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A comparison of (64) and (65) leads to

Ek(�
0

j) =
gk+1

gk

Ek+1(�
0

j)

k + 1

1

� 0

j � 1
h+ o(h): (66)

Finally, taking (10), (42), and �j � � 0

i ! � 0

j � � 0

i 6= 0 for i 6= j

into account yields (26) with (27) which proves item 3) of the

Theorem 3.

VI. CONCLUSION

In the paper, a theorem has been proved that, for small sampling

periods, characterizes the accuracy of all limiting zeros of the pulse

transfer function of a system composed of a zero-order hold followed

by a continuous-time plant.

The main result has a form of a correction to the asymptotic result

of Åström et al. [3] in the form of a power term of h, whose degree

depends on the relative order of the continuous-time counterpart, and

its contribution is expressed in terms of Bernoulli numbers and the

poles and zeros of the continuous-time transfer function.

The discussion is based on two fundamental lemmas. The first one

yields two terms of the Taylor series expansion of the pulse transfer

function around h = 0 and the second characterizes the magnitude

of the difference between the exact pulse transfer function and the

principal term of its Poisson representation as a function of h.

Similar methods can be applied to study limiting zeros for pulse

transfer functions of systems with a first-order hold.

One of possible applications of the result is investigation of the

accuracy of approximate pulse-transfer functions [7].

REFERENCES

[1] J. Ackermann, Sampled-Data Control Systems. Berlin, Germany:
Springer-Verlag, 1985.

[2] , Robust Control. Berlin, Germany: Springer-Verlag, 1993.
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Finite-Dimensional Risk-Sensitive Filters and

Smoothers for Discrete-Time Nonlinear Systems

Subhrakanti Dey and John B. Moore

Abstract— Finite-dimensional optimal risk-sensitive filters and
smoothers are obtained for discrete-time nonlinear systems by adjusting
the standard exponential of a quadratic risk-sensitive cost index to one

involving the plant nonlinearity. It is seen that these filters and smoothers
are the same as those for a fictitious linear plant with the exponential of

squared estimation error as the corresponding risk-sensitive cost index.
Such finite-dimensional filters do not exist for nonlinear systems in the

case of minimum variance filtering and control.

Index Terms— Finite-dimensional, information state, minimum vari-
ance control, minimum variance estimation, risk-sensitive estimation,

smoothing.

I. INTRODUCTION

Risk-sensitive filtering for linear or nonlinear stochastic signal

models involves minimization of the expectation of an exponential

in quadratic cost criteria. The filters for linear signal models are

finite-dimensional but for nonlinear models are infinite-dimensional

in general. As opposed to L2 filtering, (termed as risk-neutral filtering

in [3]), which achieves the minimization of a quadratic error criteria,

risk-sensitive filtering robustifies the filter against plant and noise

uncertainties by penalizing all the higher order moments of the

estimation error energy. It also allows a tradeoff between optimal
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filtering for the nominal model case and the average noise situation

and robustness to worst case noise and model uncertainty by weight-

ing the index of the exponential by a risk-sensitive parameter. For

example, it has been shown in [4] that risk-sensitive filters for hidden

Markov models (HMM) with finite-discrete states perform better than

standard HMM filters in situations involving uncertainties in the noise

statistics. Also, in the small noise limit, risk-sensitive problems have

been shown to be closely related to estimation/control problems in a

deterministic worst case noise scenario given from a differential game

(H1 estimation/control problems for linear discrete-time systems)

[5], [7], [8].

Risk-sensitive control problems are relatively more abundant in

the literature [10]–[12]. Recently, a solution to the output feedback

risk-sensitive control problem for linear and nonlinear discrete-

time stochastic systems has been proposed in [7] and [13] using

a change of probability measure and information state techniques.

The problem of risk-sensitive filtering has been studied in [2] for

linear Gauss–Markov models. The techniques applied in [2] are not

readily generalizable for nonlinear filtering. More general nonlinear

problems have been studied in [3] which tackles the risk-sensitive

estimation problem using the reference probability methods of [1].

The cost index considered in [3] consists of the sum of quadratic

estimation errors to the present and so parallels closely risk-sensitive

control/tracking problems considered in [7], [13], and [14].

Although optimal nonlinear filters are known to be infinite-

dimensional in general, there are examples of finite-dimensional

optimal filters in special cases [15], [16]. Optimal nonlinear risk-

sensitive filters studied in [3] are no exceptions. However, recently

in controller design, the risk-sensitive cost index has been exploited

to cancel the nonlinearities for a class of nonlinear systems so

that we can have a finite-dimensional information state and thus

finite-dimensional controllers [17], [18]. In [18], finite-dimensional

risk-sensitive controllers with finite-dimensional information states

are obtained by adjusting the risk-sensitive cost index for a class of

discrete-time nonlinear systems.

In this paper, we use similar techniques as in [18] to obtain finite-

dimensional risk-sensitive optimal filters for a class of discrete-time

nonlinear systems. It is of interest that in the nonlinear context there

is no duality between filtering and control problems, yet similar

techniques can be used for the solutions of filtering and control

problems. In Section II, we present the nonlinear signal model,

formulate the risk-sensitive filtering problem, and reformulate it in

the new probability measure using reference probability methods. We

obtain results for recursive information states and the optimal risk-

sensitive filter. In Section III, we show how an appropriate choice of

the risk-sensitive cost index can allow us to have a finite-dimensional

information state and a finite-dimensional optimal risk-sensitive filter

which happens to be the same as that for a linearized version of the

nonlinear signal model with a standard exponential of a quadratic cost

index. We also provide motivation behind using such a cost index and

discuss the robustness issues. Discussions on small noise limits and

risk-neutral results are also included.

II. RISK-SENSITIVE ESTIMATION FOR NONLINEAR SYSTEMS

In this section, we consider a class of discrete-time nonlinear state-

space signal models. We introduce a risk-sensitive cost index, the

justification of which will be clear when we derive the filtering

equations. Next, we apply the change of measure technique and

reformulate the cost in the new probability measure. Linear recursions

in the information state are obtained and the risk-sensitive filter is

obtained as the minimizing argument of an integral as a nonlinear (in

general) function of the information state.

Signal Model: We consider the following discrete-time nonlinear

state-space model defined on a probability space (
; F ; P ):

xk+1 =Akxk + ak(xk) + wk+1

yk =Ckxk + ck(xk) + vk (1)

where wk 2 IRn, vk 2 IRp, xk 2 IRn, and yk 2 IRp. Here, xk
denotes the state of the system, yk denotes the measurement, and wk

and vk are the process noise and measurement noise, respectively.

The vectors ak(xk) and ck(xk) have entries which are time-varying

nonlinear functions of xk and k 2 f0; 1; � � � ; Tg. We assume that

wk; k 2 IN is i.i.d. and has a density function  and vk, and k 2 IN

is i.i.d. and has a strictly positive density function �. The initial state

x0 or its density is assumed to be known and wk is independent of vk.

A. Problem Definition

Define Xk
�
= fx0; x1; � � � ; xkg, Yk

�
= fy0; y1; � � � ; ykg, the �-

field generated by Yk as Y0k and the �-field generated by Xk and

Yk�1 by G0k . The corresponding complete filtrations are denoted as

Yk and Gk, respectively. We define x̂tjt as the estimate of the state xt
given Yt and work with recursive estimates which update x̂tjt from

knowledge of x̂k�1jk�1, k = 1; 2; � � � ; t.
In [3], we considered the following estimation task: Determine an

estimate x̂tjt of xt such that

x̂tjt 2 argmin
�

Jt(�); 8 t = 0; 1; � � � ; T (2)

where

Jt(�) = E[exp(�	0; t(�))jYt] (3)

is the risk-sensitive cost function. Here

	0; t(�) = 	̂0; t�1 +
1

2
(xt � �)0Qt(xt � �) (4)

where

	̂m;n = 1

2

n

k=m

(xk � x̂kjk)
0
Qk(xk � x̂kjk):

Assume Qk > 0.

In this paper, we mildly generalize the above cost index so that

the estimation task is to obtain x̂tjt such that

x̂tjt 2 argmin
�

E[exp(�	0; t(�))jYt] (5)

where, for some Lk(:; :; :) and Lt(:; :)

	0; t(�) =

t�1

k=0

Lk(xk+1; xk; x̂kjk) + Lt(xt; �): (6)

Here, Lk(:; :; :) and Lt(:; :), are assumed to be continuous and

bounded by a quadratic in the norms of their arguments. This

assumption is necessary for the small noise limit results.

B. Change of Measure and Reformulated Cost Index

Define

�k =
�(yk � Ckxk � ck(xk))

�(yk)

�k =

k

l=0

�l:

A new probability measure P can be defined where yl, l 2 IN are

independent with density functions � and the dynamics of x are as

under P .
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By setting the restriction on the Radon–Nikodym derivative

dP=dP jG = �k, the measure P can be defined starting with P .

The existence of P follows from Kolmogorov’s Extension theorem

[1]. Also, under P , the fvlg, l 2 IN, are independent and identically

distributed.

Now, we work under measure P , where yk, k 2 IN is a sequence

of independent real random variables with densities � and xk+1 =
Akxk + ak(xk) + wk where wk, k 2 IN are independent random

variables with densities  . Note that yk is also independent of xk
under P .

From a version of Bayes’ theorem, our cost index becomes

E[exp (�	0; t(�))jYt] =
E[�t exp(�	0; t(�))jYt]

E[�tjYt]
(7)

where E denotes expectation under P . Hence, our problem objective

becomes to determine an x̂tjt such that

x̂tjt = argmin
�

E[�t exp(�	0; t(�))jYt]: (8)

C. Recursive Estimates

Definition II.1: Define �kjk�1(x) as the unnormalized conditional

measure such that

�kjk�1(x)dx =E �k�1 exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl)

� I(xk 2 dx)jYk�1 : (9)

Remark II.1: It has been shown in [5] that �kjk�1(x) can be

interpreted as an information state of an augmented plant where

the state includes the actual state of the system and part of the

risk-sensitive cost. In fact, an alternative method for solving this

risk-sensitive optimal filtering problem can be found in [5].

Lemma II.1: The unnormalized measure �kjk�1(x) obeys the

following recursion:

�k+1jk(x) =
1

�(yk) IR

�(yk � Ckz � ck(z))

� exp(�Lk(x; z; x̂kjk)) (x� Akz � ak(z))

� �kjk�1(z)dz: (10)

Proof: Suppose f : IRn ! IR is any Borel test function. Then,

using Definition II.1, we have

E f(xk+1)�k exp �

k

l=0

Ll(xl+1; xl; x̂ljl) Yk

=
IR

f(�)�k+1jk(�)d�

= E f(xk+1)�k exp(�Lk(xk+1; xk; x̂kjk))�k�1

� exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl) Yk

= E f(Akxk + ak(xk) + wk+1)
�(yk � Ckxk � ck(xk))

�(yk)

� exp(�Lk(Akxk + ak(xk) + wk+1; xk; x̂kjk))

� �k�1 exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl) Yk

= E
IR

f(Akxk + ak(xk) + w)
�(yk�Ckxk�ck(xk))

�(yk)

� exp(�Lk(Akxk + ak(xk) + w; xk; x̂kjk))

� �k�1 exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl)  (w)dw Yk�1

=
1

�(yk) IR IR

f(Akz + ak(z) + w))�(yk � Ckz � ckz)

� exp(�Lk(Akz + ak(z) + w; z; x̂kjk))

�  (w)�kjk�1(z)dw dz

=
1

�(yk) IR IR

f(�)�(yk � Ckz � ck(z))

� exp(�Lk(�; z; x̂kjk))

�  (D(�; z))�kjk�1(z)d� dz (11)

where � = Akz + ak(z) +w, such that w = D(�; z) = � �Akz �
ak(z), z = z, and dw dz = d� dz.

Since this identity holds for every Borel test function f , we have

�k+1jk(x) =
1

�(yk) IR

�(yk � Ckz � ck(z))

� exp(�Lk(x; z; x̂kjk)) (x� Akz � ak(z))

� �kjk�1(z)dz: (12)

Remark II.2: Supposing �0(z) is the density function of x0, so

for any Borel set A 2 IRn, we have P (x0 2 A) = P (x0 2
A) =

A
�0(z)dz. Then �0j�1(z) = �0(z) and all the subsequent

estimates follow from Lemma II.1.

Theorem II.1: The optimal x̂tjt can be expressed as

x̂tjt 2 argmin
� IR

�tjt�1(z)
�(yt � Ctz � ct(z))

�(yt)

� exp(�Lt(z; �))dz: (13)

Proof: The proof follows easily from (8) and (9).

D. Smoothing

In this section we obtain the density function of the smoothed

state estimates from a fixed set of observations YT = (y0; � � � ; yT )
0.

We assume knowledge of the optimal filtered estimates X̂T =
(x̂0j0; � � � ; x̂T jT )

0. This smoothing is essentially an off-line pro-

cessing and technically known as fixed-interval smoothing. We will

also define X̂n
m = (x̂mjm; � � � ; x̂njn) and �m;n = �n

k=m�k.

Now, we will define the unnormalized density of the smoothed

estimate k; T (x) and the backward filtered unnormalized density (or

backward information state) �k; T (x) as follows.

Definition II.2:

k; T (x)dx =E �T exp �

T�1

l=0

L(xl+1; xl; x̂ljl)

+ LT (xT ; x̂T jT ) I(xk 2 dx) YT

�k; T (x) =E �k;T exp �

T�1

l=k

L(xl+1; xl; x̂ljl)

+ LT (xT ; x̂T jT ) xk = x; YT : (14)

With these definitions, we present the following lemma and theorem.

We do not provide the proofs here because they closely follow the

proof of Lemma II.1. Also, similar proofs for risk-sensitive smoothers

for HMM’s can be found in [4].
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Lemma II.2: The process �k; T (x) satisfies the following back-

ward recursion:

�k; T (x) =
�(yk � Ckx� ck(x))

�(yk) IR

exp(�L(�; x; x̂kjk))

�  (� �Akx� ak(x))�k+1; T (�)d� (15)

where

�T; T (x) =
�(yT � CTx� cT (x))

�(yT )
exp(�LT (xT ; x̂T jT )):

Theorem II.2: The unnormalized density function of the smoothed

estimate k; T (x) can be expressed as

k; T (x) = �kjk�1(x)�k;T (x): (16)

III. FINITE-DIMENSIONAL RISK-SENSITIVE FILTERS AND SMOOTHERS

In this section, we show how a suitable choice of the cost kernel

allows us to have finite-dimensional risk-sensitive filters. We consider

the nonlinear signal model (1) where wk � N(0; Wk) and vk �
N(0; Vk). We show that our particular choice of the cost kernel

gives us the same finite-dimensional risk-sensitive filters as those

for a fictitious linear signal (to be introduced later) model with an

exponential of a quadratic cost index and Gaussian distributed noise.

We also assume that the distribution of the initial state for (1) is

Gaussian distributed. For the limiting case when the noise variances

approach zero, we need an additional assumption on the nonlinearities

in (1) such that ak(x) and ck(x), k 2 IN are uniformly continuous

in x and bounded by an affine function of the norm of x. With these

assumptions, the following theorem holds.

Theorem III.1: The unnormalized information state given by Def-

inition II.1 and the optimal risk-sensitive filter given by (13) for

the nonlinear signal model (1) with the cost index (5), (6) are finite-

dimensional if in (6), Lk(xk+1, xk, x̂kjk) and Lt(xt; �) are restricted

as follows:

Lk(xk+1; xk; x̂kjk)

=
1

2�
kyk � Ckxk � ck(xk)k

2

V

+ kxk+1 � Akxk � ak(xk)k
2

W
� kyk � Ckxkk

2
~V

� kxk+1 � Akxkk
2
~W

+ Lk(xk; x̂kjk)

Lt(xt; �)

=
1

2�
kyk � Ckxk � ck(xk)k

2

V
� kyk � Ckxkk

2
~V

+ Lt(xt; �) (17)

where kxk2A = x0Ax and Lk(x; y) =
1
2 (x� y)0Qk(x� y).

Proof: Consider Lemma II.1. Noting that �;  are Gaussian we

can see that the particular choice of our cost kernel as restricted in

Theorem III.1 lets us rewrite (10) as

�k+1jk(x) =Nk
IR

exp � 1
2

(yk � Ckz)
0 ~V �1
k (yk � Ckz)

+ (x� Akz)
0 ~W�1

k+1(x�Akz)

� �(z � x̂kjk)
0
Qk(z� x̂kjk)

� �kjk�1(z)dz (18)

(where Nk is a constant) and (13) as

x̂tjt 2 argmin
� IR

�tjt�1(z)

� exp � 1
2

(yt � Ctz)
0 ~V �1

t (yt � Ctz)

� �(z � �)0Qt(z � �) dz: (19)

Noting the quadratic nature of the index of the exponential in (18),

it is obvious that if the initial state distribution �0j�1(x) is Gaussian

distributed, �kjk�1(x), 8k 2 IN will be also. Hence, �kjk�1(x) is

finite-dimensional. An explicit Gaussian density for �kjk�1(x) can

be obtained by completion of square and subsequent integration. We

present this result in a subsequent corollary in this paper.

Again, it is easy to see from (19) by substituting the Gaussian

density of �tjt�1(x) that x̂tjt can be expressed in terms of the

parameters of �tjt�1(x) and hence is finite-dimensional. The exact

expression for x̂tjt is given in a subsequent corollary.

Corollary III.1: The information state �kjk�1(x) is an unnormal-

ized Gaussian density given by

�kjk�1(x) =�kjk�1(x; �k)

=Zk exp � 1
2 (x� �k)

0
R

�1
k (x� �k) (20)

where �k = (�k; Rk; Zk) and R�1
k �k; Rk; Zk are given by the

following algebraic recursions which do not involve integrations:

R
�1
k+1�k+1 = ~W�1

k+1Ak�k R
�1
k �k + C

0
k
~V �1
k yk � �Qkx̂kjk

(21)

Rk+1 = ~Wk+1 + Ak R
�1
k + C

0
k
~V �1
k Ck � �Qk

�1

A
0
k

(22)

Zk+1 =Zkj ~Wk+1j
�(1=2)j�kj

1=2
Mk R

�1
k �k; yk; x̂kjk

(23)

where

��1
k = A

0
k
~W�1
k+1Ak +R

�1
k + C

0
k
~V �1
k Ck � �Qk

and Mk(R
�1
k �k; yk; x̂kjk) is an exponential of a quadratic form

involving its arguments.

Proof: Consider (18). As mentioned in the proof of Lemma II.1,

the quadratic nature of the index of the exponential can be exploited

by completion of square and subsequent integration over the Gaussian

density if �kjk�1(x) Gaussian. Hence we take up the inductive

method. We assume �kjk�1(x) to be Gaussian as described by (20).

We evaluate �k+1jk(x) from (18) using the Gaussian expression for

�kjk�1(x) from (20). Equating this with the Gaussian form suggested

by (20), we obtain the algebraic recursions (21)–(23). Since, we

assume that �kjk�1(x) is Gaussian for k = 0, the proof is complete.

Remark III.1: It is assumed here that (R�1
k +C 0

k
~V �1
k Ck��Qk) >

0, 8 k, R0 > 0, which limits the range of acceptable �. An equivalent

condition is �k > 0; see [2].

We state the following corollary without proof.

Corollary III.2: The optimal estimate x̂tjt can be expressed as

x̂tjt =�t + R
�1
t + C

0
t
~V �1
t Ct

�1

C
0
t
~V �1
t (yt � Ct�t) (24)

�t+1 =Atx̂tjt (25)

where (R�1
t + C 0

t
~V �1
t Ct � �Qt) > 0 8 t and Rt satisfies the

following Riccati equation:

Rt+1 = ~Wt+1 + At R
�1
t + C

0
t
~V �1
t Ct � �Qt

�1

A
0
t;

R0 > 0:

A. The Optimal Risk-Sensitive Filter in Relation

to a Linear Signal Model

In [2] and [3], results have been obtained for the risk-sensitive

information states and the optimizing risk-sensitive state estimate for

linear Gauss–Markov models with an exponential of a quadratic cost

criteria (3), (4). The information state given by Corollary III.1 and
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the risk-sensitive state estimate given by Corollary III.2 are optimal

for the nonlinear signal model (1) and the cost criteria given by (6),

(17). Compared with the results in [3], it is interesting to note that

the finite-dimensional information state and the risk-sensitive state

estimate (20), (24) are similar to those of a fictitious linear signal

model given by

~xk+1 =Ak~xk + ~wk+1

~yk =Ck~xk + ~vk (26)

with the cost criteria given by (3) and (4). Of course, we need to

assume ~wk � N(0; ~Wk), ~vk � N(0; ~Vk). Also, ~wk; ~vk are i.i.d.

and mutually independent and the initial state ~x0 is assumed to be

identically distributed as x0, i.e., the initial state of the nonlinear

model (1). Now, obviously, ~yk cannot have the same statistics as yk
without relaxing the above assumptions on ~wk, ~vk. However, for the

purpose of designing a finite-dimensional risk-sensitive filter driven

from yk, it is reasonable to work with a linear model as given by

(26). Also, we treat ~Wk, ~Vk as design parameters and are free to

choose them so that the filter is realizable. Note that considering a

linear signal model like (26) and designing the risk-sensitive filter for

it is, heuristically speaking, neglecting the nonlinear terms in (1) and

designing a filter for the linearized model. It is necessary therefore, to

consider high values for the noise variances ~Wk, ~Vk to allow for the

nonlinearities. In the section where we are dealing with robustness

issues, we will see how choosing high values for ~Wk, ~Vk actually ties

in with realizing a sensible cost function L(:; :; :) which is convex

and acts as an upper bound for the quadratic in nature L(:; :).
1) Example: Here we give a simple example with a scalar non-

linear system given by

xk+1 =Axk � a
x2k

1 + x2k
+ wk+1

yk =Cxk + vk (27)

with jAj < 1. We assume xk, yk 2 IR, wk � N(0; �2w),
vk � N(0; �2v), 8 k 2 IN. Also, L(x; �) = (x � �)2. Substituting

these in (17) we obtain the expressions for Lk(xk+1; xk; x̂kjk)
and Lt(xt; �). Substituting these expressions in Lemma II.1 and

Theorem II.1, we observe that

�k+1jk(x) =�k
IR

exp �
1

2

(yk � Cz)2

~�2v
+

(x� Az)2

~�2w

� �(z � x̂kjk)
2 �kjk�1(z)dz

x̂tjt 2 argmin
� IR

�tjt�1(z)

� exp �
1

2

(yk � Cz)2

~�2v
� �(z � �)2 dz: (28)

We assume that �0j�1 is Gaussian, and it is easy to see from (28)

that �kjk�1(x) will be Gaussian 8 k 2 IN (by using the obvious

completion of square technique and performing the integration) and

it will be given by

�kjk�1(x) =�kjk�1(x; �k; �
2
� ; Zk)

=Zk exp �
(x� �k)

2

2�2�
(29)

where

�k+1
�2�

=

A
�k
�2�

+
Cyk
~�2v

� �x̂kjk

A2 +
~�2w
�2�

+
C2~�2w
~�2v

� �~�2w

Fig. 1. Finite-dimensional risk-sensitive estimates for a nonlinear system.

�2� = ~�2w +
A2

1

�2�
+
C2

~�2v
� �

: (30)

Also, using similar techniques, it is easy to see from Theorem II.1 that

x̂tjt =�t + ��2� +
C2

~�2v

�1

C~��2v (yt � C�t)

�t+1 =Ax̂tjt: (31)

We assume (��2� + (C2=~�2v)) > �, 8 k 2 IN, �2� > 0 in these

derivations.

In a simulation study based on the above analysis, we chose

A = 0:8, a = �0:9, C = 1:0, �w = �v = 0:1, and x0 = 0:8.

In designing the finite-dimensional risk-sensitive filter, we chose

~�w = 0:5, ~�v = 0:1, �0 = 0:6, �2� = 10:0, and � = 1=~�2v .

Fig. 1 shows the time evolution of xk (solid), x̂kjk (dotted), and �k
(dash dotted) for a set of 200 time points.

B. Smoothing

In this section, we do not provide the details of how we can

obtain finite-dimensional smoothers with our special choice of the

risk-sensitive cost index because the reasoning is similar to that for

the finite-dimensional information state and the optimal risk-sensitive

filter. We just like to make an observation that using Lemma II.2 and

Theorem II.2 and the cost index restricted by (17) as in Theorem III.1,

it is easy to see that the backward recursive information state and the

density of the unnormalized smoothed estimate can be expressed as

Gaussian densities which are the same (except for a scaling factor)

as those for the linear model (26) with the cost index (3), (4), and ~yk
replaced by yk. More details about these densities can be found in [3].

C. Robustness Issues

It is quite obvious that in order to have a finite-dimensional risk-

sensitive filter for a nonlinear plant, an appropriate cost index must

be found. This result can, therefore, be termed as an inverse optimal

estimation result. In this subsection, we discuss some robustness

issues involved with selecting such a cost index.
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Notice that the cost index given by (17) can be simplified and

alternatively written as

Lk(xk+1; xk; x̂kjk)

=
1

2�
kvkk2

V
+ kwk+1k2

W
� kvk + ck(xk)k2~V

� kwk+1 + ak(xk)k2~W Lk(xk; x̂kjk)

Lt(xt; �)
=

1

2�
kvkk2

V
� kvk + ck(xk)k2~V + Lt(xt; �): (32)

It is easy to see that for plants which are nearly linear (i.e., the

nonlinear terms a(:) and c(:) are small), we have

Lk(:) ' Lk(:); Lt(:) ' Lt(:):

Also, for plants where the nonlinear terms a(:); c(:) are exactly zero

~Wk �Wk; ~Vk � Vk; Lk(:) � Lk(:); Lt(:) � Lt(:):
(33)

Also, when the nonlinear terms are nonzero, choosing sufficiently

high ~Wk; ~Vk will ensure that

Lk(:) � Lk(:); Lt(:) � Lt(:):

Hence, the cost index for which the finite-dimensional risk-sensitive

filter is optimal for the nonlinear stochastic plant (1) is actually an

upper bound on the usual exponential of quadratic cost index for

which the same filter is optimal for the artificial linear plant (26).

Also, to incorporate any uncertainty in the plant or noise dynamics,

the assumption (33) is a reasonable one. It is clear that under such

circumstances, the risk-sensitive index given by (5) and (6) becomes

more conservative than the one given by (3) and (4) and hence

guarantees a more cautious and robust estimation policy which is the

real motivation behind adopting a risk-sensitive estimation scheme.

Remark III.2: It should be mentioned here that assumption (33)

justifies the choice of the risk-sensitive cost index given by (17),

which in turn allows us to obtain a finite-dimensional filter for

nonlinear systems. This also ties in with the robustness issues

associated with the objective of risk-sensitive estimation. Note,

however, that this robustness is with respect to uncertainties in the

plant model or noise dynamics. Although suboptimal Kalman filtering

techniques exist where noise covariance matrices are properly chosen

to compensate for the nonlinearities, such filters will not be able to

cope with uncertainties in the plant or noise dynamics. This is more

evident in the fact that the finite-dimensional optimal filter [given

by (20)–(25)] turns out to be the optimal risk-sensitive filter for a

fictitious linear system, which is an H1 filter rather than a Kalman

filter. This is rather expected because the optimal risk-sensitive filter

in the linear Gaussian case is indeed an H1 filter. Evidences of

robustness of risk-sensitive filters to uncertainties in the plant or noise

dynamics have been given in [4] and [6], and applications of risk-

sensitive filters to fault detection have been noted in [9]. While such

applications are still in their adolescence, it is very important that

we can obtain finite-dimensional risk-sensitive filters for nonlinear

systems. Choosing sufficiently high ~Wk; ~Vk merely allows us to

justify the choice of the risk-sensitive cost kernel [given by (17)]

which is crucial for obtaining finite-dimensional filters.

D. Small Noise Limit

It has been observed that stochastic risk-sensitive

control/estimation can be interpreted in terms of a deterministic

control/estimation problem in a worst case noise scenario given from

a differential game as the risk-sensitive parameter � approaches the

small noise limit [5], [7], [8]. Also, for linear discrete-time systems,

the optimal risk-sensitive controller/filter is an H1 controller/filter

[2], [7]. Following the techniques of [5], we express � as �=� and

scale the noise variances by
p
� so that the limit as � ! 0 can be

regarded as the small noise limit. Obviously, using results from [5],

the finite-dimensional risk-sensitive optimal filter for the nonlinear

system (1) becomes an H1 filter which is also the optimal H1

filter for an artificial linear model (26). Hence, an appropriate choice

of the cost kernel allows us to have a finite-dimensional optimal

filter for a class of nonlinear discrete-time systems in a deterministic

worst case noise scenario.

E. Risk-Neutral Results

Risk-neutral results are derived from risk-sensitive results by taking

the limit as � ! 0. It is fairly obvious from Lemma II.1 and

Theorem II.1 that as � ! 0, it is not possible to absorb the nonlinear

terms anymore and hence, a finite-dimensional optimal filter cannot

be obtained.
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