prime.

Assume that n4 �= 0; then σ is of type (1n1 , 2n2 , 4) by Step 5. But n1 = 0 by Step 8 and
n2 = 0 by Step 9; a contradiction since m = ∑

j j n j ≥ 5. Hence, n4 = 0.
Assume that n3 �= 0; then σ is of type (1n1 , 2n2 , 3n3) by Step 3, and either n1 = 0 or else

n2 = 0 by Step 5. In fact, if both n1 > 0 and n2 > 0, then O is of type D by the first line in
Table 1. If n1 = 0, then n3 = 1 by Step 7 and n2 ≤ 2 by Step 5; in other words, only types
(2, 3) and (22, 3) remain. If n2 = 0, then type (32) remains, by Step 10. Also, if n1 �= 0 and
n2 = 0, then type (1n1 , 3) remains, by Step 10.

Assume next that n3 = 0; then σ is of type (1n1 , 2n2 , jn j ) by Step 3, with j ≥ 5 prime
and n j = 0 or 1. Furthermore, n2 ≤ 4 by Step 10.

If n j = 0 and n1 �= 0, then n2 ≤ 2 by Step 10; but n2 = 2 implies n1 ≤ 2 by Step 10. In
other words, only types (23), (24), (1, 22), (12, 22) and (1n, 2) remain.

If n j = 1, then either n1 = 0 or else n2 = 0 by Step 5. The possibility n2 �= 0 is excluded
by Step 6. Thus n2 = 0, hence n1 ≤ 1 by Step 4; thus, only types ( j) and (1, j), with j ≥ 5
prime, remain. �

Remark 4.2 The remaining conjugacy classes do not have enough bad subracks to arrive to
similar conclusions, except (p) and (1, p) where we do not have enough information yet, as
said. We list the proper subracks generated by two elements in these classes:

(a) The proper subracks of the class of type (1m−2, 2) in Sm are all of the form O
m1
2

∐
O

m2
2∐ · · · ∐ O

ms
2 ; O

mi
2 commutes with O

m j
2 if i �= j .

(b) The proper subracks generated by two elements of the class of type (1n, 3) are either
abelian, or isomorphic to the racks of the vertices of a tetrahedron, or a cube, or a
dodecahedron. The same for the class of type (32).

(c) The proper subracks of the class of type (2, 3) are abelian with either one or two ele-
ments.

(d) The proper subracks of the class of type (1, 22) are abelian racks and dihedral racks
with 3 and 5 elements.

(e) The proper subracks generated by two elements of the class of type (12, 22) are abelian
racks and dihedral racks with 3, 4 and 5 elements.

(f) The proper subracks generated by two elements of the class of type (24) are abelian
racks and dihedral racks with 3 and 4 elements.

(g) The proper subracks generated by two elements of the class of type (22, 3) are either
abelian racks or indecomposable with 20 elements.
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Fig. 1 Generalized Dynkin
diagram of the braided vector
space given in Lemma 4.3

We were not able to find out in general whether or not the classes (1, p), (p) with p
prime, are of type D. For instance, the classes (5), (7), (11) are not of type D, while the
classes (13), (17) and (31) are of type D.

Also, the classes (1, 5), (1, 11) are not of type D, while the class (1, 7) is of type D. More
generally, if p = 2h − 1 is a Mersenne prime, then (1, p) is of type D. For, set q = 2h ; then,
the group H = Fq � F

×
q � Fq � Z/p acts on Fq by translations and dilations; if we identify

{1, . . . , q} with Fq , then H is isomorphic to a subgroup of Sq .

4.3 An abelian subrack with 3 elements

To deal with the remaining cases, we apply techniques of abelian subracks. We begin by
recording a result that is needed in Lemma 4.4.

Lemma 4.3 Let G be a finite group and O be the conjugacy class of σ1 in G. Let σ2 �= σ3 ∈
O − {σ1}; let g1 = e, g2, g3 ∈ G such that σi = giσ1g−1

i , for all i . Assume that

• σ h
1 = σ2σ3 for an odd integer h,

• g3g2 and g2g3 belong to CG(σ1), and
• σiσ j = σ jσi , 1 ≤ i, j ≤ 3.

Then dim B(O, ρ) = ∞, for any ρ ∈ ĈG(σ1).

Proof Since σiσ j = σ jσi , there exist w ∈ V \{0} and λi ∈ C such that ρ(σi )(w) = λiw for
i = 1, 2, 3. For any 1 ≤ i, j ≤ 3, we call γi j = g−1

j σi g j . It is easy to see that γi j ∈ CG(σ1)

and that

γ = (γi j ) =
⎛

⎝
σ1 σ3 σ2

σ2 σ1 σ h
2 σ

−1
1

σ3 σ h
3 σ

−1
1 σ1

⎞

⎠ .

Then, W = span{g1w, g2w, g3w} is a braided vector subspace of M(O, ρ) of abelian type
with Dynkin diagram given by Fig. 1. Assume that dim B(O, ρ) is finite. Then λ1 �= 1; also
λh

1 �= 1, for otherwise g2w, g3w span a braided vector subspace of Cartan type with Dynkin

diagram A(1)1 . Thus, we should have λ1 = −1 and h even, by [22, Table 2], but this is a
contradiction to the hypothesis that h is odd. �

Lemma 4.4 (i) Let r ≥ 1 be odd and let G = A4 × Z/r , where Z/r is the cyclic group
of order r , generated by τ . Let O be the conjugacy class of σ = ((1 2)(3 4), τ ) in G.
Then, dim B(O, ρ) = ∞ for every ρ ∈ ĈG(σ ).

(ii) Let m ≥ 5 and let σ ∈ Am be of type (1n1 , 2n2 , σo), O the conjugacy class of σ in Am

and ρ = (ρ, V ) ∈ ĈAm (σ ). Then dim B(O, ρ) = ∞.
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Proof For the first part, apply Lemma 4.3 with σ1 = ((1 2)(3 4), τ ), σ2 = ((1 3)(2 4), τ ),
σ3 = ((1 4)(2 3), τ ), g1 = e, g2 = ((1 3 2), 1), g3 = g−1

2 and h = r + 2.
We prove now the second part. Notice that the result follows from [2, Th. 2.3] if n2 = 0.

Otherwise, n2 = 2k is even and positive. Let r be the order of σo. We claim A4 × Z/r
embeds into Am in such a way that the class of ((1 2)(3 4), τ ) ∈ A4 × Z/r is mapped into
the class of type (1n1 , 2n2 , σo) in Am . For this, just take σ to be of type σo, acting on indices
{n1 + 2n2 + 1, . . . ,m}, and α : Z/r → Am , α(τ) = σ . Let δ : A4 → (A4)

k be the diagonal
map, and consider (A4)

k as a subgroup of Am acting on indices {n1 +1, . . . , n1 +2n2}. Then,
δ × α : A4 × Z/4 → (A4)

k × Am−n1−2n2 ⊆ Am , is the claimed map. �
Remark 4.5 The case r = 1 of this Lemma is known (see for example [2, Prop. 2.4]) and it
is used to kill the conjugacy class of involutions in A4.

4.4 Proof of Theorem 1.1

Let σ ∈ Am ; if O
Am
σ is of type D, then O

Sm
σ is of type D. Then Th. 1.1 follows from Th. 4.1

and previous results:

(i) (p) in Sp, (1, p) in S1+p (with p odd prime), (1n, 3) in Sn+3, (32) in S6: discarded by
[11, Th. 1].

(ii) (1, 22) in S5, (12, 22) in S6, (22, 3) in S7: discarded by [11, Th. 1].
(iii) (24) in S8: discarded by [1, Th. 1 (B) (i)].
(iv) The restrictions on the representations of the remaining classes have been explained

in [5].

4.5 Proof of Theorem 1.2

It follows from Theorem 4.1 and the following considerations:

(i) (p) in Ap, (1, p) in A1+p (with p odd prime), (1n, 3) in An+3, (32) in A6: discarded
by [2, Th. 2.3].

(ii) (22, 3) in A7, (24) in A8, (12, 22) in A6, (1, 22) in A5: discarded by Lemma 4.4 (ii).
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