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Abstract

We introduce a theory of a class of finite-dimensional vessels, a concept originating from the
pioneering work of M. Livšic [Liv1]. This work may be considered as a first step toward analyzing
and constructing Lax Phillips scattering theory for Sturm - Liouville differentiable equations on the
half axis (0,∞) with singularity at 0. We also develop a rich and interesting theory of vessels with
deep connections to the notion of τ function, arising in non linear differential equations and to the
Galois differential theory for LDEs.
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3.2 Vessels as Bäcklund transformations. Crum transformations . . . . . . . . . . . . . . . . 15
3.3 The differential ring R∗ associated to an elementary input SL vessel . . . . . . . . . . . 17
3.4 General Sturm–Liouville vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusions and remarks 31

1 Introduction

The Sturm–Liouville (SL) differential equation is a second order differential equation with real valued
coefficients of the form

− d

dx

(
p(x)

dy(x)

dx

)
+ q(x)y(x) = λw(x)y(x),
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where y(x) is a function of the free variable x. Here p(x) > 0, q(x) and w(x) > 0 are specified and are
integrable on the closed real interval [a, b]. It is usually considered with separated boundary conditions
of the form

y(a) cos(α)− p(a)y′(a) sin(α) = 0,
y(b) cos(β)− p(b)y′(b) sin(β) = 0

where α, β ∈ [0, π).
It is well known that in the Hilbert space L2([a, b], w(x)dx) there is an orthonormal basis of solutions

to this equation, see for example [Ha], and important examples for some choices of p(x), q(x), w(x) are
the Bessel and Legendre equations. A special case of this equation is obtained for p(x) = w(x) = 1, i.e.,

− d2

dx2
y(x) + q(x)y(x) = λy(x), (1)

where the parameter q(x) is usually called the potential. Investigating this class of equations is classical
and extensive, dating back to C. Sturm [S] and R. Liouville [L] and over the years a wide spectrum of
techniques was developed for solving this equation. For example, the monodromy preserving deformation
problem of Linear Differential Equations (LDE) was extensively studied by Schlesinger [Shl], R. Fuchs
[Fu] and Garnier [G]. They focused on the Sturm–Liouville equation primarily as the simplest non
trivial LDE. (See bibliography for chapters 7,8,9 in [CoLe] for more information.) The Scattering theory
of Lax Phillips [LxPh] focused on this equation as well, constructing the so called spectral function for
a given potential and initial conditions y′(0) − hy(0) = 0 and scattering data. It is also worthwhile to
mention the work of A. Povzner [Pov] who used Riemannian transformation to study the solutions of
the PDE

∂2

∂x2
u(x, y)− q(x)u(x, y) =

∂2

∂y2
u(x, y)− q(y)u(x, y),

which is closely connected to the study of solutions of the SL equation. The inverse scattering problem,
which reconstructs the potential q(x) from the scattering data was solved by a student of A. Povzner,
V.A. Marchenko in [Mar] and by M.I. Gelfand and I.M. Levitan in [GL].

In the work of Moshe Livšic [Liv1], a theory of vessels was developed, connecting the theory of
commuting non self-adjoint operators to the theory of systems intertwining solutions of PDEs. Using
separation of variables in this theory, one finds that PDEs becomes LDEs with a spectral parameter
[BV]. Some ideas of Moshe Livšic were further developed in [M], presenting a theory of overdetermined
2D systems, invariant in one direction. As we have just mentioned, the transfer functions of such a
system map solutions of the input LDE with a spectral parameter λ to solutions of the output LDE
with the same spectral parameter (this theory was further developed in this setting in [AMV]). In a
special case of such systems, LDEs are constructed from solutions of the Sturm–Liouville differential
equation (1). Using realization theory, developed in [M] one can construct more complicated differential
equations at the output starting from a trivial SL equation (q(t2) = 0) or more generally from SL
equations with potentials, for which the solutions are obtainable.

This paper considers finite-dimensional vessels as a first step to understand the obtained potentials.
As a result convergence problems do not arise and the tools are mostly (differentially) algebraic. In
an analogy to [JMU] we consider this theory as a ”deformation theory” of Sturm–Liouville differential
equations. One of the reasons to consider it as a deformation theory is the appearance of an analogue of
the τ(x)-function, whose role is to generate a differential ring, to which all the involved objects belong.

For example the formula for the potential at the output is q∗(x) = −2 ∂2

∂x2 log τ(x) which is identical to
the classical case.
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The main ideas in this paper are the following. First is the new Definition 2, which significantly
simplifies the original definition of the vessel, appearing in [Liv1, M]. For example, it follows from this
definition that the Lyapunov equation is redundant (Lemma 2.1). The second is a detailed study of a
special example, appearing in Definition 4, which illustrates how one can apply this theory to the study
of the differential equation (1). It is very well known that the role of the tau function is extremely
important in the study of differential equations in general and in the study of (1) particularly. The
τ -function arises as a determinant of a solution of a Lyapunov equation (16), associated to the vessel. A
similar formula for the tau function appears in the work [KV] of V. Katsnelson and D. Volok, where it is
used a Sylvester equation (which actually is an affine version of a Lyapunov equation, appearing in our

case). One of the main theorems, Theorem 3.15, shows that
τ ′

τ
generates all the objects associated with

the differential equation (1) and the corresponding vessel. In order to represent how the main result,
Theorem 3.15 arises, we first show its form for the simple case when the input SL equation is trivial
(q(t2) = 0). If one denotes by R∗ (Definition 6) the differential ring generated by { τ

′

τ , 1}, then we prove
in Theorem 3.10 that the entries of the transfer function and of the potential at the output q∗(t2) are
in R∗, which probably explains the appearance of this function in many applications.

In the more general case (Definition 10), we distinguish between the input R and the output R∗
differential rings. If the input SL equation (1) is defined by a potential qin = 2

d2

dt2
η and the output SL

equation (1) by qout = 2
d2

dt22
τ , then one defines in Definition 10 the input differential ring R, generated

by {η
′

η
, 1}, and the output differential ring R∗, generated by {η

′

η
,
τ ′

τ
, 1}. In the first case when qin = 0,

we obtain a special case, since then R = {1} is a trivial differential ring.
Another innovation of this paper is the application of differential algebraic methods to linear differ-

ential equations [PS]. As a result of the main Theorem 3.15 the τ -function, together with the data at the
input generate a differential Piccard-Vessiot ring for the output LDE. As a result the Galois differential
group can be explicitly calculated [H] and turns out to be a finite group, as discussed in Conclusions.
From the point of view of differential Galois theory, an interesting example arises of a finitely generated,
filtered differential ring, whose properties may be axiomatized and studied in relationship to arbitrary
rings (Corollary 3.16). In the general case, when the vessel is not finite-dimensional, one can study
existence of Liouvillian solutions for the output LDE.

2 Overdetermined time invariant 2D systems

2.1 Conservative vessel [MVc]

The notion of a vessel as it appear in this article was defined by M.S. Livšic in [Liv2]. It is closely con-
nected to the study of a pair of commuting non self-adjoint operators [LKMV] with compact imaginary
parts and first appeared in [Liv1]. The origins of this theory are in the fundamental work of M. Livsic
and B. Brodskii [BL] which study the connection between non self-adjoint operators and meromorphic
functions in the upper half plane. For each non self-adjoint operator A1 there corresponds a naturally
defined characteristic function S(λ) and conversely. Multiplicative structure of the function S(λ) is in
a correspondence with invariant subspaces of the operator A1. A pair of commuting non self adjoint
operators A1, A2 are studied via connection to their joint characteristic function of two variables S(λ,w)
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[LKMV] and there are similar results concerning invariant subspaces of both A1, A2. The notion of a
vessel arises as a collection of operators and spaces, which ”encode” the properties of A1, A2. More
precisely a (conservative) vessel is the collection

V = (A1, A2, B;σ1, σ2, γ, γ∗;H, E),

for which the following axioms hold:
Aj +A∗j +BσjB

∗ = 0, j = 1, 2
A2A1 −A1A2 = 0,
−A2Bσ1 +A1Bσ2 +Bγ = 0,
A∗2Bσ1 −A∗1Bσ2 +Bγ∗ = 0,
γ = γ∗ + σ1B

∗Bσ2 − σ2B∗Bσ1.

Here the first axiom means that the operators are non self-adjoint, but their imaginary part may be
decomposed through an auxiliary space E . The second axiom is commutativity, the last three axioms
determine additional connections between factorization operators B, σ1, σ2 and some operators γ, γ∗.
These results were further explored in [BV] and applied to the theory of systems. The class of systems,
arising in this manner is defined using the vessel operators

Σ :


∂
∂t1
x(t1, t2) = A1x(t1, t2) +B σ1 u(t1, t2)

∂
∂t2
x(t1, t2) = A2x(t1, t2) +B σ2 u(t1, t2)

y(t1, t2) = u(t1, t2)−B∗x(t1, t2)

and intertwines solutions of Partial Differential Equations PDEs. More precisely taking u(t1, t2) as a
solutions of the input PDE

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0

one obtains that y(t1, t2) is a solution of the output PDE

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ∗]y(t1, t2) = 0

with constant coefficients σ1, σ2, γ,γ∗. It is shown [BV] how these axioms for a two operator vessel are
derived from the system theory point of view. Independence of the system transition on the path and
overdetermindness of the input/output signals is shown to be equivalent to the set of these axioms.
These ideas have its origins in the work of M. Livšic [Liv1].

There are also some result, considering vessels on Riemann manifolds [Ga], whose vector bundles
have fibers that are Hilbert spaces.

In a more general setting a t1-invariant conservative vessel [M, MVc] is a collection of operators
and spaces, defined for values of t2 in an interval I

GV = (A1(t2), A2(t2), B(t2);σ1(t2), σ2(t2), γ(t2), γ∗(t2);H, E),

where H, E are Hilbert spaces and

A1(t2), A2(t2) : H → H,
B(t2) : E → H,
σ1(t2), σ2(t2), γ(t2) : E → E
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are bounded operators, which satisfy the following axioms:

A1(t2) +A∗1(t2) +B(t2)σ1(t2)B∗(t2) = 0, (2)

A2(t2) +A∗2(t2) +B(t2)σ2(t2)B∗(t2) = 0, (3)

d

dt2
A1(t2) = A2(t2)A1(t2)−A1(t2)A2(t2) (4)

d

dt2

(
B(t2)σ1(t2)

)
−A2(t2)B(t2)σ1(t2) +A1(t2)B(t2)σ2(t2) +B(t2)γ(t2) = 0 (5)

d

dt2

(
B(t2)

)
σ1(t2) +A∗2(t2)B(t2)σ1(t2)−A∗1(t2)B(t2)σ2(t2) +B(t2)γ∗(t2) = 0 (6)

γ(t2) = γ∗(t2) + σ1(t2)B∗(t2)B(t2)σ2(t2)− σ2(t2)B∗(t2)B(t2)σ1(t2) (7)

σ1(t2) = σ∗1(t2), σ2(t2) = σ∗2(t2),
γ∗(t2) + γ(t2) = γ∗∗(t2) + γ∗(t2) = − d

dt2
σ1(t2).

(8)

Using simple calculations one can show that the condition (6) is redundant, but it plays an important
role in the theory of vessels and appears here for the completeness of the presentation. Since we are
dealing with t2 dependent operators, we have also to consider smoothness assumptions. In this article
it is enough to make the following:

Assumption 1 On an interval I the following conditions hold

1. Operators A1(t2), A2(t2), B(t2) are bounded operators for each t2 ∈ I,

2. Operators A1(t2), σ1(t2), σ1(t2), γ(t2), γ∗(t2) are continuously differentiable,

3. Operator σ1(t2) is invertible for each value of t2 ∈ I.

The vessel is associated to the input/state/output (i/s/o) system

Σ :


∂
∂t1
x(t1, t2) = A1(t2)x(t1, t2) +B(t2) σ1(t2) u(t1, t2)

∂
∂t2
x(t1, t2) = A2(t2)x(t1, t2) +B(t2) σ2(t2) u(t1, t2)

y(t1, t2) = u(t1, t2)−B∗(t2)x(t1, t2)

(9)

and compatibility conditions for the input/ output signals:

σ2(t2)
∂

∂t1
u(t1, t2)− σ1(t2)

∂

∂t2
u(t1, t2) + γ(t2)u(t1, t2) = 0, (10)

σ2(t2)
∂

∂t1
y(t1, t2)− σ1(t2)

∂

∂t2
y(t1, t2) + γ∗(t2)y(t1, t2) = 0. (11)

A natural notion of equivalence for vessels is called gauge-equivalence and is defined as follows. Two
vessels

V = (A1(t2), A2(t2), B(t2);σ1(t2), σ2(t2), γ(t2), γ∗(t2);H, E),

Ṽ = (Ã1(t2), Ã2(t2), B̃(t2);σ1(t2), σ2(t2), γ(t2), γ∗(t2); H̃, E)
(12)
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are called gauge-equivalent if there exists an operator T (t2) : H → H̃ with densely defined (on at least
the same dense subspace as T (t2)) inverse and derivative such that:

Ã1(t2) = T (t2)A1(t2)T−1(t2)

Ã2(t2) = T (t2)A2(t2)T−1(t2) +
dT (t2)

dt2
T−1(t2)

B̃(t2) = T (t2)B(t2)

(13)

Moreover, the inner products 〈·, ·〉H and 〈·, ·〉H̃ of the spaces H and H̃ respectively are related by the
following formula

〈T−1(t2)x, T−1(t2)x′〉H = 〈x, x′〉H̃. (14)

Gauge transformations have the same role as state space similarities in the realization theory of
matrix-valued functions [KFA]. Since each transformation is realized by an operator, acting between
Hilbert spaces one can compose such transformations, use the inverse T−1(t2) operator for the inverse
transformation and to use an identity operator as the trivial (identity) transformation. If we consider

such transformations for the same (or identified) Hilbert spaces H and H̃, we will obtain a group. At the
Theorem 2.4 we will see that gauge transformation does not change one of the most important notions,
related to the system: its transfer function. Thus gauge transformations may be thought as a ”change
of coordinate” of a given system.

Using [MV1] Theorem 8.1, one can construct a gauge-equivalent vessel, such that A1 is a constant
operator and A2(t2) = 0. The basic idea behind the existence of such an equivalence is the fact that
from the Lax equation (4) it follows that A1(t2) = T−1(t2)A1T (t2), where A1 is a constant operator,
and where T (t2) is an operator generated by A2(t2) as follows: T ′(t2) = −T (t2)A2(t2). Using now the
gauge transformation, defined by this T (t2), we shall obtain that

Ã1 = T (t2)A1(t2)T−1(t2) = T (t2)T−1(t2)A1T (t2)T−1(t2) = A1,

is constant and

Ã2 = T (t2)A2(t2)T−1(t2) + T ′(t2)T−1(t2) = T (t2)A2(t2)T−1(t2)− T (t2)A2(t2)T−1(t2) = 0.

Moreover defining X(t2) = T (t2)T ∗(t2), one can show that the condition (5) for B̃(t2) = T (t2)B(t2)
becomes [MV1, Lemma 8.2]

d

dt2
[B̃(t2)σ1(t2)] = −A1B̃(t2)σ2(t2)− B̃(t2)γ(t2), A1 = Ã1 is constant,

and the condition (2) gives us

A1X(t2) + X(t2)A∗1 + B̃(t2)σ1(t2)B̃∗(t2) = 0.

The condition (3) then results in

d

dt2
X(t2) = B̃(t2)σ2(t2)B̃∗(t2).

Using these ideas we define a notion of a vessel of a very special kind, in which we give up the positive
definiteness of X(t2) and which enables us to develop a theory of ”perturbations” of the potential in
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the Sturm–Liouville differential equation. We can also motivate this as follows. In the case X(t2) has a
constant signature, it follows that any such X(t2) factors as X(t2) = T (t2)JT ∗(t2), where J is a constant
signature matrix. Then use the induced by this J , Krein space, instead of the Hilbert space H appearing
in the vessel GV, with all the formulas remaining the same.

Definition 2 A vessel is a collection

V = (A1, B(t2),X(t2) = X∗(t2);σ1(t2), σ2(t2), γ(t2), γ∗(t2);H, E),

for which the following vessel conditions hold

d

dt2
(B(t2)σ1(t2)) +A1B(t2)σ2(t2) +B(t2)γ = 0, (15)

A1X(t2) + X(t2)A∗1 +B(t2)σ1(t2)B∗(t2) = 0, (16)

d

dt2
X(t2) = B(t2)σ2(t2)B∗(t2), (17)

γ∗(t2) = γ(t2) + σ1(t2)B∗(t2)X−1(t2)B(t2)σ2(t2)− σ2(t2)B∗(t2)X−1(t2)B(t2)σ1(t2) (18)

σ1(t2) = σ∗1(t2), σ2(t2) = σ∗2(t2),
γ∗(t2) + γ(t2) = γ∗∗(t2) + γ∗(t2) = − d

dt2
σ1(t2).

(19)

The vessel exists on an interval I ⊆ R on which X(t2) is invertible and the regularity assumptions 1
hold. The vessel is called conservative if it holds that X(t2) > 0 on the interval I.

It turns out that the equation (17) is redundant for appropriately chosen initial conditions:

Lemma 2.1 Suppose that B(t2) satisfies (15) and X(t2) satisfies (17), then if the Lyapunov equation
(16)

A1X(t2) + X(t2)A∗1 +B(t2)σ1B
∗(t2) = 0

holds for a fixed t02, then it holds for all t2. If X(t02) = X∗(t02) for a fixed value of t2 = t02, then
X(t2) = X∗(t2) for all t2.

Proof: By differentiating and using equations (15), (17), and (19) it can be seen that left hand side is
a constant. From the formula (17) it follows that

X(t2) = X(t02) +

t2∫
t02

B∗(y)σ2(y)B(y)dy,

and since σ2(y) is self-adjoint, the result on the self adjointness of X(t2) follows.

2.2 The transfer function of a vessel

Let us consider first the conservative vessel GV, satisfying condition (2)-(7) . Collecting all the trajectory
data in the form

u(t1, t2) = uλ(t2)eλt1 ,
x(t1, t2) = xλ(t2)eλt1 ,
y(t1, t2) = yλ(t2)eλt1 ,
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we arrive at the notion of a transfer function. Note that u(t1, t2), y(t1, t2) satisfy PDEs, but uλ(t2), yλ(t2)
are solutions of LDEs with a spectral parameter λ,

λσ2(t2)uλ(t2)− σ1(t2) ∂
∂t2
uλ(t2) + γ(t2)uλ(t2) = 0,

λσ2(t2)yλ(t2)− σ1(t2) ∂
∂t2
yλ(t2) + γ∗(t2)yλ(t2) = 0.

The corresponding i/s/o system becomes
xλ(t2) = (λI −A1(t2))−1B(t2)σ1(t2)uλ(t2)
d
dt2
xλ(t2) = A2(t2)xλ(t2) +B(t2)σ2(t2)uλ(t2)

yλ(t2) = uλ(t2)−B∗(t2)xλ(t2).

The output yλ(t2) = uλ(t2)−B∗(t2)xλ(t2) may be found from the first i/s/o equation:

yλ(t2) = S(λ, t2)uλ(t2),

using the transfer function

S(λ, t2) = I −B∗(t2)(λI −A1(t2))−1B(t2)σ1(t2). (20)

Here λ is outside the spectrum of A1(t2), which is independent of t2 by (4). We emphasize here that
S(λ, t2) is a function of t2 for each λ (which is a frequency variable corresponding to t1).

Proposition 2.2 ([MVc]) S(λ, t2) = I − B∗(t2)(λI − A1(t2))−1B(t2)σ1(t2) has the following proper-
ties:

1. S(λ, t2) is an analytic function of λ in the neighborhood of ∞, where it satisfies:

S(∞, t2) = In×n

.

2. For all λ, S(λ, t2) is a continuous function of t2.

3. In the case X(t2) > 0 the following inequalities are satisfied:

S(λ, t2)∗σ1(t2)S(λ, t2) = σ1(t2), <λ = 0
S(λ, t2)∗σ1(t2)S(λ, t2) ≥ σ1(t2), <λ ≥ 0

for λ in the domain of analyticity of S(λ, t2).

4. For each fixed λ, multiplication by S(λ, t2) maps solutions of the input LDE with a spectral pa-
rameter λ

λσ2(t2)u− σ1(t2)
du

dt2
+ γ(t2)u = 0 (21)

to solutions of the output LDE with the same spectral parameter λ

λσ2(t2)y − σ1(t2)
dy

dt2
+ γ∗(t2)y = 0 (22)
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The converse also holds (see [MVc] chapter 5 on the realization problem).

Theorem 2.3 ([MVc]) For any functions of two variables S(λ, t2), satisfying conditions of the Propo-
sition 2.2, there is a conservative t1 invariant vessel whose transfer function is S(λ, t2).

Recall [CoLe] that the fourth property actually means that

S(λ, t2)Φ(λ, t2, t
0
2) = Φ∗(λ, t2, t

0
2)S(λ, t02) (23)

for fundamental matrices of the corresponding equations:

λσ2(t2)Φ∗(λ, t2, t
0
2)− σ1(t2) ∂

∂t2
Φ∗(λ, t2, t

0
2) + γ∗(t2)Φ∗(λ, t2, t

0
2) = 0,

Φ∗(λ, t
0
2, t

0
2) = I

(24)

and
λσ2(t2)Φ(λ, t2, t

0
2)− σ1(t2) ∂

∂t2
Φ(λ, t2, t

0
2) + γ(t2)Φ(λ, t2, t

0
2) = 0,

Φ(λ, t02, t
0
2) = I.

(25)

From (23) we obtain that
S(λ, t2) = Φ∗(λ, t2, t

0
2)S(λ, t02)Φ−1(λ, t2, t

0
2)

and as a result S(λ, t2) satisfies the following differential equation

∂

∂t2
S(λ, t2) = σ−11 (σ2λ+ γ∗)S(λ, t2)− S(λ, t2)σ−11 (σ2λ+ γ). (26)

For two gauge equivalent vessels V, Ṽ, defined in (12) using the operator T (t2), recall (13) that

Ã1(t2) = T (t2)A1(t2)T−1(t2), B̃(t2) = T (t2)B(t2)

and the adjoint B̃[∗](t2) is given by B̃[∗](t2) = B̃∗(t2)(T (t2)T ∗(t2))−1 as a result of the inner product
property (14). Then we shall obtain that

S̃(λ, t2) = I − B̃[∗](t2)(λI − Ã1(t2))−1B̃(t2)σ1(t2) =
= I −B∗(t2)T−1∗(t2)(T (t2)T ∗(t2))−1(λI − T (t2)A1(t2)T−1(t2))−1T (t2)B(t2)σ1(t2) =
= I −B∗(t2)(λI −A1(t2))−1B(t2)σ1(t2) = S(λ, t2)

But also the converse holds (see [MVc], Theorem 3.5). In order to prove it, we need a notion of minimal
realization of a transfer function. From Theorem 2.3 it follows that for each transfer function there
exists a vessel which realizes it, i.e. S(λ, t2) is the transfer function of the constructed vessel. There is
a natural notion of minimal vessel. A vessel V is called minimal if for each t2 ∈ I

spanAn1B(t2)σ1(t2)E = H, n = 0, 1, 2, . . .

Realization of a transfer function is called minimal if a vessel, which realizes this function is minimal.
For minimal realization the following Theorem holds

Theorem 2.4 ([MVc]) Assume that we are given two minimal t1-invariant vessels V, Ṽ with transfer

functions S(λ, t2), S̃(λ, t2) respectively. Then the vessels are gauge-equivalent iff S(λ, t2) = S̃(λ, t2) for
all points of analyticity.
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Let us focus now on the generalization of the conservative vessel

V = (A1, B̃(t2),X(t2) = X∗(t2);σ1(t2), σ2(t2), γ(t2), γ∗(t2);H, E),

appearing in Definition 2. Consider the following trajectories (only xλ(t2) is changed comparatively to
the conservative vessel GV)

u(t1, t2) = uλ(t2)eλt1 ,
x̃(t1, t2) = T (t2)xλ(t2)eλt1 ,
y(t1, t2) = yλ(t2)eλt1 .

Then one can check that the corresponding i/s/o system is rewritten as
x̃λ(t2) = (λI −A1)−1B̃(t2)σ1(t2)uλ(t2)
d
dt2
x̃λ(t2) = B̃(t2)σ2(t2)uλ(t2)

yλ(t2) = uλ(t2)− B̃[∗](t2)x̃λ(t2).

As a result, its transfer function becomes

S(λ, t2) = I − B̃[∗](t2)(λI −A1)−1B̃(t2)σ1(t2) =

= I − B̃∗(t2)X−1(t2)(λI −A1)−1B̃(t2)σ1(t2)
(27)

The analogues of Proposition 2.2 and Theorem 2.3 also exist in this case and will be considered in the
future works [AMV, M1]. For the present work one do need to consider such generalizations, because
everything is finite-dimensional and may be calculated.

Finally, notice that if we are interested only in the transfer function, then one can bring by gauge-
equivalence the operator A1 to the simplest (up to similarity) form. We can suppose that it is a Jordan
block matrix.

3 Sturm–Liouville vessels

At the first stage elementary input Sturm–Liouville vessels are considered. This case is presented in
order to prepare and discus main theorems and notions for the general case. Then arbitrary input vessel
is considered, i.e. for arbitrary rapidly decreasing sufficiently differentiable q(t2). Notice that we use
the general version of the vessel V appearing in Definition 2.

3.1 Elementary input vessels

3.1.1 Definition of a vessel with elementary input

There exists a choice of parameters of the vessel V such that the input LDE is constructed from solutions
of Sturm–Liouville differential equation (1) with the trivial potential q(t2) = 0. Notice that in this case
the equation (1) is solved by exponents. In the Definition 2 we choose the space E = C2, i.e., a Hilbert
space of dimension 2.

Definition 3 The Sturm–Liouville parameters are given by [Liv2]

σ1 =

[
0 1
1 0

]
, σ2 =

[
1 0
0 0

]
, γ =

[
0 0
0 i

]
.

10



It easy to check that the equation (19) is satisfied. The input compatibility differential equation (21)
then becomes

0 = λσ2(t2)uλ(t2)− σ1(t2) ∂
∂t2
uλ(t2) + γ(t2)uλ(t2) =

= λ

[
1 0
0 0

]
uλ(t2)−

[
0 1
1 0

]
∂
∂t2
uλ(t2) +

[
0 0
0 i

]
uλ(t2) =

=

[
λ − ∂

∂t2

− ∂
∂t2

i

]
uλ(t2)

and if we denote uλ(t2) =

[
u1(λ, t2)
u2(λ, t2)

]
, we shall obtain the system of equations

{
λu1(λ, t2)− ∂

∂t2
u2(λ, t2) = 0

− ∂
∂t2
u1(λ, t2) + iu2(λ, t2) = 0

(28)

From the second equation u2(λ, t2) = −i ∂∂t2u1(λ, t2) and substituting it back to the first equation,
we shall obtain the trivial Sturm–Liouville differential equation with the spectral parameter −iλ for
u1(λ, t2):

− ∂2

∂t22
u1(λ, t2) = −iλu1(λ, t2)

For the output compatibility differential (22), we take γ∗(t2) to be of the following form

γ∗(t2) =

[
−iπ11(t2) −β(t2)
β(t2) i

]

for real valued functions π11(t2), β(t2). Consequently, for the output yλ(t2) =

[
y1(λ, t2)
y2(λ, t2)

]
, we shall

obtain that (22) is

0 = λσ2(t2)uλ(t2)− σ1(t2) ∂
∂t2
yλ(t2) + γ(t2)uλ(t2)

= λ

[
1 0
0 0

]
uλ(t2)−

[
0 1
1 0

]
∂
∂t2
yλ(t2) +

[
−iπ11(t2) −β(t2)
β(t2) i

]
uλ(t2)

=

[
λ− iπ11(t2) − ∂

∂t2
− β(t2)

β(t2)− ∂
∂t2

i

] [
y1(λ, t2)
y2(λ, t2)

]
and thus the system of equations must be satisfied{

(λ− iπ11(t2))y1(λ, t2)− ( ∂
∂t2

+ β(t2))y2(λ, t2) = 0,

(β(t2)− ∂
∂t2

)y1(λ, t2) + iy2(λ, t2) = 0.

From the second equation y2(λ, t2) = i(β(t2)− ∂
∂t2

)y1(λ, t2) and substituting it into the first equation

0 = (λ− iπ11(t2))y1(λ, t2)− i( ∂
∂t2

+ β(t2))(β(t2)− ∂
∂t2

)y1(λ, t2)

= i ∂
2

∂t22
y1(λ, t2) + λy1(λ, t2)− i(π11(t2) + β′(t2) + β2(t2))y1(λ, t2)

and consequently,

− ∂2

∂t22
y1(λ, t2) + (π11(t2) + β′(t2) + β2(t2))y1(λ, t2) = −iλy1(λ, t2),
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which means that y1(λ, t2) satisfies the Sturm–Liouville differential equation (1) with the spectral pa-
rameter −iλ and the potential is q(t2) = π11(t2) + β′(t2) + β2(t2). It turns out that properties of the
transfer function (27) of the vessel V require the compatibility condition on π11, β. In order to see this
one needs to consider so called moments of S(λ, t2). Take the Taylor expansion of that function around
infinity

S(λ, t2) = I −B∗(t2)X−1(t2)(λI −A1)−1B(t2)σ1 = I −
∞∑
n=0

1

λn+1
B∗(t2)X−1(t2)An1B(t2)σ1. (29)

We define coefficients of this Taylour series

Hn(t2) = B∗(t2)X−1(t2)An1B(t2)σ1 (30)

as moments of S(λ, x). Then the following lemma holds:

Lemma 3.1 Let S(λ, t2) be a transfer function of a vessel V defined with Sturm-Liouville vessel pa-
rameters. Then the following compatibility condition must hold

π′11(x) = β′(x)− β2(x). (31)

Proof: Notice that the zero moment is H0(t2) = B∗(t2)X−1(t2)B(t2)σ1 and using it, the linkage
condition (18) becomes

γ∗(t2)− γ = σ2H0(t2)− σ1H0(t2)σ−11 σ2.

From here it follows, denoting the elements of H0(t2) = [Hij
0 ], i, j = 1, 2:[

−iπ11(t2) −β(t2)
β(t2) 0

]
=

[
H11

0 −H22
0 H12

0 (t2)
−H12

0 (t2) 0

]
and consequently,

H12
0 (t2) = −β(t2), H11

0 −H22
0 = −iπ11(t2). (32)

Using the differential equation (26) and inserting here the formula (29) we shall obtain that entries of
the first moment H1(t2) = [Hij

1 ], i, j = 1, 2 satisfy

σ−11 σ2H1(t2)−H1(t2)σ−11 σ2 = d
dt2
H0(t2)− σ−11 γ∗(t2)H0(t2) +H0(t2)σ−11 γ.

which means 
d
dt2
H11

0 − βH11
0 − iH21

0 = −H12
1 ,

d
dt2
H12

0 − βH12
0 + i(H11

0 −H22
0 ) = 0,

d
dt2
H21

0 + iπ11H
11
0 + βH21

0 = H11
1 −H22

1 ,
d
dt2
H22

0 + iπ11H
12
0 + βH22

0 + iH21
0 = H12

1 .

Then H12
1 can be evaluated using the first and the last equations. When we equate these two equations,

we shall obtain that the compatibility condition for this differential equation to hold is

i(H11
0 −H22

0 ) =
d

dt2
H12

0 (t2)− (H12
0 (t2))2,

which is exactly (31) using formulas (32).

So, without loss of generality we make the following

12



Definition 4 In terms of the elementary input, Sturm–Liouville vessel ElSL is the following collection

ElSL = (A1, B(t2),X(t2) = X∗(t2);σ1 =

[
0 1
1 0

]
, σ2 =

[
1 0
0 0

]
,

γ =

[
0 0
0 i

]
, γ∗(t2) =

[
−i(β′(t2)− β2(t2)) −β(t2)

β(t2) i

]
;H,C2).

satisfying the vessel conditions

d
dt2

(B(t2)σ1) +A1B(t2)σ2 +B(t2)γ = 0, (15)

A1X(t2) + X(t2)A∗1 +B(t2)σ1B
∗(t2) = 0, (16)

d
dt2

X(t2) = B(t2)σ2B
∗(t2), (17)

γ∗(t2) = γ + σ1B
∗(t2)X−1(t2)B(t2)σ2 − σ2B∗(t2)X−1(t2)B(t2)σ1. (18)

The vessel exists on an interval I ⊆ R on which X(t2) is invertible and the regularity assumptions 1
hold.

An interesting question, which is out of the scope of this present article is whether for each β(t2) there
exists an elementary input vessel, which has the output parameters defined with that given β(t2). This
question is considered at [AMV].

3.1.2 The τ function of an elementary input vessel

Following [MV1] (Theorem 8.1) there is developed a structure of the transfer functions of a vessel and
it will be applied to ESL. If SESL

(λ, t02) has a realization at t02 [Br]

SESL
(λ, t02) = I −B∗0X−10 (λI −A1)−1B0σ1,

A1X0 + X0A
∗
1 +B∗0σ1B0 = 0, X0 = X∗0,

then solving (15) with initial value B(t02) = B0 and (17) with X(t02) = X0 we obtain that formula (27)

SESL
(λ, t2) = I −B∗(t2)X−1(t2)(λI −A1)−1B(t2)σ1.

Notice that since σ2 ≥ 0 and (integration of (17))

X(t02) = X0 +

t2∫
t02

B(y)σ2B
∗(y)dy

we shall obtain that in the case X0 > 0 it holds that X(t2) > 0 for all t2 ≥ t02, since B(y)σ2B
∗(y) > 0.

As a result in that case the vessel ESL exists at least on the interval I = [t02,∞). Of course it can
be extended to the left by continuity considerations. In the case specA1 ⊆ iR it is possible to obtain
a vessel, which exist on the whole axis. For this it is enough to take X0 big enough and chains of
”companion solutions” of length one (which will create periodic, and hence bounded with bounded
anti-derivative functions on the whole axis). More about this construction may be found in [AMV].

Let us now delineate this construction for the transfer function. First we have to consider the initial
realization at t02, which is very well known from the realization theory of rational matrix functions [KFA].
It can be brought, as we have already mentioned to a Jordan block form.
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Write the function B(t2) as

B(t2) =


b∗1(t2)
b∗2(t2)

...
b∗N (t2)

 , (33)

and suppose that A1 = Jordan(z1, r1, . . . , zn, rn), where zi is a spectral value and ri is the size of Jordan
block (notice that we can have the same eigenvalue appearing more than once). Then [MV1] bi(t2) are
defined as chains of companion solutions of the so called adjoint output LDE

[σ1
d

dt2
− µσ2 − γ]y∗ = 0 (34)

with the spectral parameter µ = −z∗i :

σ1
d

dt2
bj+1(zi)+z∗i σ2bj+1(zi)−γbj+1(zi) = σ2bj(zi), j = r1+ . . .+ri−1, . . . , r1+ . . .+ri−1+ri−1 (35)

and where the first vector function br1+...+ri−1
(zi) is a solution of (34) with the spectral parameter −z∗i .

The operator X(t2) = [xij ] is a solution of (16) (or equivalently (17) due to Lemma 2.1). Thus the
transfer function is

SESL
(λ, t2) = I −B∗(t2)X−1(t2)(λI −A1)−1B(t2)σ1 =

= I −
[
b1 b2 · · · bN

] [ (−1)i+j

τ Mji

]
(λI −A1)−1


b∗1
b∗2
...
b∗N

σ1, (36)

where Mij(t2) denotes the minor i, j of the matrix X(t2) and

Definition 5 The tau function τ = τ(t2) for the Jordan block matrix A1 and the initial condition B0,X0

is defined as
τ = detX(t2) = det[xij ]. (37)

It turns out that the tau function τ(t2) defines also γ∗(t2) as the following proposition states

Proposition 3.2 For Sturm–Liouville elementary vessel the following formula for γ∗ holds

γ∗ = γ +

[
i τ
′′

τ
τ ′

τ

− τ
′

τ 0

]
Proof: It follows from the formula for logarithmic derivative of a determinant using the vessel condition
(17) and the definition of the zero moment:

τ ′(t2)

τ(t2)
= tr(X−1(t2)X′(t2)) = tr(X−1(t2)B(t2)σ2B

∗(t2))

= tr(B∗(t2)X−1(t2)B(t2)σ2) = H11
0 (t2),

which combined with (32) gives the desired result.
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3.1.3 Anti-adjoint spectral values

Suppose that there are two eigenvalues zi, zj which satisfy zj = −z∗i . Then the entry b∗i σ1bj , appearing
at the matrix B(t2)σ1B

∗(t2) (which in turn appears at the Lyapunov equation (16)) must be zero,
because the corresponding i, j entry for the expression A1X(t2) +X(t2)A∗1 is such. Notice that denoting

bk(t2) =

[
bk1
bk2

]
, we shall obtain that

b∗i σ1bj = b∗i1bj2 + b∗i2bj1 = 0.

Since bk satisfies (34) or (22) it means (see (28)) that bk2 = −
√
−1b′k1. Substituting this into the last

equality we shall obtain:

0 = b∗i1(−
√
−1b′j1) + (−

√
−1b′i1)∗bj1 =

√
−1(−b∗i1b′j1 + (b′i1)∗bj1), (38)

from where it follows (by dividing on bi1b
∗
j1 and obtaining

d

dt2
ln(b∗i1/bj1) = 0) that b∗i1 = bj1c for a

constant c ∈ C.

Corollary 3.3 If two chains of solutions correspond to the spectral values zi, zj and have the property
zi = −z∗j , then these chains are of length one.

Proof: From the previous calculation it follows that each element bi at the chain corresponding to zi
must be equal to the adjoint of each element bj at the second chain, which is possible only in the case
the chains are of length one, because a companion solution bk+1 is obtained by multiplying the previous
element bk on t2, which means that we can have the equality bi = b∗j only for the first elements at these
chains.

Corollary 3.4 Suppose that the spectral value zi is purely imaginary: z∗i = −zi, then its chain must be
of length one.

Proof: Using the same idea as in the previous Corollary all elements in this chain will be equal to the
adjoint of the first one, which is possible only if it is a chain of length one.

Notice that the last result has a feature in common with the result on discrete spectrum in the inverse
scattering problem [Fa], where it is proved that for the case

∫∞
0
x|q(x)|dx <∞ the discrete spectrum is

on the imaginary axis and is simple (i.e. each eigenvalue appears exactly once).

3.2 Vessels as Bäcklund transformations. Crum transformations

A Bäcklund transform is typically a system of first order partial differential equations relating two func-
tions, and often depending on an additional parameter. It implies that the two functions separately
satisfy partial differential equations, and each of the two functions is then said to be a Bäcklund trans-
formation of the other. We can consider a vessel as an example of Bäcklund transformation, because if
we consider inputs u(t1, t2) which satisfy the input compatibility condition (10)

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0
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then the output y(t1, t2) of the system (9) satisfies the output PDE (11)

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ∗]y(t1, t2) = 0.

The set of parameters of this Bäcklund transformation in our case is the initial realization for the transfer
function of the vessel V

SV(λ, t02) = I −B∗0X−10 (λI −A1)−1B0σ1.

It turns out that Crum transformations, which first appeared in [Crum] are particular case of our
construction. The basic idea of a Crum transformation is to use a solution b1(t2) of the equation (1)
(with the potential q(t2)) for a fixed spectral value −iλ0, λ0 ∈ R. Then take a solution y(λ, t2) of (1)
and define

y1(λ, t2) =
y′(λ, t2)b1(t2)− y(λ, t2)b′1(t2)

(λ− λ0)b1(t2)
,

where y′ =
∂

∂t2
y. A simple calculation [Crum, Fa] shows that y1(λ, t2) satisfies (1) with the potential

q1(t2) = q(t2) + ∆q(t2), ∆q(t2) = −2
b′1(t2)

b1(t2)
= −2

d2

dt22
ln b1(t2).

This transformation is used in order to construct solutions for equation (1), having the property that the
corresponding SL operator will have one more point (namely λ0) at the discrete spectrum, comparatively
to the previous one.

It turns out that we can obtain the same transformation. Consider now the one dimensional vessel

ElCrum = (λ0, B(t2),X(t2);σ1, σ2, γ, γ∗(t2) =

[
−i(β′(t2)− β2(t2)) −β(t2)

β(t2) i

]
;C,C2).

Denote B(t2) =

[
b1(t2)
b2(t2)

]
, where b∗1 is a solution of (1) with the spectral parameter λ0. Then X(t2)

may be found from the differential equation

X′(t2) = B(t2)σ2B
∗(t2) = b1b

∗
1.

For example, in the case λ0 6= 0 we can also solve the Lyapunov equation (16) in order to find X(t2)

X(t2) =
B(t2)σ1B

∗(t2)

λ0 + λ∗0
=
b∗2(t2)b1(t2) + b∗1(t2)b1(t2)

λ0 + λ∗0

The tau function in this one dimensional case is τ = X(t2) and the potential is q(t2) + 2β′(t2), where

−β =
τ ′

τ
=
b1(t2)b∗1(t2)

X(t2)
.

Using the transfer function SCrum(λ, t2) of the vessel ElCrum we find that if the input

u(λ, t2) =

[
u0(λ, t2)
u1(λ, t2)

]
satisfies (21) with the spectral parameter λ, then the output

y(λ, t2) =

[
y1(λ, t2)
y2(λ, t2)

]
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satisfies the output (22) with the same spectral parameter and the following formula holds

y(λ, t2) = SCrum(λ, t2)u(λ, t2) = [I −B∗(t2)X−1(t2)(λ− λ0)−1B(t2)σ1]u(λ, t2)

= [I − 1

τ(λ− λ0)

[
b1
b2

] [
b∗1 b∗2

]
σ1]u(λ, t2)

= [I − 1

τ(λ− λ0)

[
b1
b2

] [
b∗2 b∗1

]
]u(λ, t2),

where taking the upper part y1(λ, t2) of the vector y(λ, t2) =

[
y1(t2)
y2(t2)

]
, we find that

y1(λ, t2) = u0(λ, t2)− y1(t2)
1

τ(λ− λ0)

[
b∗2 b∗1

] [ u0
u1

]
=

= u0(λ, t2)− b1(t2)
1

τ(λ− λ0)
(b∗2u0 + b∗1u1)

Using equation (47), which solves the input LDE (21), we may rewrite this as

y1(λ, t2) = u0(λ, t2)− b1(t2)
1

τ(λ− λ0)
i((b∗1)′u0 − b∗1u′0)

which is identical to the Crum transformations [Fa, (15.33)]. The Crum transformations corresponds to
the choice of the spectral values on the imaginary axis, each appearing once, which is consistent with
Corollaries 3.3 and 3.4 in our case.

3.3 The differential ring R∗ associated to an elementary input SL vessel

We can see that the element τ ′

τ is used to construct γ∗, since τ ′′

τ = d
dt2

(
τ ′

τ

)
+
(
τ ′

τ

)2
. In the sequel we

shall use the notion of a differential ring, which can be studied for example from [K]. A differential
ring is a ring R with a linear operator, called derivation ∂ : R → R, satisfying the Leibnitz rule
∂(ab) = (∂a)b + a∂b and such that ∂R ⊆ R. Notice [K] that intersection of two differential rings is
again a differential ring, thus we make the following definition. The ring R is called generated by the set
{a1, . . . , an} (n may be ∞) if R is the minimal (in inclusion) differential ring containing {a1, . . . , an}.

Definition 6 The differential ring R∗ is defined to be the ring generated by { τ
′

τ , 1}.

Notice that it follows from the definition that R∗ is the smallest algebra of functions, containing τ ′

τ , and

1 which is invariant under the operation
d

dt2
. We define a space T , which plays an important role in

analyzing R∗. This space is obtained by taking the linear span of all the derivatives of the tau function
and its structure is reflected in Definition 7.

Without loss of generality (by using gauge equivalence) we may suppose the eigenvalues of A1 are
ordered so that first there appear purely imaginary ones with length one for its chain (due to Corollary
3.4), then there appear pairs (pi,−p∗i ) so that each one has a chain of length one (due to Corollary 3.3)
and after that eigenvalues with an arbitrary length for its chain, which are different from the minus
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adjoint of all other eigenvalues:

A1 =

 E 0 0
0 P 0
0 0 J

 (39)

E = diag(e1, e2, . . . , ere), (40)

P = diag(pre+1,−p∗re+1, . . . , prp ,−p∗rp), (41)

J = Jordan(zre+2rp+1, rre+2rp+1, . . . , zn, rn) (42)

so that N = re + 2rp + rre+2rp+1 + . . .+ rn. Suppose also that the transpose of B(t2) is

B(t2)t =
[
u∗1 . . . u∗re v∗re+1 w∗re+2 . . . v∗2rp−1 w∗2rp b∗re+2rp+1 . . . b∗N

]
, (43)

where vi, wi’s are corresponding solutions of the adjoint input LDE (34) and bi’s are companion solutions
of the same equation (34). The following Definition 7 consists of a basis of functions, defined on I,
which are created by successive differentiation of the tau function τ(t2). Notice that from the Lyapunov
equation (16) it follows that in the case zi 6= −z∗j the i, j entry xij of the matrix X(t2) is

xij =
b∗i σ1bj
zi + z∗j

,

and satisfies
d

dt2
xij = b∗i σ2bj . But if zi = −z∗j , then this element is found from the equation (17) and is

equal to

xij = xij(t
0
2) +

∫ t2

t02

b∗i σ2bjdy,

and its derivative is still
d

dt2
xij = b∗i σ2bj . Moreover, using the formula for the determinant of a function

τ = detX(t2) =
∑
p

(−1)sign(p)x1,p(1)x2,p(2) . . . xN,p(N), p - permutations of {1, 2, . . . , N},

we obtain that each index i appears exactly twice at each summand. This can be translated as appear-
ance of each b∗i and bi exactly once via the formulas for xij .

Notice that the term x1,p(1)x2,p(2) . . . xN,p(N) and all its derivatives are actually of finite degree, which
means that differentiating it enough times we will obtain terms, which appeared before. A simpler reason
for that is that it is a multiplication of exponential functions and polynomials (Lemma 3.6). Another
reason, reflected in the combinatorics of the following Definition 7, where one learned the structure of
such a term. Each index 1 ≤ i ≤ N appears twice as we have already mentioned and each xij and its
derivatives are expressed through the companion solutions with smaller indexes, thus we obtain that
differentiating it enough times, we will obtain expressions appearing in the lower derivatives. Moreover,
one can ”split” all the multiplications so that all terms corresponding to the same chain appear together.
All these ideas are present at the proof of Lemma 3.5. Actually, all the difficulties in the proof of the
Lemma 3.5 are inserted into the definition, so that one have to show only that the structure of T is
preserved after derivation (see Lemma 3.5).
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Definition 7 The space T is defined to be the span of functions constructed from multiplication of the
following terms

T = span{y1y2 . . . yreyre+1yre+3 . . . yrpyre+2rp+1yre+2rp+r1+1 . . . yN−rn+1},

where yi’s corresponds to the chains in the structure of A1. The first re variables yi are one of the
following two elements

yi =

{
xi,i
u∗iEiui

, 1 ≤ i ≤ re

In this definition, the yi’s corresponds to the pairs of eigenvalues pi,−p∗i and are multiplications of one
of the following two terms

yi =

 v∗iEiviw
∗
i+1Ei+1wi+1,

w∗iEivi+1xi,i+1,
v∗iEiwi+1xi+1,i,

re + 1 ≤ i ≤ 2rp, i− re is odd

The last group of yi’s corresponds to the companion solutions and is a multiplication of ri terms:

yi = bi+k1Ei,k1,`1b
∗
i+`1 bi+k2Ei,k2,`2b

∗
i+`2 . . . bi+kriEi,kri ,`ri b

∗
i+kri

, i = re + 2rp +


r1
r2
...
rn−1

where the ri tuples 〈k1, k2, . . . , kri〉, 〈`1, `2, . . . , `ri〉

1. satisfy increasing property k1 ≤ k2 ≤ . . . ≤ kri , `1 ≤ `2 ≤ . . . ≤ `ri , and

2. are less than or equal to 〈1, 2, . . . , ri〉 in the point-wise order of tuples (so, for example k1 and `1
are actually 1).

Ei’s with different indexes are 2 × 2 matrices over C. We shall call each function y1y2 . . . yN−rn+1,
satisfying these two conditions as a basic element.

Lemma 3.5 T ′ ⊆ T .

Proof: Using the Leibnitz rule for the derivative of multiplication of functions, it is enough to prove
that the derivative of b∗iEijibji and of xi1,j1 are linear combinations of elements of the same form. For
xi1,j1 the derivative is b∗i σ2bji . If bi is a companion solution corresponding to the spectral parameter z
(which is usually of the form −z∗i ), then

b′i = σ−11 (σ2z + γ)bi + σ2bi−1.

Suppose also that bji is a companion solution corresponding to the spectral parameter w. Then

d
dt2
b∗iEbji = b∗i (σ2z

∗ − γ)σ−11 Ebji + b∗i−1σ2σ
−1
1 Ebji+

+b∗iEσ
−1
1 (σ2w + γ)bji + b∗iEσ

−1
1 σ2bji−1

= b∗i [(σ2z
∗ − γ)σ−11 E + Eσ−11 (σ2w + γ)]bji + b∗i−1σ2σ

−1
1 Ebji + b∗iEσ

−1
1 σ2bji−1.

(44)
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and again we obtain elements of the same form. In order to see that we stay within the space T , notice
that differentiating b∗iEbji we obtain an element of the same form

b∗i [(σ2z
∗ − γ)σ−11 E + Eσ−11 (σ2w + γ)]bji

and two elements with smaller indexes

b∗i−1σ2σ
−1
1 Ebji , b∗iEσ

−1
1 σ2bji−1.

But if bi or bj are initial members at a companion chain of solutions, then these two elements does not
exist.

In order to see that the condition of point-wise comparison holds, notice that if there appear
bj1 , . . . , bjri satisfying this condition, then the derivative of b∗i1E1bj1 . . . b

∗
iN
ENbjN will only decrease

indexes. On the other hand, taking Ek’s as elementary matrices we are able to substitute elements at
the chain. For example,

b∗i

[
1 0
0 0

]
bjb
∗
k

[
0 0
1 0

]
bm =

= i, k interchanged = b∗k

[
0 0
1 0

]
bjb
∗
i

[
1 0
0 0

]
bm

= i, k and m, j interchanged = b∗k

[
0 0
1 0

]
bmb

∗
i

[
1 0
0 0

]
bj

and as a result we can always represent an element as a sum of basic elements, defined by elementary
matrices and having the increasing and the pointwise inequalities.

Since we are dealing with finite-dimensional vessels, with a trivial equation at the input, we can also
find chains of solution of the input LDE (21) explicitly. Let us consider an arbitrary chain b1, b2, . . . , br
corresponding to a spectral parameter z. Solving the input compatibility condition (21) we find that

b1 =

[
b11e

kt2 + b12e
−kt2

−ik(b11e
kt2 − b12e−kt2)

]
, b1(t02) = b01, k =

√
−iz̄.

Notice that in a generic case, if we consider real and imaginary parts of the numbers b11, b12, k, we shall
obtain that b1 is a sum of 4 different real exponents:

e<kt2 , e−<kt2 , e=kt2 , e−=kt2 .

The second element at the chain b2, satisfies

b′2(t2) = σ−11 (−σ2z̄ − γ)b2(t2) + σ2b1(t2), b2(t02) = b02

and as a result is of the form

b2(t2) = (t2b21 + c21)ekt2 + (t2b22 + c22)e−kt2 ,

which means that in a generic case it is a linear combination of the previous exponents and their multiple
by t2:

e<kt2 , e−<kt2 , e=kt2 , e−=kt2 , t2e
<kt2 , t2e

−<kt2 , t2e
=kt2 , t2e

−=kt2
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Obviously, in the generic case (i.e. where the coefficients of no exponent vanish) the `-th element in this
chain will be a linear combination of powers of t2 multiplied by exponents:

ti2e
±<k, ti2e

±=k, i = 0, 1, . . . , `.

The coefficients of ti2e
±<k, ti2e

±=k are defined by the initial conditions and moreover are polynomial
expressions in <b0i ,=b0i . As a result of these discussions we have the following lemma

Lemma 3.6 Let b1(t2), b2(t2), . . . , br(t2) be a chain corresponding to the spectral value z with initial
values b01, b

0
2, . . . , b

0
r. Then an element b`, 1 ≤ ` ≤ r at that chain is a linear combination of

ti2e
±<k, ti2e

±=k, i = 0, 1, . . . , `

with coefficients, which are polynomial expressions in the initial values <bi,=bi, and <k,=k.

Proof: We will use induction on n, using the fact that the element bn+1 may be presented as

bn+1 =

n+1∑
i=1

[bn+1,it
i
2(ekt2 + e−kt2) + cn+1,i(e

kt2 + e−kt2)].

The same conclusion can be derived using the Fundamental matrix of solutions Φ(z, t2) of the equation
(21):

Φ(z, t2) =

 cos(k(t2 − t02))
sin(k(t2 − t02))

ik
ik sin(k(t2 − t02)) cos(k(t2 − t02))

 .
Then

bn+1 = Φ(z, t2)[

∫ t2

t02

Φ−1(z, y)σ−11 σ2bn(y)dy + b0n+1].

Further, if bn satisfies the assumptions of the Lemma, then bn+1 will satisfy them too, by direct com-
putations.

Corollary 3.7 Let b1(t2), b2(t2), . . . , br(t2) be a chain corresponding to the spectral value z with initial
values b01, b

0
2, . . . , b

0
r. Then

1. for fixed i 6= j, span b∗iEbj = span b∗jEbi,

2. for any indexes satisfying i+ j = k +m, span b∗iEbj = span b∗kEbm.

Proof: Using the general form of bi, developed in Lemma 3.6, we understand that expression b∗iEbj is
a linear combination of exponents with real exponents, multiplied by powers of t2, which is also real.
Thus conjugation will result in a combination of the same real valued exponents, multiplied by powers
of t2. Similarly, in the case i + j = k + m we obtain that b∗iEbj and b∗kEbm are linear combinations
of the same exponents, multiplied by powers of t2 from 0 to 2(i + j − 2) = 2(k + m − 2), so the result
follows.

21



Corollary 3.8 The dimension of the space T is at most

4re42(rp−re)
n∏
k=1

[1 + rn(rn − 1)]4rn .

Proof: First, the number of different exponents, corresponding to a purely imaginary element zi = −z∗i
is 4 (notice that b∗σ1b = b∗E12b+ b∗E21b = 0) :

b∗E11b, b
∗E12b, b

∗E22b, xii

For the pair, corresponding to the spectral value pi and −p∗i there are 42 elements, which correspond to

v∗iEiviw
∗
i+1Ei+1wi+1, w

∗
iEivi+1xi,i+1, v

∗
iEiwi+1xi+1,i,

again elements w∗i σ1vi = v∗i σ1wi = 0 and we substitute them with corresponding xij .
Finally, for the general chain, we have to count the number of different pairs of rn-tuples

〈k1, k2, . . . , krn〉, 〈`1, `2, . . . , `rn〉, which additionally to being increasing and point-wize less or equal to
〈1, 2, . . . , rn〉 have the two properties, stated in Corollary 3.7. From the first property it follows that we
can order the tuples so that ki ≤ `i. And using next the second property it follows that actually the
total sum

rn∑
i

(ki + `i)

distinguishes between the pairs of tuples. The total sum of the indexes is between 2rn and rn(rn + 1).
Since each on of the tuples creates at most 4rn different terms, we obtain that their total number is at
most

[rn(rn + 1)− 2rn + 1]4rn = [1 + rn(rn − 1)]4rn

which is exactly the term appearing in the Corollary.

There is also an alternative proof for the calculation of maximal number of different elements for a
general chain, which is presented in the next lemma. We choose to talk about one block for A1, but it
is easily generalized to any number of blocks, since there is a property of τ , which enables to ”collect”
all companion solutions together and then use the result of this Lemma for each block. Notice that we
use the fact that the companion solutions are pure exponential functions, multiplied by powers of t2:

Lemma 3.9 Suppose that A1 consist of one spectral value z and one chain of length r. Suppose also
that b1, b2, . . . , bn are companion solutions corresponding to this data. Then the tau function in this case
is a linear combination of the following functions

e±2<kt2±2=kt2 · · · e±2<kt2±2=kt2︸ ︷︷ ︸
r times

ti2, i = 0, 1, . . . , 1 + r(r − 1)

and their total number is
[1 + r(r − 1)]4r

Proof: First, let us consider the maximal power of t2 and proceed by a proof of induction on N . For
N = 1, we obtain that

τ = detX = det
b∗1σ1b1
z̄1 + z1

,
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which is a sum of 4 exponents

e2<k1t2 , e−2<k1t2 , e2=k1t2 , e−2=k1t2 , k1 =
√
iz1,

coefficients are rational functions of real and imaginary parts of b01, k. Since increasing of the state
space H is equivalent to adding one element bN to the last chain or creating a new chain with different
eigenvalue, we obtain that

XN =

 XN−1 CN

C∗N
b∗Nσ1bN
zN + z̄N

 ,
where

CN =



b∗1σ1bN
z1 + z∗N
b∗2σ1bN
z2 + z∗N

...
b∗N−1σ1bN

zN−1 + z∗N


.

Using a formula for evaluating determinant of a block matrix, we shall obtain that

detXN = detXN−1 det(
b∗Nσ1bN
zN + z∗N

− C∗NX−1N−1CN ) = τN−1
b∗Nσ1bN
zN + z∗N

− C∗NX−1N−1CNτN−1

The expression τN−1
b∗Nσ1bN
zN + z∗N

can be easily understood, since we know by the induction hypothesis that:

τN−1 ∈ span{e±2<kt2±2=kt2 · · · e±2<kt2±2=kt2︸ ︷︷ ︸
r − 1 times

ti2 | i = 0, 1, . . . , 1 + (r − 1)(r − 2)}

On the other hand, using Lemma 3.6 we obtain that the element
b∗Nσ1bN
zN + z∗N

is a linear combination of

the following terms:

e±2<k, e±2=k︸ ︷︷ ︸
no power of t2

, t2e
±2<k, t2e

±2=k︸ ︷︷ ︸
t2 in power 1

, . . . , t2r2 e
±2<k, t2r2 e

±2=k︸ ︷︷ ︸
t2 in power 2r

,

Notice that the highest power of t2 is 2r, which is multiplied on one of the four ”basic” exponents:

t2r2 e
±2<k, t2r2 e

±2=k

On the other hand, the highest power for τN−1. If we collect the highest possible powers for each element

bi at the chain and multiply on the all possible exponents, we shall obtain that
b∗Nσ1bN
zN + z∗N

contains the

element with the highest power of t2:

1 + 2 + 4 + · · ·+ 2(r − 1) + 2r = 1 + r(r − 1).
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This element is multiplied by one of the following exponents

e±2<kt2±2=kt2 · · · e±2<kt2±2=kt2︸ ︷︷ ︸
r times

,

because each e±2<kt2 or e±2=kt2 appears at each bi.
The second term appearing in the expression for τN is actually of the same form (denoting by Mij

the minor (i,j) of XN−1):

C∗NX−1N−1CNτN−1 = C∗N [Mij(−1)i+j ]CN =

=

[
b∗Nσ1b1
z∗1 + zN

b∗Nσ1b2
z∗2 + zN

. . .
b∗Nσ1bN−1
z∗N + zN−1

]
[Mij(−1)i+j ]



b∗1σ1bN
z1 + z∗N
b∗2σ1bN
z2 + z∗N

...
b∗N−1σ1bN

zN−1 + z∗N


=
∑
ij

b∗Nσ1bj
z∗j + zN

Mij(−1)i+j
b∗i σ1bN
zi + z∗N

= b∗N
(∑

ijMij(−1)i+j
σ1bj

z∗j + zN

b∗i σ1
zi + z∗N

)
bN

and again it can be presented as a multiplication of exponents appearing at τN−1 (since such are the
expressions ∑

ij

Mij(−1)i+j
σ1bj

z∗j + zN

b∗i σ1
zi + z∗N

and of exponents of b∗NbN . Thus we obtain the same exponents as for the term τN−1
b∗N−1σ1bN

zN−1 + z∗N
. The

result follows.

From this Lemma 3.6 it follows that the coefficients of the exponents may vanish on a variety, if
we consider a ”big” space RK , where K is the total number of real and imaginary parts of all initial
conditions and all spectral values. Indeed, it is true for each block of A1 separately, due to Lemma 3.6.
As a result we make the following

Definition 8 The choice of the initial spectral parameters A1, B(t02),X0 for which all the exponents does
not vanish in the expression for τ(t2) is called a generic case.

Theorem 3.10 The entries of γ∗ and 1
τ T are in R∗. For each natural n, τ (n) ∈ T and as a result τ

satisfies a linear differential equation of finite order with constant coefficients. In the generic case

1. spann∈N(τ (n)) = T .

2. The entires of the transfer function SESL
(λ, t2) of ESL are in 1

τ T ⊆R∗.

Proof: Notice that 1 = τ
τ is in R∗ by definition. We will show that τ(n)

τ ∈R∗ by induction on n ≥ 1.
For n = 1 it is true by the definition, and generally,

τ (n+1)

τ
=

d

dt2

(τ (n)
τ

)
+
τ (n)

τ

τ ′

τ
,
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The space T was constructed so that all the derivatives of τ are there. Thus the first part of the Lemma
is proven.

Let us consider now the generic case. Comparing the result of corollaries 3.8 and 3.7 the maximal
number of independent elements coincides with the minimal number of exponential functions, multiplied
by polynomials:

4re42(rp−re)
n∏
k=1

[1 + rn(rn − 1)]4rn

and since in the generic case all the exponents, multiplied by powers of t2 do not vanish, it is a well
known fact (using the generalized Vandermonde determinant) that all their derivatives (up to their total
order) are independent and we obtain that spann∈N(τ (n)) = T .

Let us use the formula (36):

SESL
(λ, t2) = I −

[
b1 b2 . . . br1+···+rn

] [ (−1)i+j

τ
Mji

]
(λI −A1)−1


b∗1
b∗2
...

b∗r1+···+rn

σ1.
Notice first that

X−1(t2)(λI −A1)−1 =
[ (−1)i+j

τ
Mji

]
(λI −A1)−1 = [Kij ]

where Kij are linear combinations of
Mji

τ when we consider λ as a constant. Then

S(λ, t2) = I −
[
b1 b2 · · · bN

]
X−1(t2)

[ (−1)i+j

τ Mji

]
(λI −A1)−1


b∗1
b∗2
...
b∗N

σ1
= I −

∑
ij bib

∗
jKijσ1.

Since bib
∗
jKij has entries in 1

τ T , we obtain the desired result.

Let us finish this discussion with some properties of the differential ring R∗

Corollary 3.11 R∗ is a finitely generated, filtered differential ring

R∗ = C +
T
τ

+
T 2

τ2
+ · · · .

for which the derivative respects the following rule

d

dt2
(
T i

τ i
) ⊆ T

i

τ i
+
T i+1

τ i+1
.

Proof: By its definition R∗ is generated by τ ′

τ . Linear combinations and multiplications obviously re-

spect the filtering, since T
i

τ i
T j

τj ⊆ T
i+j

τ i+j . All the other elements of the ring are obtained by multiplication.
Let us evaluate the differentiation of an element of the filtering

d

dt2
(
T i

τ i
) =

d
dt2
T i

τ
− i T

i

τ i+1
τ ′ ⊆ T

i

τ i
+
T i+1

τ i+1
,
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where d
dt2
T i ⊆ T i holds by Lemma 3.5.

One can also calculate the Piccard Vessiot differential ring of the output LDE. This ring is by
definition the minimal differential ring, containing the entries of the fundamental matrix. See the
references [H, PS] for more material on this subject.

Corollary 3.12 Let λ 6∈ {z1, . . . , zn} be a parameter. The Piccard-Vessiot ring of the output LDE (22)

Y ′ = σ−11 (σ2λ+ γ∗(t2))Y (t2)

is generated by { τ
′

τ , e
kt2 , e−kt2}, where k =

√
−iλ.

Proof: The fundamental matrix of the input LDE (21) can be taken as follows

Φ(λ, t2) =

[
ekt2 e−kt2

−ikekt2 ike−kt2

]
.

Moreover from (23) we obtain the fundamental matrix of the output LDE (22) to be given by

Φ∗(t2) = S(λ, t2)Φ(λ, t2)S−1(λ, t02).

Since the entries of S(λ, t2) are generated by τ ′

τ and the entries of Φ(λ, t2) are combinations of {ekt2 , e−kt2},
we obtain the desired result.

3.4 General Sturm–Liouville vessels

In this section we want to consider an arbitrary input Sturm–Liouville vessel. In order to obtain a
Sturm–Liouville equation at the input we will take

γ =

[
iη
′′

η
η′

η

−η
′

η i

]

for an analytic function η = η(t2) (actually it is enough for η to be differentiable a finite number of
times, but then the notion of the differential ring R, appearing at the Definition 10 must be substituted
by the ring, generated by the derivatives). Moreover, in order to use techniques similar to the trivial
case, we shall suppose that

lim
t2→∞

η(n)(t2) = 0, (45)

for sufficiently large n, which will be clear from the proof of Lemma 3.13. Then entries of the input

u(t2) =

[
u1(λ, t2)
u2(λ, t2)

]
will satisfy

− ∂2

∂t22
u1(λ, t2) + 2

d2

dt22

(
log η

)
u1(λ, t2) = −iλu1(λ, t2), (46)

u2(λ, t2) = i(η − ∂

∂t2
)u1(λ, t2), (47)

which means that u1(λ, t2) satisfies the Sturm–Liouville differential equation (1) with potential 2 d2

dt22

(
log η

)
and the spectral parameter −iλ.
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Definition 9 A general Sturm–Liouville vessel is a collection

GSL = (A1, B(t2),X(t2);σ1, σ2, γ =

[
iη
′′

η
η′

η

−η
′

η i

]
, γ∗(t2) =

[
−i(β′ − β2) −β

β i

]
;H,C2)

satisfying the the vessel condition (15), (16), (17), (18) and existing on an interval I on which the
regularity assumptions 1 hold.

If A1 = Jordan(z1, r1, . . . , zn, rn) with zi’s spectral values and ri’s the corresponding sizes of Jordan
blocks, then defining companion solutions bi of (35) we obtain solving (15) (where N = r1 + · · ·+ rn)

B(t2) =


b∗1
b∗2
· · ·
b∗N

 .
X(t2) = [xij ] is a solution of the Lyapunov equation (16) and satisfies (17). We will use the same
definition as in the elementary input case τ = detX(t2) and using Lemma 3.1 and Proposition 3.2
considered in this new setting, the same formula, appearing at the Proposition 3.2 is obtained for γ∗:

γ∗ =

[
iη
′′

η
η′

η

−η
′

η i

]
+

[
i τ
′′

τ
τ ′

τ

− τ
′

τ 0

]
. (48)

From here we can see that the differential ring R∗ must include the element η′

η . In the sequel, we will

also use the ring, generated by η′

η itself, so we make the following

Definition 10 The input differential ring R is the ring as defined to be generated by {η
′

η , 1}. The

output differential ring R∗ is the ring as defined to be generated by { τ
′

τ ,
η′

η , 1}.

This definition is a generalization of the Definition 6, because in the elementary input case we obtain

that the input differential ring is generated by η′

η = 0 and 1, i.e it is trivial and as a result, the output

differential ring is generated only by τ ′

τ and 1.
Notice also that the same restriction (corollaries 3.3 and 3.4) on the appearance of purely imaginary

and pairs (pi,−p∗i ) hold and as a result we may consider A1 of the same form as in the elementary input
case

A1 =

 E 0 0
0 P 0
0 0 J

 (39)

E = diag(e1, e2, . . . , ere), (40)
P = diag(pre+1,−p∗re+1, . . . , prp ,−p∗rp), (41)

J = Jordan(zre+2rp+1, rre+2rp+1, . . . , zn, rn) (42)

so that N = re + 2rp + rre+2rp+1 + . . .+ rn. Suppose also that as in (43) the transpose of B(t2) is

B(t2)t =
[
u∗1 . . . u∗re v∗re+1 w∗re+2 . . . v∗2rp−1 w∗2rp b∗re+2rp+1 . . . b∗N

]
,

where vi, wi’s are corresponding solutions of the adjoint input LDE (34) (for which γ is not trivial) and
bi’s are companion solutions of the same equation (34).

Let us define an analogue of the space T appearing in Definition 7 in the following way
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Definition 11 We define TG to be the space defined by

TG = span{y1y2 . . . yreyre+1yre+3 . . . yrpyre+2rp+1yre+2rp+r1+1 . . . yN−rn+1}R,

where yi’s are defined as in Definition 7.

Remark: It follows from the definition that TG = TR.
On the contrary to Theorem 3.10 this space will not usually be finite-dimensional, because the input

differential ring R is generally infinite-dimensional.

Lemma 3.13 T ′G ⊆ TG and τ satisfies a linear differential equation of finite order over R.

Proof: From the definition it follows that TG = TR and using Leibnitz rule,

T ′G ⊆ T ′R + TR′.

Consequently, it is enough to show that T ′ ⊆ TR, since then

T ′R + TR′ ⊆ TRR + TR ⊆ TR ⊆ TG

as desired. In order to see that T ′ ⊆ TR, we use the Leibnitz rule and evaluate the derivatives of
b∗iEij1bji using their definition as companion solutions of the adjoint output LDE (34)

d
dt2
b∗iEijibji =

= b∗i [(σ2z
∗ − γ)σ−11 Eiji + Eijiσ

−1
1 (σ2w + γ)]bji + b∗i−1σ2σ

−1
1 Eijibji + b∗iEijiσ

−1
1 σ2bji−1

= b∗i [

[
η′

η z∗ + iη
′′

η

−i −η
′

η

]
Eiji + Eiji

[
η′

η i

w − iη
′′

η −η
′

η

]
]bji+

+b∗i−1σ2σ
−1
1 Eijibji + b∗iEijiσ

−1
1 σ2bji−1

= b∗i [

[
1 0
0 −1

]
Eiji + Eiji

[
1 0
0 −1

]
]bji

η′

η + b∗i [

[
0 z∗

−i 0

]
Eiji + Eiji

[
0 i
w 0

]
]bji+

+b∗i [

[
0 i
0 0

]
Eiji + Eiji

[
0 0
i 0

]
]bji

η′′

η + b∗i−1σ2σ
−1
1 Eijibji + b∗iEijiσ

−1
1 σ2bji−1,

which means that we obtain elements of the form b∗iEij1bjiR. In order to see that we stay at the space
TG, notice that if bi or bji are initial members at a companion chain of solutions, then the two elements
with smaller indexes

b∗i−1σ2σ
−1
1 Eijibji , b∗iEijiσ

−1
1 σ2bji−1

does not appear, which explains why the restriction on TG in Definition 11 holds.
Since TG = TR and T is finite-dimensional, we obtain that τ ∈ TG satisfies a linear differential

equation with coefficients in R.

Although the solutions of the input LDE (21) are not exponents, multiplied by powers of t2, they
have the same properties appearing in Corollary 3.7:

Lemma 3.14 Let b1(t2), b2(t2), . . . , br(t2) be a chain corresponding to the spectral value z with initial
values b01, b

0
2, . . . , b

0
r. Then

1. for fixed i 6= j, span(b∗iEbj) = span(b∗jEbi),
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2. for any indexes satisfying i+ j = k +m, span(b∗iEbj) = span(b∗kEbm),

Proof: Denote by yij =
b∗i σ1bj
z + z∗

. As we saw at the previous Lemma 3.13 derivatives of yij involves

terms with the same bi, bj and terms with lower indexes. Performing these calculations, we can find
that yij satisfies the following differential equation

y
(4)
ij − [4(

η′′η − (η′)2

η2
+ 2
√
−1(z − z∗))y(2)ij − (z + z̄)2yij +Kij = 0, (49)

where Kij is a linear combination of elements ykm with lower indexes. Let Ψ(t2) be the fundamental
matrix of solutions of the homogeneous part of the equation (49):

Ψ(t2)(4) − [4(
η′′η − (η′)2

η2
+ 2
√
−1(z − z∗))Ψ(t2)(2) − (z + z̄)2Ψ(t2) = 0, Ψ(t02) = I, (50)

then Ψ(t2) can be taken as a real valued function, since the coefficients are such. Then

yij = Ψ(t2)[−
∫ t2

t02

Ψ(y)−1Kij(y)dy + yij(t
0
2)].

Since Ψ(t2) is real valued, we obtain that

yji = y∗ij = Ψ(t2)[−
∫ t2

t02

Ψ(y)−1K∗ij(y)dy + y∗ij(t
0
2)].

If we suppose using induction that Kij and K∗ij are linear combinations of the same functions real-
valued functions, then immediately we obtain that yij and yji are also linear combinations of the same
functions. This finishes the first part of the Lemma.

Let us prove the second part using induction on i + j. We will use again the differential equation
(50) for Ψ(t2), but now we will use the fact that the coefficients of this differential equation does not
depend on i, j but on z, η only. We have also analyze more carefully the element Kij appearing in

(49). Differentiating twice and four times the function yij =
b∗i σ1bj
z + z∗

we obtain elements of the form

b∗i1Ei1,j1bj1 where i− 4 ≤ i1 ≤ i, j − 4 ≤ j1 ≤ j and Ei1,j1 is a constant matrix in C2×2. So, their sum
satisfies

i+ j − 8 ≤ i1 + j1 ≤ i+ j − 1

Consequently,

yij = Ψ(t2)[−
∫ t2

t02

Ψ(s)−1
∑

i+j−8≤i1+j1≤i+j−1

b∗i1Ei1,j1bj1ds+ yij(t
0
2)].

But the same formula holds for ymn, for m+ n = i+ j

ymn = Ψ(t2)[−
∫ t2

t02

Ψ(s)−1
∑

m+n−8≤m1+n1≤m+n−1

b∗m1
Em1,n1bn1ds+ ymn(t02)].
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If we suppose, by the induction hypothesis, that∑
i+j−8≤i1+j1≤i+j−1

b∗i1Ei1,j1bj1 , and
∑

m+n−8≤m1+n1≤m+n−1

b∗m1
Em1,n1bn1

are linear combinations of the same functions, we shall obtain the desired result. Notice that the basis
for this induction is for i+ j = 3, which holds by the first property.

From the assumption (45) on the function η it follows that in the neighborhood of infinity (t2 →∞)
the solutions and their derivatives of the input compatibility condition (21) are close to the exponential
functions. Using this observation, we may define a generic case on the basis of the trivial input case:

Definition 12 We define a notion of generic case as follows. For each choice of the initial spectral
parameters A1, B(t02),X0 at the neighborhood of infinity, the solutions of the input LDE (21) are close to
exponential solutions. A choice of these parameters, for which no exponent, appearing in τ , considered
at the neighborhood of infinity, vanishes is called a generic case.

The generalization of Theorem 3.10 is as follows

Theorem 3.15 The entries of γ∗ are in R∗ and in the generic case the entries of the transfer function
SGSL

(λ, t2) of the vessel GSL are in R∗. In the generic case, the dimension of the space TG over R is
the dimension of T , which is as in Corollary 3.8:

4re42(rp−re)
n∏
k=1

[1 + rn(rn − 1)]4rn , re + 2rp + r1 + r2 + · · ·+ rn = N

Proof: From the formula (48) it follows that the entries of γ∗ are in R∗.
Due to the assumption of the generic case, the maximal and the minimal dimension of the space

TG coincide and is given by the formula above. In order to prove the statement regarding the transfer
function, let us use the formula (36):

SGSL
(λ, t2) = I −

[
b1 b2 . . . br1+···+rn

] (−1)i+j

τ
[Mji](λI −A1)−1


b∗1
b∗2
...

b∗r1+···+rn

σ1.
Notice first that

X−1(t2)(λI −A1)−1 =
(−1)i+j

τ
[Mji](λI −A1)−1 = [Kij ]

where Kij are linear combinations of
Mji

τ when we consider λ as a constant. Then

S(λ, t2) = I −
[
b1 b2 · · · bN

]
X−1(t2) (−1)i+j

τ [Mji](λI −A1)−1


b∗1
b∗2
...
b∗N

σ1
= I −

∑
ij bib

∗
jKijσ1.
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Since bib
∗
jKij has entries in 1

τ T , we obtain by the assumption of the generic case that these entries are
in R∗.

The following corollaries are proved identically to the elementary input case

Corollary 3.16 R∗ is a finitely generated, filtered differential ring:

R∗ = R +
TG
τ

+
T 2
G

τ2
+ · · ·

for which the derivative respects the following rule

d

dt2
(
T iG
τ i

) ⊆ T
i
G

τ i
+
T i+1
G

τ i+1
.

Corollary 3.17 The Piccard-Vessiot ring of the output LDE (22) (for λ 6∈ {z1, . . . , zn})

d

dt2
Y = σ−11 (σ2λ+ γ∗(t2))Y (t2)

is generated by τ ′

τ and the entries of Φ(λ, t2).

4 Conclusions and remarks

1. It is possible to generalize all the formulas appearing in this article to solutions of differential
equations of greater order. For example, defining

σ1 =

 0 0 1
0 1 0
1 0 0

 , σ2 =

 1 0 0
0 0 0
0 0 0

 , γ =

 iπ β α
−β∗ 0 1
−α −1 0



for real valued α(t2), π(t2), one obtains that for the input function uλ(t2) =

 u1(λ, t2)
u2(λ, t2)
u3(λ, t2)

 the first

entry satisfies

−u′′′1 + u′1(β∗ + β − 2c′ + c2) + u1((β∗)′ − c′′ − iα+ cc′ + cβ − cβ∗) = λu1

which is a general linear differential equation of order 3

u′′′ + q1u
′ + q2u = λu.

For the output yλ(t2) =

 y1(λ, t2)
y2(λ, t2)
y3(λ, t2)

, the first entry satisfies

y′′′1 + q1∗y
′
1 + q2∗y1 = λy1

and there are relations between q1∗, q2∗ and q1, q2.
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More generally, defining σ1 as anti diagonal, σ1 = E11 and γ of the same form as for n=3, we can
study differential equations of order n.

We can also conclude that in the Sturm–Liouville case the role of the τ -function is a ”generating

element” of a universe (a generator of the output differential ring R∗ together with η′

η corre-

sponding to the input), where all the relevant objects (γ∗, transfer function, the potential q∗(t2))
live.

2. The Galois Group [PS] of the differential equation (1) is defined as the group of automorphisms
of Φ∗(λ, t2) (see Definition 24), commuting with the derivative, which leave the ring, generated by
the potential, invariant. In that case, it means that we are interested in automorphisms of R∗,
which leave the ring R invariant. Any automorphism of R∗ is uniquely determined by its action
on the generating element τ . Since, τ satisfies a linear differential equation of finite order over R,
it follows that τ can be mapped to a solution of the same differential equation only. So, the Galois
group is finite in that case and has a maximal number of elements as the degree of TG over R, i.e.
as the degree of T . This analysis can be carried out further, using the nature of the differential
equation for τ .

3. Generalizing the ideas in this article, we may study a differential ring R∗ generated from another
differential ring R using solutions of the input Sturm–Liouville differential equation (1). The ring
R∗ will have the filtering structure appearing in Corollary 3.16. Structure of the space TG may
be further analyzed.
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