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Finite dimensional semigroup quadratic algebras

with the minimal number of relations

Natalia Iyudu and Stanislav Shkarin

Abstract

A quadratic semigroup algebra is an algebra over a field given by the generators x1, . . . , xn

and a finite set of quadratic relations each of which either has the shape xjxk = 0 or the shape

xjxk = xlxm. We prove that a quadratic semigroup algebra given by n generators and d 6 n2
+n
4

relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the
above class of algebras. Our main result however is that for every n, there is a finite dimensional
quadratic semigroup algebra with n generators and δn relations, where δn is the first integer

greater than n2
+n
4

. That is, the above Golod–Shafarevich-type estimate for semigroup algebras
is sharp.

MSC: 05A05, 17A45, 16S73, 16N40, 20M05

Keywords: quadratic algebras, semigroup algebras, word combinatorics, Golod–Shafarevich theorem,

Anick’s conjecture, Hilbert series

1 Introduction

Throughout the paper, K is an arbitrary field and N is the set of positive integers. For a set X,
K〈X〉 stands for the free associative algebra over K generated by X. For n ∈ N, 〈X〉n denotes the
set of monomials in K〈X〉 of degree n: 〈X〉n = {xi1 . . . xin : xij ∈ X}.

We deal with quadratic algebras, that is, algebras R given as K〈X〉/I, where I is the ideal in
K〈X〉 generated by a collection of homogeneous elements (called relations) of degree 2.

Algebras of this class, their growth, their Hilbert series, rationality and nil/nilpotency properties
have been extensively studied (see [11, 12, 13] and references therein). One of the most challenging
questions in the area (see the ICM paper [12], or [17]) is whether there exists an infinite dimensional
nil algebra in this class. This is a version of the Kurosh problem with an additional constraint
formulated in terms of defining relations. A version of the Kurosh problem with a restriction on
the rate of growth was recently solved in [9]. As it is well-known, the original Kurosh problem was
solved with the help of the Golod–Shafarevich lower estimate for the Hilbert series of an algebra.
This shows that the behavior of the Hilbert series plays a crucial role in the structural theory of
algebras. There is a vast literature devoted to the better understanding of the Golod–Shafarevich
inequality. For instance, in [10, 3] a number of results on asymptotic (in various senses) tightness
of the Golod–Shafarevich inequality is obtained. In [3] we also prove some partial non-asymptotic
results results on the Anick conjecture.

The Golod–Shafarevich-type estimates have very deep connections to other areas of algebra.
First, it is necessary to mention their classical applications to p-groups and class field theory
[5, 6, 18]. As evidence of the connection to certain deep homological properties one can consider

the fact that for quadratic algebras with n generators and d relations, the interval n2

4 < d < n2

2 ,
where the Anick conjecture on the tightness of the Golod–Shafarevich estimate is difficult to tackle,
is exactly the interval, for which the generic algebra is non-Koszul (see [11]). Furthermore the
notion of noncommutative complete intersection [4] can be defined in terms of the Hilbert series
and refers to a class of algebras for which the Golod–Shafarevich inequality turns into equality.
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On the other hand, this concept is also characterized by the nice behavior of the noncommutative
Koszul (Shafarevich) complex.

In this paper, we mostly deal with quadratic semigroup algebras, which traditionally serve as a
main source of examples in this area and where an interesting combinatorics of words can applied.
This class was extensively studied, one can find an account of main results and methods in [8].

The Golod–Shafarevich lower estimate [5, 11] for the Hilbert series of an algebra given by

quadratic relations implies [15] that R is infinite dimensional if d 6
n2

4 , whereR is an algebra defined
by n generators and d quadratic relations. Anick [1, 2] conjectured that the Golod–Shafarevich
estimate is attained in the case of quadratic algebras. In particular, this conjecture, if true, implies
that for all d, n ∈ N with d > n2

4 , there is a finite dimensional quadratic algebra with n generators
defined by d relations. This conjecture in its full generality still remains open.

We study the same question for a subclass of the class of quadratic algebras.

Definition 1.1. A quadratic semigroup algebra is an algebra given by generators and relations
such that each of its defining relations is either a degree 2 monomial or a difference of two degree
2 monomials.

Many partial solutions of Anick’s conjecture were obtained by means of examples, which are
quadratic semigroup algebras. An interesting combinatorial result dealing with semigroup relations
was obtained by Wisliceny. We are moving in the same direction. Wisliceny [16] proved that
the conjecture of Anick is asymptotically correct. Namely, for every n ∈ N, he constructed a
quadratic algebra Rn with n generators defined by dn relations such that Rn is finite dimensional
and lim

n→∞

dn
n2 = 1

4 . More specifically, dn = n2+2n
4 if n is even and dn = n2+2n+1

4 if n is odd. The

algebras Rn, constructed by Wisliceny, are quadratic semigroup algebras.
It turns out that it is not enough to consider quadratic semigroup algebras to prove Anick’s

conjecture. Namely, the Golod–Shafarevich estimate can be improved for this class.

Theorem 1.2. Let R be a quadratic semigroup algebra with n generators given by d 6
n2+n

4
relations. Then R is infinite dimensional.

However, this leaves a gap between the n2

4 + n
4 of Theorem 1.2 and approximately n2

4 + n
2 of the

Wisliceny example. Surprisingly, it turns out that the estimate provided by Theorem 1.2 is tight.

Theorem 1.3. Let d, n ∈ N be such that d > n2+n
4 . Then there exists a finite dimensional quadratic

semigroup algebra with n generators given by d relations.

Thus the minimal possible number of defining relations of a finite dimensional quadratic semi-
group algebra with n generators is precisely the first integer greater than n2+n

4 . Theorems 1.2
and 1.3 give a solution to the natural analog of Anick’s conjecture for the class of semigroup
quadratic algebras. Furthermore, it roughly halves the gap between the number of relations in the
original Anick’s conjecture and the number of relations in Wisliceny’s example, which gave the best
bound known before the result of this paper.

2 Proof of Theorem 1.2

Definition 2.1. Let g =
∑

a,b∈X

λa,bab be a homogeneous degree 2 element of K〈X〉. Then the finite

set {ab : λa,b 6= 0} ⊆ 〈X〉2 is called the support of g and is denoted supp (g).

Lemma 2.2. Let X be a non-empty set, M be a family of homogeneous degree 2 elements of K〈X〉
and R = K〈X〉/I, where I is the ideal generated by M . Assume also that there are a, b ∈ X such

that ab, ba /∈ supp (f) for every f ∈ M . Then R is infinite dimensional.
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Proof. Since ab and ba are not in the support of any f ∈ M , the monomial (ab)n does not feature
in the polynomial pfq for every f ∈ M and p, q ∈ K〈X〉. Hence (ab)n /∈ I for each n ∈ N. It
immediately follows that R is infinite dimensional.

Lemma 2.3. Let X be a non-empty set, M be a family of homogeneous degree 2 elements of K〈X〉
and R = K〈X〉/I, where I is the ideal generated by M . Assume also that for each f ∈ M , the

coefficients of f sum up to 0. Then R is infinite dimensional.

Proof. Since the coefficients of each f sum up to 0, it follows that the coefficients of every element
of I sum up to 0. Hence I contains no monomials and therefore R is infinite dimensional.

We are ready to prove Theorem 1.2. Denote by X the n-element set of generators of R. If there
are a, b ∈ X such that ab and ba are both not in the support of any relation, then R is infinite
dimensional according to Lemma 2.2. Thus we can assume that for every a, b ∈ X either ab or
ba (or both) belongs to the union N of the supports of the relations. It follows that |N | > n2+n

2 .
Since each relation is either a monomial or a difference of two monomials, their supports have at
most two elements. Taking into account that we have d 6 n2+n

4 relations, we are left with the

only possibility that d = n2+n
4 and each relation is a difference of two monomials. In this case, the

coefficients of each relation sum up to 0. By Lemma 2.3, R is infinite dimensional. The proof of
Theorem 1.2 is complete.

3 Quasierhöhungssysteme

We find the algebras from Theorem 1.3 within the following class considered by Wisliceny [16].

Definition 3.1. Let X be a finite set of generators carrying a total ordering <. A set M ⊂ K〈X〉
of homogeneous elements of degree 2 is called a Quasierhöhungssysteme (QHS ) on X if

⋃

g∈M

supp (g) = {ab : a, b ∈ X, a > b} and the sets supp (g) are pairwise disjoint;

and for every g ∈ M one of the following three possibilities holds:

either g = ab with a, b ∈ X, a > b;

or g = ab− cd with a, b, c, d ∈ X, a > b > c > d;

or g = ab− cd with a, b, c, d ∈ X, a > b = c > d.

Each QHS M generates an ideal JM in K〈X〉 and RM = K〈X〉/JM is a quadratic semigroup
algebra. It is easy to see that the cardinalities of QHSs on an n-element set X range from the first
integer δn greater than n2+n

4 to n2+n
2 . In the subsequent sections we shall prove Theorem 1.3 by

showing that there is a QHS M on an n-element X of cardinality δn such that the corresponding
quadratic semigroup algebra RM is finite dimensional.

This class of algebras was introduced by Wisliceny [16] and his example is from the same class.
He also provided an example of a QHS M on a 6-element X for which the corresponding algebra is
infinite dimensional. There is a criterion in [16] for a QHS to produce a finite dimensional algebra,
but although it can be handy for treating specific examples with small number of generators with
an aid of a computer, it is nearly impossible to use when X has a large number of elements. Our
proof does not make use of this criterion.

Remark 3.2. Let X be a finite totally ordered set and M be a QHS on X. Let also a be the
minimal element of X and b be the maximal element of X. Form the definition of a QHS it easily
follows that the monomial ba belongs to M . We shall frequently deal with the set M ′ = M \ {ba}
and the ideal IM in K〈X〉 generated by M ′.
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We will also use the following notation. If I is an ideal in K〈X〉 and f, g ∈ K〈X〉, the equality
f = g (mod I) means that f − g ∈ I. Furthermore, if X is totally ordered and m ∈ N, we shall
always endow the set of monomials 〈X〉m of degree m with the right-to-left lexicographical
ordering. That is, u1 . . . um < v1 . . . vm if there is j ∈ {1, . . . ,m} such that uj < vj and ul = vl
whenever l > j.

Definition 3.3. Let X be a finite totally ordered set, M be a QHS on X, a = minX, b = maxX,
M ′ = M \{ba} and IM be the ideal in K〈X〉 generated by M ′. A monomial u = u1 . . . um ∈ 〈X〉m is
called minimal (with respect to M) if u /∈ IM and u 6 v whenever v ∈ 〈X〉m and u = v (mod IM )
(in other words, u is minimal in the right-to-left lexicographical ordering among the degree m
monomials belonging to the coset u+ IM ).

We say that a minimal monomial u ∈ 〈X〉m is tame if there is v ∈ 〈X〉m such that u =
v (mod IM ) and there is j ∈ {1, . . . m} such that vj = b and vl = ul for every l > j.

A non-tame minimal monomial will be called singular.
We say that the QHS M is regular if there is m ∈ N such that there are no singular monomials

of degree m.

Remark 3.4. It is easy to see that under the assumptions of Definition 3.3, for any v ∈ 〈X〉m
such that v /∈ IM , there is a unique minimal monomial u ∈ 〈X〉m satisfying v = u (mod IM ).
Furthermore, if v does not belong to the ideal JM in K〈X〉 generated by M , then u /∈ JM as well.
The latter happens because IM ⊂ JM .

As usual, a submonomial of a monomial u1u2 . . . um is a monomial of the shape ujuj+1 . . . uk,
where 1 6 j 6 k 6 m. From the above definition it immediately follows that a submonomial of
a minimal monomial is minimal and that a minimal monomial which has a tame submonomial is
tame itself. This, in turn, implies that a submonomial of a singular monomial is singular. These
observations are summarized in the next lemma.

Lemma 3.5. Let X be a finite totally ordered set and M be a QHS on X. Let also u ∈ 〈X〉m
and v be a submonomial of u. Then minimality of u implies minimality of v and singularity of u
implies singularity of v.

The following lemma shows the relevance of the above definition.

Lemma 3.6. Let X be a finite totally ordered set and M be a regular QHS on X. Then the

corresponding quadratic semigroup algebra RM is finite dimensional.

Proof. Let a = minX, b = maxX, M ′ = M \ {ab}, IM and JM be the ideals in K〈X〉, generated
by M ′ and M respectively. Since M is regular, there is m ∈ N such that there are no singular
monomials of degree m. In order to show that RM = K〈X〉/JM is finite dimensional it suffices
to show that RM is (m + 1)-step nilpotent, or equivalently, that 〈X〉m+1 ⊂ JM . Assume the
contrary. Then (see Remark 3.4) there is a minimal monomial u = u1 . . . umum+1 ∈ 〈X〉m+1, which
does not belong to JM . By Lemma 3.5, the submonomial ũ = u1 . . . um is also minimal. Since
there are no singular monomials of degree m, ũ is tame. That is, there are j ∈ {1, . . . ,m} and
ṽ = v1 . . . vm ∈ 〈X〉m such that ũ = ṽ (mod IM ), vj = b and vl = ul whenever j < l 6 m. If
vjuj+1 = buj+1 ∈ M , then

u = v1 . . . vj−1buj+1 . . . um+1 = 0 (mod JM )

and therefore u ∈ JM , which is a contradiction. If buj+1 /∈ M , then since b = maxX, the definition
of a QHS implies that there are c, d ∈ X such that buj+1 − cd ∈ M ′ and uj+1 > d. Hence

u = v1 . . . vj−1buj+1 . . . um+1 = v1 . . . vj−1cduj+2 . . . um+1 (mod IM ).

Since the last monomial in the above display is less than u (in the right-to-left lexicographical
ordering) we have obtained a contradiction with the minimality of u.
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We also need the following property of singular monomials.

Lemma 3.7. Let X be a finite totally ordered set, a = minX, b = maxX, M be a QHS on X,

M ′ = M \ {ba}, IM be the ideal in K〈X〉 generated by M ′ and u = u1 . . . um ∈ 〈X〉m be a singular

monomial. Assume also that 1 6 k 6 m and v = v1 . . . vk ∈ 〈X〉k is such that v = u1 . . . uk (mod
IM ). Then there exists w = w1 . . . wm ∈ 〈X〉m such that wm > vk and u = w (mod IM ).

Proof. We shall use induction by m− k. If m− k = 0, then m = k and w = v satisfies all desired
conditions. Thus we have our basis of induction. Assume now that n ∈ N and that the statement
of the lemma holds whenever m− k < n. We have to prove it the case m− k = n.

First, consider the case uk+1 > vk. Since v1 . . . vkuk+1 = u1 . . . ukuk+1 (mod IM ) and the dif-
ference between the degrees of u and v1 . . . vkuk+1 is n − 1, the induction hypothesis provides us
with w = w1 . . . wm ∈ 〈X〉m such that wm > uk+1 and u = w (mod IM ). Since uk+1 > vk, we have
wm > vk, as required.

It remains to consider the case uk+1 < vk. Observe that vk 6= b. Indeed, otherwise the equality

v1 . . . vk−1vkuk+1 . . . um = u (mod IM ) (3.1)

implies that u is tame. Since uk+1 < vk, the degree 2 monomial vkuk+1 features in exactly one of
the supports of the elements of M (see the definition of a QHS). Since vk 6= b, vkuk+1 6= ba and
therefore there is exactly one g ∈ M ′ such that vkuk+1 ∈ supp (g). There are three possibilities:
either g = vkuk+1 or g = vkuk+1− cd with d < uk+1 or g = cd− vkuk+1 with d > vk. If g = vkuk+1,
we have vkuk+1 ∈ IM and therefore (3.1) implies that u ∈ IM , which contradicts the minimality
of u. Hence g = vkuk+1 − cd with d < uk+1 or g = cd − vkuk+1 with d > vk. In either case
vkuk+1 = cd (mod IM ) and (3.1) implies that

u = v1 . . . vk−1cduk+2 . . . um (mod IM ). (3.2)

In the case d < uk+1 the monomial in the right-hand-side of (3.2) is less than u, which contradicts
the minimality of u. It remains to consider the case d > vk. Since the difference between the
degrees of u and v1 . . . vk−1cd is n− 1, by the induction hypothesis, there is w = w1 . . . wm ∈ 〈X〉m
such that wm > d and u = w (mod IM ). Since d > vk, we have wm > vk, as required.

We also need a slight improvement of Lemma 3.7 in a particular case.

Definition 3.8. Let X be a finite totally ordered set and M be a QHS on X. We say that d ∈ X
is pure if a > b > c > d whenever ab− cd ∈ M .

Lemma 3.9. Let X be a finite totally ordered set, a = minX, b = maxX, M be a QHS on X,

M ′ = M \ {ba}, IM be the ideal in K〈X〉 generated by M ′ and u = u1 . . . um ∈ 〈X〉m be a singular

monomial such that um is pure. Assume also that 1 6 k < m and v = v1 . . . vk ∈ 〈X〉k is such

that v = u1 . . . uk (mod IM ). Then there exists w = w1 . . . wm ∈ 〈X〉m such that wm > vk and

u = w (mod IM ).

Proof. If um > vk, we can just take w = u. Thus we can assume that vk > um. By Lemma 3.5,
u1 . . . um−1 is singular and therefore Lemma 3.7 provides y = y1 . . . ym−1 ∈ 〈X〉m−1 such that
y = u1 . . . um−1 (mod IM ) and ym−1 > vk. Clearly,

u = y1 . . . ym−2ym−1um (mod IM ). (3.3)

Since ym−1 > vk > um, the monomial ym−1um features in one of the elements of M . Next, ym−1 6= b
(otherwise (3.3) implies that u is tame). Hence ym−1um 6= ba and therefore ym−1um belongs to the
support of some g ∈ M ′. Taking into account that um is pure, we have three possibilities: either
g = ym−1um or g = ym−1um − cd with d < um or g = cd− ym−1um with d > ym−1.
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If g = ym−1um, ym−1um ∈ IM and therefore (3.3) implies that u ∈ IM , which contradicts the
minimality of u. Hence g = ym−1um − cd with d < um or g = cd − ym−1um with d > ym−1. In
either case ym−1um = cd (mod IM ) and (3.3) gives

u = y1 . . . ym−2cd (mod IM ). (3.4)

In the case d < uk+1 the monomial in the right-hand-side of (3.4) is less than u, which contradicts
the minimality of u. It remains to consider the case d > ym−1 > vk. In this case w = y1 . . . ym−2cd
satisfies all desired conditions.

Corollary 3.10. Let X be an n-element totally ordered set, a = minX, b = maxX, M be a QHS

on X, M ′ = M \ {ba}, IM be the ideal in K〈X〉 generated by M ′ and u = u1 . . . um ∈ 〈X〉m be a

singular monomial. Then the set {j : uj is pure} has at most n− 1 elements.

Proof. Assume the contrary. Then we can choose j1, . . . , jn ∈ N such that 1 6 j1 < . . . < jn 6 n
and each ujk is pure. Let a1 = uj1 and take y(1) = u1 . . . uj1−1. Clearly u1 . . . uj1 = y(1)a1 and
therefore u1 . . . uj1 = y(1)a1 (mod IM ). By Lemma 3.9, there are a2 > a1 and a monomial y(2) ∈
〈X〉j2−1 such that u1 . . . uj2 = y(2)a2 (mod IM ). Applying Lemma 3.9 again, we see that there
are a3 > a2 and a monomial y(3) ∈ 〈X〉j3−1 such that u1 . . . uj3 = y(3)a3 (mod IM ). Proceeding
this way we obtain a1, . . . , an ∈ X and the monomials y(k) ∈ 〈X〉jk−1 such that u1 . . . ujk =
y(k)ak (mod IM ) for 1 6 k 6 n and, most importantly, a1 < . . . < an. Since X has n elements,
the latter can only happen if an = b. Then the equality u1 . . . ujn = y(n)an (mod IM ) implies that
u = y(n)bujn+1 . . . um (mod IM ), which means that u is tame. This contradiction completes the
proof.

4 The extension construction for a Quasierhöhungssysteme

Throughout this section n > 5 is an integer, X = {x1, . . . , xn} is an n-element set with the
total ordering x1 < x2 < . . . < xn and the (n − 4)-element set X0 = X \ {x1, x2, xn−1, xn} =
{x3, . . . , xn−2} carries the total ordering inherited from X. Let also M0 be a QHS on X0. By
Remark 3.2, xn−2x3 ∈ M0. As usual, M

′

0 = M0 \ {xn−2x3}.
We consider M,M ′ ⊂ K〈X〉 defined in the following way:

M ′ = M ′

0 ∪ {xnxj − xjx1 : 2 6 j 6 n− 2} ∪ {xn−1xj+1 − xjx2 : 2 6 j 6 n− 3}

∪ {xnxn − xn−1x1, xnxn−1 − xn−2x2, xn−1xn−1 − xn−2x3, xn−1x2 − x1x1}

and
M = M ′ ∪ {xnx1}.

It is straightforward to verify that M is a QHS on X.
Symbols J and I stand for the ideals in K〈X〉 generated by M and M ′ respectively. Similarly,

J0 and I0 are the ideals in K〈X0〉 generated by M0 and M ′

0 respectively.

Lemma 4.1. Let m ∈ N and u = u1u2 . . . um ∈ 〈X〉m be a singular (with respect to M) monomial.

Then the set
{
j : uj ∈ {x2, xn, xn−1}

}
has at most n− 1 elements.

Proof. From the way we defined M it easily follows that xn, xn−1 and x2 are pure. It remains to
apply Corollary 3.10.

Lemma 4.2. Let k be a non-negative integer and a ∈ {x2, . . . , xn−2}. Then xkna = axk1 (mod I).

Proof. From the definition of M it follows that xna− ax1 ∈ M ′ ⊂ I. That is, xna = ax1 (mod I).
The required inequality now follows via an obvious inductive argument.
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Lemma 4.3. Let q = 5n−9
2 if n is odd and q = 5n−8

2 if n is even. Then there exists a monomial

u = u1 . . . uq ∈ 〈X〉q such that uq = xn and u = xq1 (mod I).

Proof. Since xn−1x2 − x1x1 ∈ M ′ ⊂ I, we see that for every k > 2, xk1 = xn−1x2x
k−2
1 (mod I). By

Lemma 4.2, x2x
k−2
1 = xk−2

n x2 (mod I). Hence

xk1 = xn−1x
k−2
n x2 (mod I) for every k > 2. (4.1)

Since xnxn−xn−1x1 ∈ M ′ and xnxn−1−xn−2x2 ∈ M ′, we get x3n = xnxn−1x1 = xn−2x2x1 ( mod I).
Hence xkn = xk−3

n xn−2x2x1 (mod I). By Lemma 4.2, xk−3
n xn−2 = xn−2x

k−3
1 (mod I). Combining

the last two equalities, we obtain

xkn = xn−2x
k−3
1 x2x1 (mod I) for every k > 3. (4.2)

For k > 5, we can apply (4.2) to xk−2
n in (4.1), which gives

xk1 = xn−1xn−2x
k−5
1 x2x1x2 (mod I) for every k > 5. (4.3)

Since xnx2 − x2x1 ∈ M ′ and xn−1x3 − x2x2 ∈ M ′, we have

x2x1x2 = xnx2x2 = xnxn−1x3 (mod I). (4.4)

Next, for 2 6 j 6 n − 4, we have xn−1xj+1 − xjx2 ∈ M ′, xnxj+1 − xj+1x1 ∈ M ′ and xn−1xj+2 −
xj+1x2 ∈ M ′. Hence,

xjx2x1x2 = xn−1xj+1x1x2 = xn−1xnxj+1x2 = xn−1xnxn−1xj+2 (mod I) for 2 6 j 6 n− 4. (4.5)

Finally, since xn−1xn−2 − xn−3x2 ∈ M ′, xnxn−2 − xn−2x1 ∈ M ′, xnxn−1 − xn−2x2 ∈ M ′ and
xnxn − xn−1x1 ∈ M ′, we get

xn−3x2x1x2x1 = xn−1xn−2x1x2x1 = xn−1xnxn−2x2x1 =
= xn−1xnxnxn−1x1 = xn−1xnxnxnxn (mod I).

(4.6)

Case 1: n is odd. In this case n = 2k + 3 and q = 5k + 3 for some k ∈ N. Using (4.3)
consecutively k times, we see that

xq1 = (xn−1xn−2)
kx1x1(x2x1x2)

kx1 (mod I).

Since x1x1 = xn−1x2 (mod I), we obtain

xq1 = (xn−1xn−2)
kxn−1x2(x2x1x2)

kx1 (mod I).

Applying (4.5) consecutively k − 1 times, we have

xq1 = (xn−1xn−2)
kxn−1(xn−1xnxn−1)

k−1xn−3x2x1x2x1 (mod I).

According to (4.6),

xq1 = (xn−1xn−2)
kxn−1(xn−1xnxn−1)

k−1xn−1xnxnxnxn (mod I),

which completes the proof in the case of odd n.
Case 2: n is even. In this case n = 2k + 2 and q = 5k + 1 for some k > 2. Using (4.3)

consecutively k times, we see that

xq1 = (xn−1xn−2)
k(x2x1x2)

kx1 (mod I).
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By (4.4),
xq1 = (xn−1xn−2)

kxnxn−1x3(x2x1x2)
k−1x1 (mod I).

Applying (4.5) consecutively k − 2 times, we have

xq1 = (xn−1xn−2)
kxnxn−1(xn−1xnxn−1)

k−2xn−3x2x1x2x1 (mod I).

According to (4.6),

xq1 = (xn−1xn−2)
kxnxn−1(xn−1xnxn−1)

k−2xn−1xnxnxnxn (mod I),

which completes the proof in the case of even n.

Lemma 4.4. Let k be a non-negative integer. If ab ∈ M ′

0, then axk1b ∈ I. If ab − cd ∈ M ′

0, then

axk1b = cxk1d (mod I).

Proof. If ab ∈ M ′

0, we have ab ∈ I0 ⊂ I and therefore Lemma 4.2 implies that axk1b = xknab ∈ I.
If ab− cd ∈ M ′

0, we can use Lemma 4.2 to see that axk1b = xknab = xkncd = cxk1d (modI).

Since I0 is the ideal in K〈X0〉 generated by M ′

0, the above lemma immediately implies the
following result.

Corollary 4.5. Let u, v ∈ 〈X0〉m and u = v ( mod I0). Then ũ = ṽ ( mod I) for every non-negative

integers k1, . . . , km−1, where u = u1 . . . um, v = v1 . . . , vm, ũ = u1x
k1
1 u2x

k2
1 . . . x

km−1

1 um and ṽ =

v1x
k1
1 v2x

k2
1 . . . x

km−1

1 vm.

Lemma 4.6. Let m ∈ N, m > 3 and u1, . . . , um ∈ 〈X0〉m be such that the monomial u1 . . . um−2 is

M0-tame. Let also k1, . . . , km−1 be non-negative integers and w = u1x
k1
1 u2x

k2
1 . . . x

km−1

1 um. Then

w is not M -singular.

Proof. Since u1 . . . um−2 is M0-tame, there are v1 . . . vm−2 ∈ 〈X0〉m−2 and j ∈ {1, . . . ,m− 2} such
that

u1 . . . um−2 = v1 . . . vm−2 (mod I0), vj = xn−2 and ul = vl for j < l 6 m− 2. (4.7)

According to (4.7) and Corollary 4.5,

w = v1x
k1
1 . . . vj−1x

kj−1

1 xn−2x
kj
1 uj+1x

kj+1

1 . . . um−1x
km−1

1 um (mod I).

Applying Lemma 4.2 to xn−2x
kj
1 and using the above display, we obtain

w = yxn−2uj+1x
kj+1

1 . . . um−1x
km−1

1 um (mod I), where y = v1x
k1
1 . . . vj−1x

kj−1

1 x
kj
n . (4.8)

Since xn−2 = maxX0, the monomial xn−2uj+1 features in exactly one g ∈ M0. If uj+1 > x3,
g ∈ M ′

0 and there are two possibilities: either g = xn−2uj+1 or g = xn−2uj+1−cd with d < uj+1. In
the first case (4.8) implies that w ∈ I and therefore w is non-minimal and therefore non-singular.
In the second case (4.8) gives

w = ycdx
kj+1

1 . . . um−1x
km−1

1 um (mod I).

The monomial in the right-hand side of the above display is less than w and again we see that w
is non-minimal and therefore non-singular.

It remains to consider the case uj+1 = x3. Since xn−1xn−1 − xn−2x3 ∈ M ′, we have xn−2x3 =
xn−1xn−1 (mod I). Thus in this case (4.8) implies that

w = yxn−1xn−1x
kj+1

1 . . . um−1x
km−1

1 um (mod I). (4.9)
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Again, we have two possibilities: either kj+1 > 0 or kj+1 = 0. First, assume that kj+1 = 0. In this
case (4.9) reads

w = yxn−1xn−1uj+2x
kj+2

1 . . . um−1x
km−1

1 um (mod I).

Since uj+2 ∈ X0, from the definition ofM it follows that there is g ∈ M ′ such that g = xn−1uj+2−cd
with d < uj+1. Then xn−1uj+2 = cd (mod I) and according to the above display

w = yxn−1cdx
kj+2

1 . . . um−1x
km−1

1 um (mod I).

The monomial in the right-hand side of the above display is less than w and therefore w is non-
minimal and hence non-singular. Finally, assume that kj+1 > 0. Since xnxn − xn−1x1 ∈ M ′, we
have xn−1x1 = xnxn (mod I) and (4.9) implies that

w = yxn−1xnxnx
kj+1−1
1 uj+3x

kj+3

1 . . . um−1x
km−1

1 um (mod I).

The above display shows that w is tame if it is minimal. Thus in any case, w is non-singular.

The main result of this section is the following theorem.

Theorem 4.7. If M0 is regular, then M is also regular.

Proof. Assume that M0 is regular. Then there is m ∈ N such that there are no M0-singular
monomials in 〈X0〉m−2. Let q = 5n−9

2 if n is odd and q = 5n−8
2 if n is even and set r = nmq.

It suffices to show that there are no M -singular monomials in 〈X〉r. Assume that there exists an
M -singular u ∈ 〈X〉r. By Lemma 4.1, the set

{
j : uj ∈ {x2, xn, xn−1}

}
has at most n− 1 elements.

It follows that there is a submonomial v of u of degree mq such that v does not contain x2, xn−1 or
xn. By Lemma 3.5, v is singular. If at least m entries of v belong to X0, Lemma 4.6 implies that v
is non-singular and we arrive to a contradiction. Thus the degree mq monomial v contains at most
m− 1 entries from X0. Since all other entries of v are x1, it follows that x

q
1 is a submonomial of v.

Hence xq1 is singular, which contradicts Lemma 4.3.

It is straightforward to see that the cardinalities of M and M0 are related by the equality
|M | = |M0|+ 2n− 3. Hence Theorem 4.7 immediately implies the following result.

Corollary 4.8. Suppose that n > 5 and that there is a k-element regular QHS on an (n−4)-element

set. Then there is a (k + 2n − 3)-element regular QHS on an n-element set.

Applying Corollary 4.8 several times, we, after an exercise on summing up an arithmetic series,
obtain the following result.

Proposition 4.9. Let m, j ∈ N and there is a k-element regular QHS on an m-element set. Then

there is a (k + 2jm+ 4j2 + j)-element regular QHS on an (m+ 4j)-element set.

5 Proof of Theorem 1.3

We start with the following 4 specific examples of QHS. For 1 6 m 6 4, we set Xm = {x1, . . . , xm}
ordered by x1 < x2 < x3 < x4. Now we define a QHS Mm on the m-element totally ordered set
Xm:

M1 = {x1x1}, M2 = {x2x2 − x1x1, x2x1}, M3 = {x3x3 − x2x1, x3x2 − x1x1, x3x1, x2x2},
M4 = {x4x4 − x3x1, x4x3 − x2x1, x4x2 − x1x1, x3x3 − x2x2, x3x2, x4x1}.

Lemma 5.1. For each m ∈ {1, 2, 3, 4}, the QHS Mm is regular.
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Proof. It is straightforward to see that for each Mm, each element of Xm is pure. By Corollary 3.10
an Mm-singular monomial can not have the degree more than m − 1. Hence there are no Mm-
singular monomials of degree m. By definition, each Mm is regular.

Let j be an arbitrary non-negative integer. By Lemma 5.1, there is a regular 1-element QHS on a
1-element set. By Proposition 4.9, there is a (4j2+3j+1)-element regular QHS on a (4j+1)-element
set. By Lemma 5.1, there is a regular 2-element QHS on a 2-element set. By Proposition 4.9, there
is a (4j2+5j+2)-element regular QHS on a (4j+2)-element set. By Lemma 5.1, there is a regular
4-element QHS on a 3-element set. By Proposition 4.9, there is a (4j2+7j+4)-element regular QHS
on a (4j +3)-element set. Finally, by Lemma 5.1, there is a regular 6-element QHS on a 4-element
set. By Proposition 4.9, there is a (4j2 + 9j + 6)-element regular QHS on a (4j + 4)-element set.

For n ∈ N, we define δn = 4j2+3j+1 if n = 4j+1, δn = 4j2+5j+2 if n = 4j+2, δn = 4j2+7j+4
if n = 4j+3 and δn = 4j2+9j+6 if n = 4j+4. The above observations mean that for every n ∈ N,
there is a δn-element regular QHS on an n-element set. According to Lemma 3.6, this means that
for every n ∈ N, there is a quadratic semigroup algebra Rn with n generators given by δn relations
such that Rn is finite dimensional. On the other hand, a routine check shows that δn is precisely
the smallest integer greater than n2+n

4 . This completes the proof of Theorem 1.3.

We conclude with the following remarks.

Remark 5.2. We have just seen that for n 6 4, there is a δn-element QHS on an n-element set
X for which every c ∈ X is pure. It turns out that n = 4 is the last n for which this phenomenon
occurs. More precisely, one can easily see that a QHS on an n-element set X, for which every c ∈ X
is pure, must contain at least n2+2n

4 elements.

Remark 5.3. Vershik [14] conjectured that for every n > 3, there is a finite dimensional quadratic

algebra with n generators given by n2
−n
2 relations. This conjecture is proved in [7] (see also [3] for

the proof in the case 3 6 n 6 7). Note that for n > 4, this statement could also be obtained as a
consequence of Theorem 1.3.

Remark 5.4. It would be interesting to get a tight enough estimate of the order of nilpotency of
quadratic semigroup algebras which we construct while proving Theorem 1.3. An estimate, that
follows from the proof is way higher than the actual value for small n.

Remark 5.5. Let R be a quadratic algebra with n generators given by d 6 n2 relations. For
k ∈ N, Rk stands for the degree k homogeneous component of R. By the Golod–Shafarevich
estimate dimR3 > min{0, n3 − 2dn}. Anick [1, 2] proved that this estimate for dimR3 is actually
attained for every n and d. An analysis of his proof shows that it is also attained if we restrict
ourselves to semigroup algebras.

On the other hand (see [7]), there is an R with n = d = 3 for which R5 = {0}, while Theorem 1.2
implies that dimR5 > 0 if R is a semigroup algebra with n = d = 3. So, for every pair (n, d),
the minimal dimensions of the third component for general quadratic algebras and for semigroup
quadratic algebras coincide, while the same statement fails for the dimension of the fifth component.
The situation with the fourth component remains unclear. Its clarification is a part of the following
much more general question.

Question 5.6. What is the minimal dimension of Rk, where R is a semigroup quadratic algebra

with n generators given by d 6 n2 relations?

Acknowledgements. We are grateful to the referee for a comment, which prompted us to
improve the presentation of the paper.
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