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Abstract. Suppose C is a bounded chain complex of finitely generated free
modules over the Laurent polynomial ring L = R[x, x−1]. Then C is R-finitely
dominated, i.e. homotopy equivalent over R to a bounded chain complex of finitely
generated projective R-modules if and only if the two chain complexes C ⊗L R((x))
and C ⊗L R((x−1)) are acyclic, as has been proved by Ranicki (A. Ranicki, Finite
domination and Novikov rings, Topology 34(3) (1995), 619–632). Here R((x)) =
R[[x]][x−1] and R((x−1)) = R[[x−1]][x] are rings of the formal Laurent series, also known
as Novikov rings. In this paper, we prove a generalisation of this criterion which allows
us to detect finite domination of bounded below chain complexes of projective modules
over Laurent rings in several indeterminates.

2000 Mathematics Subject Classification. Primary 55U15; Secondary 18G35.

Finiteness conditions for chain complexes of modules play an important role in
both algebra and topology. For example, given a group G, one might ask whether the
trivial G-module � admits a resolution by finitely generated projective �[G]-modules;
existence of such resolutions is relevant for the study of group homology of G, and has
applications in the theory of duality groups [1]. For topologists, finite domination of
chain complexes is related, among other things, to questions about finiteness of CW
complexes, the topology of ends of manifolds and obstructions for the existence of
non-singular closed 1-forms [5, 7].

A chain complex C of R[x, x−1]-modules is called finitely dominated if it is
homotopy equivalent, as a complex of R-modules, to a bounded complex of finitely
generated projective R-modules. Finite domination of C can be characterised in
various ways; Brown considered compatibility of the functors M �→ H∗(C; M) and
M �→ H∗(C; M) with products and direct limits, respectively [1, Theorem 1], whereas
Ranicki showed that C is finitely dominated if and only if the Novikov homology of C
is trivial (see [5, Theorem 2], and Theorem 1.2 in this paper).
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146 THOMAS HÜTTEMANN AND DAVID QUINN

In this paper we consider finite domination of chain complexes over a Laurent
polynomial ring L with several indeterminates. In Theorem 1.3 we give a complete
characterisation of finitely dominated chain complexes in terms of their Novikov
homology over subrings of L generated by a subset of the indeterminates.

Related results have been discussed by Schütz [7, Section 4], but note that the
criterion given there involves infinitely many trivial Novikov homology modules,
whereas our result utilises Novikov homology with respect to finitely many rings only.

In Section 1 we introduce the notion of a finitely dominated chain complex, and
formulate our main result. In Section 2 we review some constructions from homological
algebra and discuss the algebraic mapping torus of a self-map of a chain complex. Then
Theorem 1.3 is proved in Section 3. We finish the paper by giving an explicit example
of a non-trivial finitely dominated chain complex inSection 4, and by discussing finite
domination over a field in Section 5.

1. Finitely dominated chain complexes. Let A denote a ring with unit. We write
Ch(A) for the category of chain complexes of (right) A-modules, and Chb(A) for the
full subcategory of bounded chain complexes.

DEFINITION 1.1. Let S be a subring of A; every chain complex of A-modules is
then, by restriction, also a chain complex of S-modules. We say that the chain complex
C ∈ Ch(A) is

(a) S-finite if it is bounded and consists of finitely generated free S-modules;
(b) homotopy S-finite if it is homotopy equivalent to an S-finite complex D ∈ Chb(S);
(c) strict S-perfect if it is bounded and consists of finitely generated projective S-

modules;
(d) S-finitely dominated if it is homotopy equivalent to a strict S-perfect complex

D ∈ Chb(S).

Given an S-finitely dominated complex C ∈ Ch(A), there exists a strict S-perfect
complex D ∈ Ch(S) homotopy equivalent to C. The finiteness obstruction of C is
defined to be

χ (C) =
∑
j∈�

(−1)j[Dj] ∈ K̃0(S);

it is independent of the choice of D. The complex C is homotopy S-finite if and only if
its finiteness obstruction is trivial; see [6, Theorem 1.7.12] for a textbook proof. In this
sense, the algebraic K-theory detects homotopy finiteness of finitely dominated chain
complexes.

To find out whether a given complex C ∈ Ch(A) is homotopy S-finite, one should
thus first determine whether it is S-finitely dominated. In the special case S = R and
A = R[x, x−1], Ranicki has given the following homological characterisation.

THEOREM 1.2 [5, Theorem 2]. Let C be a bounded chain complex of finitely
generated free R[x, x−1]-modules. The following conditions are equivalent:

(a) The complex C is R-finitely dominated.
(b) Both the following chain complexes are acyclic:

C ⊗R[x,x−1] R((x)) and C ⊗R[x,x−1] R((x−1)).
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Here we denote by R[[x]] the ring of formal power series in the indeterminate x, and
write R((x)) for the localisation of R[[x]] by x. That is, R((x)) is the ring of formal
Laurent series

∞∑
j=k

ajxj, k ∈ �,

also known as the Novikov ring of R in x. Similarly, R[[x−1]] is the ring of formal
power series in the indeterminate x−1, and the Novikov ring R((x−1)) is its localisation
by x−1. Elements of the latter can be written as formal Laurent series of the type

k∑
j=−∞

ajxj, k ∈ �.

As it stands, this result is not adapted to iteration. In more detail, suppose that
R itself is a Laurent ring R = K [y, y−1] over some ring K ; one would want then to be able
to apply Ranicki’s theorem twice: first to R ⊂ R[x, x−1], then to K ⊂ K [y, y−1] = R.
One difficulty here is that the first application leaves us with a chain complex that
consists of projective rather than free modules. In addition, the Laurent variables are
dealt with in a specific order, which, intuitively speaking, should have no bearing on
the question of finite domination. Both issues are addressed in our main result below.

Write Rn for the ring of Laurent polynomials in n indeterminates with coefficients
in R,

Rn = R
[
x1, x−1

1 , x2, x−1
2 , . . . , xn, x−1

n

]

so that R0 = R and Rk = Rk−1[xk, x−1
k ] for k ≥ 1. We will prove the following

generalisation of Theorem 1.2 to many variables.

THEOREM 1.3. Let n ≥ 1. For a bounded below complex C of projective Rn-modules
(not necessarily finitely generated) the following four conditions are equivalent:

(a) The complex C is R-finitely dominated.
(b) The complex C is R-finitely dominated, and for all n! re-numberings of the variables

x1, x2, . . . , xn, the complex C is homotopy Rj-finite for j = 1, 2, . . . , n.
(c) C is Rn-finitely dominated, and for all n! re-numberings of the variables

x1, x2, . . . , xn the following chain complexes are acyclic:

C ⊗Rj Rj−1((xj)) and C ⊗Rj Rj−1((x−1
j )), 1 ≤ j ≤ n.

(d) C is Rn-finitely dominated, and for some re-numbering of the variables x1, x2, . . . , xn

the following chain complexes are acyclic:

C ⊗Rj Rj−1((xj)) and C ⊗Rj Rj−1((x−1
j )), 1 ≤ j ≤ n.

Note that this theorem says in particular that an R-finitely dominated chain
complex of Rn-modules is automatically homotopy equivalent over Rk, 1 ≤ k ≤ n,
to an Rk-finite complex consisting of free rather than projective modules. Nevertheless,
the proof forces us to work with chain complexes of modules which a priori consist of
projective modules.
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148 THOMAS HÜTTEMANN AND DAVID QUINN

We start by fixing our sign conventions for some constructions from homological
algebra, together with a collection of standard results which will be used repeatedly
in the sequel. We then develop the relevant theory of mapping tori, and apply all
this in the proof of the main theorem. We finish the paper by giving a concrete non-
trivial example of a finitely dominated chain complex over a Laurent ring in finitely
many indeterminates, and by discussing finite domination over fields, which essentially
reduces to an exercise in linear algebra.

The methods used here borrow heavily from those of Ranicki [5], modified to
allow for the presence of several indeterminates and non-free modules. It is possible
to approach finite domination over Laurent rings in several indeterminates from the
point of view of toric geometry; this perspective yields a completely different set of
conditions, and will be presented in a forthcoming paper.

2. Mapping cones and mapping tori.

2.1. Chain complexes and mapping cones. We begin with listing some conventions.
We will consider arbitrary chain complexes of (right) modules over some ring with
unit A; we think of chain complexes as being ‘vertical’. The kth suspension (k ∈ �) of
a chain complex C is the chain complex C[k] defined by C[k]� = C�−k with differential
changed by the sign (−1)k.

A twofold chain complex is a chain complex in the category of chain complexes,
that is a family (Dp,q)p,q∈� of R-modules together with ‘horizontal’ and ‘vertical’
differential

∂h : Dp,q � Dp−1,q and ∂v : Dp,q � Dp,q−1

satisfying ∂2
h = 0, ∂2

v = 0 and ∂h∂v = ∂v∂h. The total complex of the twofold chain
complex D is a chain complex Tot(D). In chain degree n we have, by definition,

Tot(D)n =
⊕

p+q=n

Dp,q,

and the differential is induced by

∂h : Dp,q � Dp−1,q and (−1)p∂v : Dp,q � Dp,q−1.

A map of chain complexes f : C � B can be considered as a twofold chain
complex with B in column p = 0 and C in column p = 1, and horizontal differential
given by f . Its total complex is known as the mapping cone of f , denoted Cone (f ).
We have

(
Cone(f )

)
k = Ck−1 ⊕ Bk. There is a natural long exact homology sequence

associated to this construction:

. . .
f� HkB � HkCone(f ) � Hk−1C

f� Hk−1B � . . . (1)

In particular, application of the Five Lemma shows that the mapping cone construction
is invariant under quasi-isomorphism of maps of chain complexes. That is, given a
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commutative diagram of chain complexes

B
f � C

D


� g � E


�

where the vertical maps are quasi-isomorphisms, the induced map

Cone (f ) � Cone (g)

is a quasi-isomorphism as well. — Let f : C � B be a map of chain complexes
as before. The canonical projection from the B-summands assemble to a natural map
Cone (f ) � coker (f ).

LEMMA 2.1. If f : C � B is an injective map of chain complexes, the natural map
Cone (f ) � coker (f ) is a quasi-isomorphism.

Proof. The long exact sequence in (1) and the long exact sequence associated to
the short exact sequence

0 � C
f� B � coker (f ) � 0

assemble into a commutative ladder diagram, with two out of three maps the identity.
By the Five Lemma, the remaining maps (which are induced by the map under
investigation) are isomorphisms. �

We have defined the mapping cone by totalising a twofold chain complex.
Conversely, one can describe totalisation by iterating the mapping cone construction.
For us, the following special case will be sufficient.

LEMMA 2.2. Suppose we have maps of chain complexes f : C � B and
g : B � A with gf = 0. Let D denote the twofold chain complex having C, B
and A in columns 2, 1 and 0, with horizontal differential given by f and g. The map f
induces an inclusion C[1] � Cone (g), and we have an equality of chain complexes
Cone

(
C[1] � Cone (g)

) = Tot(D). �

COROLLARY 2.3. Suppose that 0 � C
f� B

g� A � 0 is a short exact
sequence of chain complexes. Then there is a quasi-isomorphism

C � (
Cone (g)

)
[−1].

Proof. By the previous Lemma we have a map μ : C[1] � Cone (g), and this map
is a quasi-isomorphism if and only if its mapping cone is acyclic. But its mapping cone
is Tot(D), using the notation of that lemma. There is a convergent spectral sequence

E1
p,q = HqD∗,p =⇒ Hq+p Tot(D)
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150 THOMAS HÜTTEMANN AND DAVID QUINN

(cf. [3, Section XI.6]); by exactness, its E1-term is trivial, hence Tot(D) is acyclic. It
follows that μ[−1] : C � (

Cone (g)
)
[−1] is a quasi-isomorphism. �

PROPOSITION 2.4. Suppose C is an R-finitely dominated complex of projective R-
modules. Then for any self map f : C � C the complex Cone (f ) is homotopy R-finite.

Proof. It is enough to show that the finiteness obstruction of C in K̃0(R) vanishes:
since K-theory does not detect differentials, we have

[Cone (f )] = [C[1] ⊕ C] = −[C] + [C] = 0 ∈ K̃0(R).

If C is strict R-perfect, one can easily give an explicit proof: For each Cn choose
a finitely generated projective module Dn such that Cn ⊕ Dn is free; choose Dn = 0
if Cn = 0. Then attaching the contractible two-step chain complexes Dn

=� Dn

(concentrated in degrees n + 1 and n) to Cone (f ) results in a bounded chain complex
of finitely generated free R-modules which is homotopy equivalent, via the projection,
to Cone (f ). �

2.2. Algebraic mapping tori.

DEFINITION 2.5. Let C be an arbitrary R-module chain complex, and let
h : C � C be any chain map. The algebraic mapping torus T(h) of h is
defined as

T(h) = Cone
(
C ⊗R R[x, x−1]

h⊗1−1⊗x� C ⊗R R[x, x−1]
)
.

Here the map ‘x’ is given by the multiplication action of the indeterminate x
on R[x, x−1].

By construction, T(h) is an R[x, x−1]-module chain complex, which is bounded if
C is bounded. If C consists of finitely generated (resp. projective, resp. free) R-modules,
then T(h) consists of finitely generated (resp. projective, resp. free) R[x, x−1]-modules.

The mapping torus construction is functorial on the category of self-maps of
R-module chain complexes in the following sense: a commutative diagram

C
f � C

D

α

� g � D

α

�

(2)

induces an R[x, x−1]-linear chain map α∗ : T(f ) � T(g), and this assignment is
compatible with vertical composition (vertical stacking of square diagrams). Moreover,
if α is a quasi-isomorphism so is α∗. Indeed, the long exact sequences of mapping cones
yield a commutative ladder diagram

· · ·Hn+1T(f ) � Hn
(
C ⊗R R[x, x−1]

) η� Hn
(
C ⊗R R[x, x−1]

) � HnT(f )· · ·

· · ·Hn+1T(g)

α∗
�

� Hn
(
D ⊗R R[x, x−1]

)
α
�

ζ� Hn
(
D ⊗R R[x, x−1]

)
α

�
� HnT(g)

α∗
�

· · ·
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(where η = f ⊗ 1 − 1 ⊗ x and ζ = g ⊗ 1 − 1 ⊗ x) with exact rows; since R[x, x−1] is
a free R-module, the two middle vertical maps are isomorphisms. It follows from the
Five Lemma that α∗ is a quasi-isomorphism as claimed.

LEMMA 2.6.

(1) Let h : C � C be a self-map of an arbitrary chain complex C of R-modules. The
map h∗ : T(h) � T(h) is chain homotopic to x, the ‘multiplication by x’ map. In
particular, h∗ is a quasi-isomorphism.

(2) Let g, h : C � C be homotopic chain maps. Then the mapping tori T(g) and T(h)
are isomorphic.

Proof. (1) The homotopy is essentially given by projection on the second summand
followed by inclusion into the first summand,

T(h)n = Cn−1 ⊗R R[x, x−1] ⊕ Cn ⊗R R[x, x−1]
(pr2,0)� Cn ⊗R R[x, x−1] ⊕ Cn+1 ⊗R R[x, x−1] = T(h)n+1.

The map x is an isomorphism, hence h∗ is a quasi-isomorphism.
(2) Choose a chain homotopy A : h  g such that ∂CA + A∂C = h − g, where ∂C

is the differential of C. Then it is easy to check by a straightforward computation that

(
id ⊗ id 0
A ⊗ id id ⊗ id

)
: T(h)n = Cn−1 ⊗R R[x, x−1] ⊕ Cn ⊗R R[x, x−1]

� Cn−1 ⊗R R[x, x−1] ⊕ Cn ⊗R R[x, x−1] = T(g)n

defines a chain map with inverse given by the matrix
(

id⊗id 0
−A⊗id id⊗id

)
. �

PROPOSITION 2.7 Mather’s mapping torus trick. Suppose f : C � D and
g : D � C are chain maps of R-module chain complexes. Then the two maps

f∗ : T(g f ) � T(fg) and g∗ : T(fg) � T(g f )

are homotopy equivalences.

Proof. The composition g∗ ◦ f∗ = (g f )∗ : T(g f ) � T(g f ) is homotopic to the
‘multiplication by x’ map by the previous lemma; consequently, (x−1 ◦ g∗) ◦ f∗ = g∗ ◦
(x−1 ◦ f∗)  id (note that g∗ and multiplication by x−1 commute as they act on different
factors of a tensor product). Similarly, f∗ ◦ g∗  x so that (x−1 ◦ f∗) ◦ g∗ = f∗ ◦ (x−1 ◦
g∗)  id. This means that x−1 ◦ g∗ is homotopy inverse to f∗, and that x−1 ◦ f∗ is
homotopy inverse to g∗. �

LEMMA 2.8. Let C be a chain complex of R[x, x−1]-modules (possibly unbounded).
Then there is an R[x, x−1]-linear quasi-isomorphism T(x) � C where x is short for
the R-module chain self map of C given by ‘multiplication by x’. The quasi-isomorphism
is natural in C.

Proof. First we claim that for any R[x, x−1]-module M there is an exact sequence
of R[x, x−1]-modules

0 � M ⊗R R[x, x−1]
x⊗1−1⊗x� M ⊗R R[x, x−1]

ε� M � 0. (3)
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Here the map denoted ε is given by m ⊗ p �→ mp. To begin with, x ⊗ 1 − 1 ⊗ x is
injective and ε is surjective, so it remains to prove exactness in the middle. First,

ε ◦ (x ⊗ 1 − 1 ⊗ x)(m ⊗ p) = ε(mx ⊗ p − m ⊗ px) = mxp − mpx = 0

since x is in the centre of R[x, x−1]. This shows Im (x ⊗ 1 − 1 ⊗ x) ⊆ ker ε. We will
prove the converse inclusion in a slightly indirect manner. We can consider sequence (3)
as a sequence of R-modules and check exactness in the middle in the category of
R-modules. The point is that ε has an R-linear section σ given by m �→ m ⊗ 1.
Consequently, there is an isomorphism M ⊗R R[x, x−1] ∼= ker ε ⊕ Im σ of R-modules,
and every element in ker ε is of the form m − σεm, for some m ∈ M ⊗R R[x, x−1].
We can write m uniquely as a finite sum of the form m = ∑

k∈� mk ⊗ xk with certain
mk ∈ M (almost all of which are zero); the associated element in ker ε is

m − σε(m) =
∑
k∈�

mk ⊗ xk −
∑
k∈�

mkxk ⊗ 1.

We want to demonstrate that this is in the image of x ⊗ 1 − 1 ⊗ x; it is certainly enough
to prove this for each individual summand bk = mk ⊗ xk − mkxk ⊗ 1. This is trivial for
k = 0 as b0 = 0. For k > 0 we obtain bk as the image of

−(
mkxk−1 ⊗ 1 + mkxk−2 ⊗ x + . . . + mk ⊗ xk−1)

under the map x ⊗ 1 − 1 ⊗ x; similarly, b−k is the image of

m−kx−k ⊗ x−1 + m−kx−(k−1) ⊗ x−2 + . . . + m−kx−1 ⊗ x−k

under the same map. This proves exactness of (3).
Applying this result in each chain level proves that we have a similar exact sequence

with M replaced by the chain complex C. It follows from Lemma 2.1 that the canonical
map Cone (x ⊗ 1 − 1 ⊗ x) � C is a quasi-isomorphism. �

3. Proof of Theorem 1.3. (a) ⇒ (b) Suppose C is R-finitely dominated. We can
then find a strict R-perfect complex D of R-modules, together with mutually inverse
R-linear chain homotopy equivalences f : C � D and g : D � C. Let x denote
the R-linear self-map of C given by ‘multiplication by x’ as before. Since the maps
x and xgf are homotopic, there is an isomorphism of R[x, x−1]-module complexes
T(xgf ) ∼= T(x), cf. Lemma 2.6(2). By Mather’s mapping torus trick Proposition 2.7
there is an R[x, x−1]-linear quasi-isomorphism f∗ : T(xgf ) � T(f xg). Finally, there
is a quasi-isomorphism T(x) � C, by Lemma 2.8. We thus have quasi-isomorphisms

C � T(x) � T(xg f ) � T(f xg).

Now the chain complex T(f xg) is strict perfect over R1 = R[x, x−1] since D is strict
perfect over R; in addition, its finiteness obstruction is trivial by Proposition 2.4,
applied to the defining mapping cone of the mapping torus so that T(f xg) is
homotopy equivalent to a bounded complex of finitely generated free R[x, x−1]-
modules. Moreover, all other chain complexes are bounded below and consist of
projective R[x, x−1]-modules, hence the quasi-isomorphisms are in fact homotopy
equivalences. It follows that C is homotopy R1-finite.
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We can iterate the argument, replacing R by Rk and R1 by Rk+1, proving that C is
indeed homotopy Rj-finite for 1 ≤ j ≤ n.

This argument works for any renumbering of variables in precisely the same way.
We have thus shown that condition (b) holds.

(b) ⇒ (c) For 1 ≤ j ≤ n there is a bounded complex Dj of finitely generated free
Rj-modules which is homotopy equivalent (over Rj) to C, by hypothesis. It follows that
there are homotopy equivalences

C ⊗Rj Rj−1((xj))  Dj ⊗Rj Rj−1((xj)) and

C ⊗Rj Rj−1((x−1
j ))  Dj ⊗Rj Rj−1((x−1

j )).
(4)

Now we can apply Ranicki’s Theorem 1.2 iteratively to the chain complexes Dj, 1 ≤
j ≤ n, noting that by the previous step (or the hypothesis, for j = 1) we know Dj to
be Rj−1-finitely dominated. It follows that the chain complexes in (4) are acyclic as
claimed.

(c) ⇒ (d) is trivial.

(d) ⇒ (a) First we may assume that C itself is a strict Rn-perfect chain complex.
Since a finitely generated projective module is a direct summand of a finitely generated
free one, there exists a strict Rn-perfect complex C′ ∈ Chb(Rn) with trivial differentials
such that D = C ⊕ C′ consists of finitely generated free modules.

By algebraic transversality [5, Proposition 1] there exist chain complexes

D+ ∈ Chb(Rn−1[xn]
)
, D− ∈ Chb(Rn−1[x−1

n ]
)

and L ∈ Chb(Rn−1)

consisting of finitely generated free modules over their respective rings, together with
chain maps forming a short exact sequence

0 � L � D+ ⊕ D− f +−f −
� D � 0 (5)

of Rn−1-module chain complexes such that the adjoint maps

D+ ⊗Rn−1[xn] Rn � D and D− ⊗Rn−1[x−1
n ] Rn � D

are isomorphisms of Rn-module chain complexes.
Before going any further we introduce a new piece of notation. Given a diagram

of chain complexes of modules

Z = (
Z− g−

� Z �g+
Z+)

we define 
(Z) by the rule


(Z) = Cone (Z+ ⊕ Z− g+−g−
� Z)[−1].

If all the complexes Z, Z+ and Z− are concentrated in degree 0 then 
(Z) computes
derived inverse limits as H−k
(Z) = lim k(Z); in general, the homology modules
of 
(Z) should be thought of as hyper-derived inverse limits. — Straight from the
definition we see that 
(Z � 0 � 0) = 
(0 � 0 � Z) = Z. In addition,
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from the properties of mapping cones it is clear that a commutative diagram

Z− � Z � Z+

Y−


�

� Y


�

� Y+


�

with vertical morphisms all quasi-isomorphisms induces a quasi-isomorphism


(Z− � Z � Z+)
� 
(Y− � Y � Y+).

We return to the actual proof. By Corollary 2.3, sequence (5) yields a quasi-
isomorphism

L
� Cone

(
D+ ⊕ D− f +−f −

� D
)
[−1] =


(D− � D � D+),
(6)

which is actually a homotopy equivalence since all constituent chain complexes consist
of projective Rn−1-modules.

We will now replace the right-hand side of (6) by a quasi-isomorphic complex
which contains the chain complex C as a direct summand up to homotopy, thereby
proving that C is Rn−1-finitely dominated. We have a short exact sequence of Rn−1[xn]-
modules

0 � Rn−1[xn]
(+,+)� Rn−1[[xn]] ⊕ Rn−1[xn, x−1

n ]
(+,−)� Rn−1((xn)) � 0;

we thus get, by taking tensor product over Rn−1[xn] with D+, a short exact sequence of
chain complexes

0 � D+ (+,+)� D+[[xn]] ⊕ D+[xn, x−1
n ]

(+,−)� D+((xn)) � 0.

Here we have used the following abbreviations:

D+[[xn]] = D+ ⊗Rn−1[xn] Rn−1[[xn]]

D+((xn)) = D+ ⊗Rn−1[xn] Rn−1((xn))

D+[xn, x−1
n ] = D+ ⊗Rn−1[xn] Rn−1[xn, x−1

n ] = D+ ⊗Rn−1[xn] Rn

Invocation of Corollary 2.3 gives us a quasi-isomorphism

D+ � 

(
D+[xn, x−1

n ] � D+((xn)) � D+[[xn]]
)
. (7)

Recall that by construction of D+ we have isomorphisms D+[xn, x−1
n ] ∼= D and

D+((xn)) ∼= D+ ⊗Rn−1[xn] Rn−1[xn, x−1
n ] ⊗Rn−1[xn,x−1

n ] Rn−1((xn))
∼= D ⊗Rn Rn−1((xn))

so that (7) becomes the quasi-isomorphism

D+ 
g+
� H+ := 


(
D � D ⊗Rn Rn−1((xn)) � D+[[xn]]

)
.
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Similarly, by exchanging xn and x−1
n we obtain a quasi-isomorphism

D− 
g−
� H− := 


(
D � D ⊗Rn Rn−1((x−1

n )) � D−[[x−1
n ]]

)
,

where we have used the notation

D−[[x−1
n ]] = D− ⊗Rn−1[x−1

n ] Rn−1[[x−1
n ]].

We have an obvious commutative diagram

D � D ⊗Rn Rn−1((xn)) � D+[[xn]]

D
�

� 0
�
� 0

�

which upon application of the functor 
 results in a chain complex map
h+ : H+ � D. A similar construction yields the map h− : H− � D, and these
maps fit into another commutative diagram of chain complexes

D− f −
� D � f +

D+

H−

 g−

� h−
� D

 id

�
� h+

H+

 g+

�

which results in a quasi-isomorphism



(
D− f −

� D �f +
D+) � 


(
H− h−

� D �h+
H+)

. (8)

Recall that D splits as D = C ⊕ C′, and that consequently the tensor product
D ⊗Rn Rn−1((xn)) splits as a direct sum of

C ⊗Rn Rn−1((xn)) and C′ ⊗Rn Rn−1((xn)).

The former summand is acyclic by our hypothesis (d) (for j = n) so that all vertical
maps in the following commutative diagram are quasi-isomorphisms:

C ⊕ C′ � C ⊗Rn Rn−1((xn)) ⊕ C′ ⊗Rn Rn−1((xn)) � D+[[xn]]

C ⊕ C′

 (id,id)

�
� 0 ⊕

 (0,id)

�
C′ ⊗Rn Rn−1((xn)) � D+[[xn]]

 id

�

That is, by applying the functor 
 we obtain a quasi-isomorphism from H+ to

K+ := 

(
C ⊕ C′ (0,+)� C′ ⊗Rn Rn−1((xn)) � D+[[xn]]

)
,

with ‘+’ indicating the natural map from C′ into the tensor product. Moreover, the
map h+ : H+ � D factors through this new map H+ � K+. Similarly, H− is
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Γ

⎛
⎜⎜⎝

C ⊕ C ′ D−[[x−1
n ]]

C ′⊗RnRn−1

�

(0,+)
�

((x−1
n ))

⎞
⎟⎟⎠ Γ

⎛
⎜⎜⎝

C ⊕ C ′ D+[[xn]]

C ′ ⊗Rn Rn−1((xn))
�

(0,+)
�

⎞
⎟⎟⎠

�

Γ

⎛
⎜⎜⎝

C ⊕ C ′ 0

0
�

�

⎞
⎟⎟⎠

�

Figure 1. An expanded version of (9). The long diagonal maps are induced by the
obvious maps of small diagrams.

quasi-isomorphic to

K− := 

(
C ⊕ C′ (0,+)� C′ ⊗Rn Rn−1((x−1

n )) � D−[[x−1
n ]]

)
.

We thus obtain a commutative diagram with vertical quasi-isomorphisms

H− h−
� D � h+

H+

K−


�

� C ⊕ C′


�

� K+


�

resulting in a quasi-isomorphism from the target of (8) to



(
K− � C ⊕ C′ � K+)

. (9)

But by direct inspection this last complex contains


(C � C � C) = Cone
(
C ⊕ C

(+,−)� C
)
[−1]  C

as a direct summand. This becomes clear when writing out the definitions of the
constituents of (9), see Figure 1. Indeed, the two ‘outer’ summands C only map non-
trivially to the ‘inner’ summand C, with the latter not receiving any other non-trivial
map so that 
(C � C � C) appears as a direct summand once 
 is applied to
the diagram in Figure 1.

It follows that C is homotopy equivalent to a summand of the chain complex (9),
which is quasi-isomorphic, via (8) and (6), to the finite complex L of Rn−1-modules.
Consequently, C, considered as an Rn−1-module complex, is a retract up to homotopy
of the chain complex L. Indeed, the complex (9) can be replaced, up to quasi-
isomorphism, by a bounded below complex of projective Rn−1-modules, which is
quasi-isomorphic, and hence chain homotopy equivalent, to L. Using the fact that
C is a bounded below complex of projective Rn−1-modules as well it is then standard
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homological algebra to construct the desired maps of complexes α : C � L and
β : L � C together with a chain homotopy βα  id. It now follows from [4,
Proposition 3.2(ii)] that C is Rn−1-finitely dominated.

In case n = 1 this finishes the proof of (d) ⇒ (a). For n > 1 we observe that C is
now homotopy equivalent over Rn−1 to a strict perfect complex B ∈ Chb(Rn−1) that
satisfies condition (d) of the Theorem for j < n. By induction, B is R-finitely dominated,
so is C. This finishes the proof for general n.

4. A non-trivial finitely dominated chain complex. We will now discuss a
generalisation of a one-variable example given by Hughes and Ranicki [2,
Example 23.19]. This serves to illustrate the existence of non-trivial finitely dominated
chain complexes.

Let R be a commutative integral domain, and write Rn for the Laurent polynomial
ring in indeterminates x1, x2, . . . , xn as before. We actually restrict to the case n = 2,
leaving the easy generalisation for higher n to the reader. Consider the following square
diagram:

R2
1 − x1x2 � R2

R2

1 − x1

� 1 − x1x2 � R2

1 − x1

�

(10)

Let h : D � D denote the chain complex obtained by taking mapping cones in
vertical direction, and let C be the mapping cone of h.

Clearly, the complex C is not acyclic; indeed, the element x2 ∈ R2 represents a
non-trivial element in the bottom homology of C. However, we claim that the four
chain complexes

C ⊗R1 R((x1)) and C ⊗R1 R((x−1
1 )) ,

C ⊗R2 R1((x2)) and C ⊗R2 R1((x−1
2 ))

are all acyclic. This can be seen as follows: First, the vertical maps in square (10)
become isomorphisms after tensoring over R1 with R((x1)) as 1 − x1 is a unit in the
latter ring. Consequently, by tensoring and taking mapping cones in vertical directions
we obtain a map of acyclic chain complexes

Cone
(
R2

1−x1� R2
) � Cone

(
R2

1−x1� R2
)

whose mapping cone K is acyclic as well. But formation of mapping cones is compatible
with taking tensor products so that there is an isomorphism K ∼= C ⊗R1 R((x1)).
Consequently, the latter chain complex is acyclic. The same argument with the roles of
x1 and x−1

1 reversed proves that C ⊗R1 ((x−1
1 )) is acyclic as well. — Tensoring the square

diagram (10) over R2 with R1((x2)) and taking mapping cones in vertical directions
results in a chain complex map g : E � E whose mapping cone J is isomorphic to
C ⊗R2 R1((x2)). Now as a map of graded modules (i.e. disregarding differentials), the
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map g is given by the map

R2[1] ⊗R2 R1((x1)) ⊕ R2 ⊗R2 R1((x1))
� R2[1] ⊗R2 R1((x1)) ⊕ R2 ⊗R2 R1((x1))

induced by multiplication by 1 − x1x2. But this polynomial is a unit in ring R1((x2))
(as x1 is a unit in R1) so that g is in fact an isomorphism of chain complexes. It
follows that C ⊗R2 R1((x2)) ∼= Cone (g) is acyclic. By exchanging x2 and x−1

2 we see
that C ⊗R2 R1((x−1

2 )) is acyclic as well.
By Theorem 1.3 this shows that the complex C is R-finitely dominated. The

theorem also says that the chain complexes

C ⊗R[x2,x−1
2 ] R((x2)) and C ⊗R2 R[x2, x−1

2 ]((x1))

are acyclic, but note that this cannot be proved as easily as above (viz., by showing
that the horizontal or vertical maps of (10) become isomorphisms after application
of a tensor product functor). It appears that the freedom to renumber the variables is
relevant for detecting finite domination in practice.

5. Finite domination over fields. We finish the paper by discussing finite
domination over fields, which is (not surprisingly) much simpler than the general
case. Suppose F is a field, and C is a bounded chain complex of finitely generated
projective modules over the Laurent ring

L = F [z1, z−1
1 , z2, z−1

2 , . . . , zn, z−1
n ].

Since F is a field, C is F-finitely dominated if and only if dimF HkC < ∞ for all k. (See
[6, Theorem 1.7.13] for a proof covering the more general situation of a Noetherian
ground ring. Since there is no difference between free and projective F-modules, C is
F-finitely dominated if and only if C is F-homotopy finite.) We obtain the following
multi-variable version of [5, Section 5, page 626, Example].

THEOREM 5.1. The complex C is F-finitely dominated if and only if the induced chain
complexes

C ⊗F [zj,z−1
j ] F(zj), j = 1, 2, . . . , n,

are acyclic. (Here F(zj) denotes the field of rational functions in zj.)

Proof. Suppose first that C is F-finitely dominated. For fixed k and j, the
multiplication action of zj on C determines an endomorphism fj of the finite-
dimensional F-vector space Hk(C). Its characteristic polynomial pj(x) = det(fj − x · id)
satisfies pj(fj) = 0, by Cayley-Hamilton. Note that as a self-map of Hk(C), the action
of pj(fj) coincides with the one given by multiplication with the polynomial pj(zj). For
any primitive tensor a ⊗ b ∈ Hk(C) ⊗F [zj,z−1

j ] F(zj) we have the chain of equalities

a ⊗ b = a ⊗ (pj · b/pj) = (a · pj) ⊗ (b/pj) = 0 ⊗ (b/pj) = 0
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so that Hk(C) ⊗F [zj,z−1
j ] F(zj) = 0. But F(zj) is a localisation of F [zj, z−1

j ] (viz., its
quotient field), hence we have an isomorphism

Hk
(
C ⊗F [zj,z−1

j ] F(zj)
) ∼= Hk(C) ⊗F [zj,z−1

j ] F(zj) = 0.

This proves that C ⊗F [zj,z−1
j ] F(zj) is acyclic as claimed.

To prove the converse, suppose that C ⊗F [zj,z−1
j ] F(zj) is acyclic for all j. Fix k and j.

Exactness of localisation allows us to rewrite this hypothesis as

Hk(C) ⊗F [zj,z−1
j ] F(zj) ∼= Hk

(
C ⊗F [zj,z−1

j ] F(zj)
) = 0.

This implies that the image of any element g ∈ Hk(C) in the tensor product
Hk(C) ⊗F [zj,z−1

j ] F(zj) is trivial. As an abelian group, the said tensor product is a quotient

of Hk(C) ⊗� F(zj) by relations of the form a ⊗� (pb) − (ap) ⊗� b, for p ∈ F [zj, z−1
j ]. In

other words, we find finitely many Laurent polynomials pi ∈ F [zj, z−1
j ], and elements

ai ∈ Hk(C) and bi ∈ F(zj), all depending on g, such that

g ⊗� 1 =
∑

i

(
ai ⊗� (pibi) − (aipi) ⊗� bi

)
. (*)

Since F(zj) is the quotient field of F [zj, z−1
j ], we find a Laurent polynomial p(g),

depending on g, such that bip(g) ∈ F [zj, z−1
j ].

The ring L is Noetherian so that Hk(C) is a finitely generated L-module. Let
g1, g2, . . . , gm be a set of generators, and let qj = ∏m

�=1 p(g�) be the product of the
Laurent polynomials p(g) constructed above from (*), where g is replaced in turn by
the g�. Then, using the right F [zj, z−1

j ]-module structure on F(zj), equation (*) for
g = g� says that

g� ⊗� qj =
∑

i

(
ai ⊗� (pibiqj) − (aipi) ⊗� (biqj)

)
.

By choice of qj we have biqj ∈ F [zj, z−1
j ] so that consequently

g�qj ⊗ 1 = g� ⊗ qj = 0 in Hk(C) ⊗F [zj,z−1
j ] F [zj, z−1

j ] ∼= Hk(C),

that is g�qj = 0 ∈ Hk(C). Since the g� generate Hk(C), this implies that multiplication
by qj annihilates Hk(C).

By what we have just shown, Hk(C) is an L/(q1, q2, · · · , qn)-module in a natural
way. But Hk(C) is finitely generated as an L-module, hence as a module over the
quotient L/(q1, q2, · · · , qn), which in turn is a finite dimensional F-vector space. It
follows that Hk(C) is of finite dimension over F as required. �
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