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In this paper, we define a new finite element method for numerically approximating the solution of a

partial differential equation in a bulk region coupled with a surface partial differential equation posed on

the boundary of the bulk domain. The key idea is to take a polyhedral approximation of the bulk region

consisting of a union of simplices, and to use piecewise polynomial boundary faces as an approximation

of the surface. Two finite element spaces are defined, one in the bulk region and one on the surface, by

taking the set of all continuous functions which are also piecewise polynomial on each bulk simplex or

boundary face. We study this method in the context of a model elliptic problem; in particular, we look at

well-posedness of the system using a variational formulation, derive perturbation estimates arising from

domain approximation and apply these to find the optimal-order error estimates. A numerical experiment

is described which demonstrates the order of convergence.

Keywords: surface finite elements; error analysis; bulk–surface elliptic equations.

1. Introduction

Coupled bulk–surface partial differential equations arise in many applications; for example, they arise

naturally in fluid dynamics and biological applications. This paper studies mathematically a finite ele-

ment approach to a sample elliptic problem. The method is based on taking a polyhedral approximation

of the domain. Given a sufficiently smooth boundary, we go on to show error bounds of order hk in

the H1 norm and order hk+1 in the L2 norm, where k is the polynomial degree in the underlying finite

element space.

1.1 The coupled system

For a bounded domain Ω ⊂ R
N (N = 2, 3) with boundary Γ , we seek solutions u : Ω → R and v : Γ →

R of the system

−∆u + u = f in Ω , (1.1a)

(αu − βv) + ∂u

∂n
= 0 on Γ , (1.1b)

−∆Γ v + v + ∂u

∂n
= g on Γ . (1.1c)

Here we assume that α and β are given positive constants and that f and g are known functions on

Ω and Γ , respectively. We denote by ∆Γ the Laplace–Beltrami operator on Γ and by n the outward

pointing normal to Γ .
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1.2 Applications

In recent times there has been a great deal of attention paid to problems involving diffusion on a sur-

face, for example, Dziuk & Elliott (2007b) and references therein. Of particular interest is cell biology;

see, for example, Schwartz et al. (2005) and Sbalzarini et al. (2006). Indeed, cellular metabolism and

signalling are mediated in part by trans-membrane receptors that can diffuse in the cell membrane; see

Alberta et al. (2002). There are also examples where this surface diffusion is coupled with diffusion

in the bulk. For example, fluorescence loss in photobleaching where surface diffusion of a signalling

molecule, G-protein Rac, cycles between the cytoplasm (bulk) and cell membrane (surface); see Novak

et al. (2007).

The coupling on the surface (1.1b, 1.1c) has been used by Novak et al. (2007). It can be viewed as

a linearization of the more general equation

∂u

∂n
+ L(u, v) = 0,

where Lu > 0 and Lv < 0, which has been used in Kwon & Derby (2001), Booty & Siegel (2010),

Medvedev & Stuchebrukhov (2011) and Rätz & Röger (2011) for example. We leave the numerical

analysis of more general couplings, the parabolic case and evolving domains, to future work.

1.3 Outline of paper

The paper is laid out as follows. In the second section, we will derive a variational form for the equa-

tions. The third section looks at existence, uniqueness and regularity of variational solutions. The fourth

section focuses on the approximations we make to the geometry of the problem. In the fifth section, we

develop the finite element method and in the sixth section we will look for error bounds for this method.

In the final section, we will show some numerical results.

2. Derivation of variational form

2.1 Surface properties

Throughout we will use the notation from Deckelnick et al. (2005). We will assume that Γ is a compact

(N − 1)-dimensional hypersurface without boundary and that Γ is C2, so there exists a distance function

d : R
N → R defined by

d(x) =

⎧
⎪⎨
⎪⎩

− inf{|x − y| : y ∈ Γ } if x ∈ Ω ,

0 if x ∈ Γ ,

inf{|x − y| : y ∈ Γ } if x /∈ Ω .

Since |∇d(x)| ≡ 1 in a neighbourhood about Γ , we can define the normal to Γ for almost every x ∈ Γ

by

n(x) = ∇d(x).

It follows that there exists a narrow band U = {x ∈ R
N : |d(x)| < δΓ } about Γ , such that d ∈ C2(U), for

which we can also define the normal projection x 	→ p(x) from U onto Γ given by the unique solution
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of

x = p(x) + d(x)n(p(x)). (2.1)

This is possible by the assumptions above; see, for example, Hildebrant (1982). Note that p(x) is the

closest point to x on Γ , so p is also the closest point operator. Since this decomposition is unique, we

can extend n to a vector field on all of U so that n(x) = n(p(x)).

For a function ξ : Γ → R, we define its surface gradient to be

∇Γ ξ := ∇ξ − (∇ξ · n)n,

where ∇ξ denotes the gradient with respect to ambient coordinates of an arbitrary extension to U of ξ .

Alternatively, we can denote this relation as ∇Γ ξ = P∇ξ , where P is an N × N tensor given by Pij =
δij − ninj. Note that P is symmetric. The Laplace–Beltrami operator is given by the surface divergence

of the surface gradient, that is,

∆Γ ξ := ∇Γ · ∇Γ ξ .

We denote by H= ∇Γ · n the mean curvature of Γ . For facts about tangential gradients, see Gilbarg &

Trudinger (1983, Chapter 16).

We denote by do the (N − 1)-dimensional surface measure on Γ . The formula for integration by

parts on Γ is given by ∫

Γ

(∇Γ )iξ do = −
∫

Γ

ξHni do.

This gives us a surface Green’s formula for a surface without boundary,

∫

Γ

(−∆Γ y)ξ do =
∫

Γ

∇Γ y · ∇Γ ξ do. (2.2)

2.2 Variational form

We take functions η, ξ in a suitable space of test functions, multiply (1.1a) by η and (1.1c) by ξ , and

integrate by parts to get

∫

Ω

∇u · ∇η + uη dx −
∫

Γ

η
∂u

∂n
do =

∫

Ω

f η dx, (2.3a)

∫

Γ

∇Γ v · ∇Γ ξ + vξ do +
∫

Γ

∂u

∂n
ξ do =

∫

Γ

gξ do. (2.3b)

The boundary condition (1.1b) gives us that

−
∫

Γ

η
∂u

∂n
do =

∫

Γ

(αu − βv)η do and

∫

Γ

∂u

∂n
ξ do = −

∫

Γ

(αu − βv)ξ do. (2.4)

We substitute these into (2.3) to get

∫

Ω

∇u · ∇η + uη dx +
∫

Γ

(αu − βv)η do =
∫

Ω

f η dx, (2.5a)

∫

Γ

∇Γ v · ∇Γ ξ + vξ do −
∫

Γ

(αu − βv)ξ do =
∫

Γ

gη do. (2.5b)
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4 of 26 C. M. ELLIOTT AND T. RANNER

We now take a weighted sum of (2.5a) and (2.5b) to obtain the variational form

α

∫

Ω

(∇u · ∇η + uη) dx + β

∫

Γ

(∇Γ v · ∇Γ ξ + vξ) do

+
∫

Γ

(αu − βv)(αη − βξ) do = α

∫

Ω

f η dx + β

∫

Γ

gξ do. (2.6)

To help with notation later, we will write a((u, v), (η, ξ)) for the left-hand side of this equation and

l((η, ξ)) for the right-hand side.

We will test this variational form over the space H1(Ω) × H1(Γ ) which we define to be

H1(Ω) × H1(Γ ) := {(η, ξ) | η ∈ H1(Ω), ξ ∈ H1(Γ )}. (2.7)

We equip this space with the inner product

〈(η1, ξ1), (η2, ξ2)〉H1(Ω)×H1(Γ ) = 〈η1, η2〉H1(Ω) + 〈ξ1, ξ2〉H1(Γ ), (2.8)

and induced norm given by

‖(η, ξ)‖H1(Ω)×H1(Γ ) = (‖η‖2
H1(Ω) + ‖ξ‖2

H1(Γ ))
1/2. (2.9)

One may define higher-order spaces if Γ is more regular: to define H l(Ω) × H l(Γ ), we require Γ

to be Cj,κ with l � j + κ and κ = 0, 1. See Wloka (1987) for details of how to define the surface Sobolev

spaces.

Hence the variational formulation of the problem is to find (u, v) ∈ H1(Ω) × H1(Γ ) such that

a((u, v), (η, ξ)) = l((η, ξ)) for all (η, ξ) ∈ H1(Ω) × H1(Γ ). (2.10)

3. Existence, uniqueness and regularity

In this section, we apply the usual Lax–Milgram techniques (Evans, 1998) to the variational form devel-

oped in Section 2 in order to find a unique solution to (2.10). Following this, we split the equations to

show regularity with respect to the bulk and surface variables independently. To apply these techniques

we must show that a is bounded and coercive and l is bounded over H1(Ω) × H1(Γ ).

To see that a is bounded, note that

a((w, y), (η, ξ)) � α‖w‖H1(Ω)‖η‖H1(Ω) + β‖y‖H1(Γ )‖ξ‖H1(Γ )

+
∫

Γ

(αw − βy)(αη − βξ) do

�
√

2 max{α, β}‖(w, y)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ )

+ 2c2
T max{α, β}2‖(w, y)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ )

� c‖(w, y)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ ). (3.1)
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Here, cT is the constant from the trace theorem; see Evans (1998). Coercivity of a is immediate since

we have

a((η, ξ), (η, ξ)) = α‖η‖2
H1(Ω) + β‖ξ‖2

H1(Γ ) + ‖αη − βξ‖2
L2(Γ )

�
√

2 min{α, β}‖(η, ξ)‖2
H1(Ω)×H1(Γ ). (3.2)

Hence a is coercive if α, β > 0. By the Cauchy–Schwarz inequality, l is clearly bounded.

Theorem 3.1 (Existence and uniqueness) Given f ∈ H−1(Ω), g ∈ H−1(Γ ) and α, β > 0, there exists a

unique pair (u, v) ∈ H1(Ω) × H1(Γ ) such that

a((u, v), (η, ξ)) = l((η, ξ)) for all (η, ξ) ∈ H1(Ω) × H1(Γ ). (3.3)

Furthermore, if Γ is C3, we can achieve bounds in the H2 norms by setting η and ξ equal to zero in

turn.

For η = 0, we get

β

∫

Γ

∇Γ v · ∇Γ ξ + vξ do +
∫

Γ

β2vξ do = β

∫

Γ

gξ do +
∫

Γ

αβuξ do. (3.4)

This is exactly the variational form of the equation

− β∆Γ v + (β + β2)v = βg + αβu on Γ . (3.5)

Hence by surface elliptic theory (Aubin, 1982), if Γ is C3, we have that v ∈ H2(Γ ). Since, by the trace

theorem, u ∈ L2(Γ ), we have the bound

‖v‖H2(Γ ) � c(‖g‖L2(Γ ) + ‖v‖L2(Γ ) + ‖u‖H1(Ω)). (3.6)

For ξ = 0, we get

α

∫

Ω

∇u · ∇η + uη dx +
∫

Γ

α2uη do = α

∫

Ω

f η dx +
∫

Γ

αβvη do. (3.7)

This equation arises as the variational form of the equations

−α∆u + αu = αf in Ω , (3.8a)

∂u

∂n
+ αu = βv on Γ . (3.8b)

By the regularity theory of elliptic problems with Robin boundary data (see Ladyzhenskaia & Uralt-

seva, 1968; Gilbarg & Trudinger, 1983), if Γ is C3, we have the following result:

‖u‖H2(Ω) � c(‖f ‖L2(Ω) + ‖v‖H1/2(Γ )). (3.9)
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6 of 26 C. M. ELLIOTT AND T. RANNER

Theorem 3.2 (Regularity) If Γ is C3, f ∈ L2(Ω), g ∈ L2(Γ ) and α, β > 0 and (u, v) solve the variational

problem (2.6), then

u ∈ H2(Ω) and v ∈ H2(Γ ),

and

‖(u, v)‖H2(Ω)×H2(Γ ) � c(‖f ‖L2(Ω) + ‖g‖L2(Γ )). (3.10)

4. Domain perturbation and estimates

4.1 Domain approximation

The first step we take in discretizing the system (1.1) is to take kth-order approximations Ω
(k)
h and Γ

(k)
h

of Ω and Γ . We follow ideas taken from Lenoir (1986), Bernardi (1989) and Dubois (1990) in order

to define the triangulation of our bulk domain and use results of Dziuk (1988), Dziuk & Elliott (2007b)

and Demlow (2009) to make estimates about the perturbation of the boundary of this domain. To prove

the results in this section, we will assume Γ is Ck+1. The higher-order surface finite element spaces,

used here, are described in Heine (2005).

Let Ω̌h be a polyhedral approximation of Ω and Γ̌h = ∂Ω̌h. We suppose that the faces of Γ̌h are

(N − 1)-simplices whose vertices lie on Γ so that Γ̌h is an interpolant of Γ . We take a quasi-uniform

triangulation Ťh of Ω̌h (Brenner & Scott, 2002) consisting of closed simplices, either triangles in R
2 or

tetrahedra in R
3.

We define h = max{diam(T) : T ∈ Ťh} and assume that h is sufficiently small so that Γ̌h ⊆ U , so that

for all x ∈ Γ̌h, there exists a unique point p = p(x) ∈ Γ defined by (2.1). Finally, we assume that for each

T ∈ Ťh, T ∩ Γ̌h has at most one face of T .

4.1.1 Exact triangulation. In order to define our computational domains, we first define an exact

triangulation of Ω . For each simplex T ∈ Ťh, we define an affine function FT : R
N → R

N which

maps the unit N-simplex T̂ onto T (mapping the vertices of T̂ onto the vertices of T) which we

write as

FT (x̂) = AT x̂ + bT . (4.1)

We say that a closed set Te is a curved N-simplex if there exists a C1 mapping Fe
T that maps T̂ onto Te

that is of the form

Fe
T = FT + ΦT , (4.2)

where FT is the affine map from (4.1) and ΦT is a C1 mapping from T̂ to R
N satisfying

CT := sup
x̂∈T̂

|DΦT (x̂)A−1
T | � C < 1. (4.3)

From this definition we immediately have the following results.
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y

y1

y4

y3

y2

x

p (y)
x

Fig. 1. An illustration of the construction of the exact triangulation of Ω . The point x is mapped onto y ∈ τ (the simplex spanned

by ψ1, ψ2, ψ3) and then to x̃ = Fe
T (x) by using the closest point projection (2.1) of y.

Proposition 4.1 If the map Fe
T exists, then it is a C1 diffeomorphism from T̂ onto Te and satisfies

sup
x̂∈T̂

|DFe
T (x̂)| � (1 + CT )|AT |,

sup
x∈Te

|D(Fe
T )−1(x)| � (1 − CT )−1|A−1

T |,

(1 − CT )N | det AT | � | det DFe
T (x̂)| � (1 + CT )N | det DFT | for all x̂ ∈ T̂ .

There are several ways of defining such a ΦT given in the literature. Zlamal (1973, 1974) and

Scott (1973) considered problems with finite element spaces defined over curved spaces. Scott gives

an explicit construction of an exact triangulation in two dimensions which was generalized by Lenoir

(1986). Here, in this paper, we use a construction based on Dubois (1990) which uses the normal pro-

jection (2.1). We will adopt the notation of Bänsch & Deckelnick (1999) and Deckelnick et al. (2009).

Bearing in mind our assumptions on the triangulation, each T ∈ Ťh is either an internal simplex, with

at most one node on Γ̌h, in which case we set ΦT = 0; or T has more than one node on the boundary.

We denote by l the number of nodes of T that lie in Γ̌h and denote by ψ1, . . . , ψN+1 the vertices of T ,

ordered so that ψ1, . . . , ψl lie on Γ̌h. For each point x ∈ T , we define barycentric coordinates by

x =
N+1∑

j=1

λjψj

and write x̂ = (λ1, . . . , λN ) for the coordinates in T̂ . We next introduce

λ∗ = λ∗(x̂) =
l∑

j=1

λj, σ̂ = {x̂ ∈ T̂ : λ∗(x̂) = 0}.

 b
y
 g

u
est o

n
 S

ep
tem

b
er 2

3
, 2

0
1
2

h
ttp

://im
ajn

a.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://imajna.oxfordjournals.org/


8 of 26 C. M. ELLIOTT AND T. RANNER

In three dimensions, this falls into the following cases.

(1) T ∩ Γ̌h is an edge of a tetrahedron (l = 2), then σ̂ is the inverse image of the edge spanned by

ψ3, ψ4 under FT .

(2) T ∩ Γ̌h is a face of a tetrahedron (l = 3), then σ̂ is the point F−1
T (ψ4).

For x̂ /∈ σ̂ , we denote the projection of x onto τ by y = y(x̂) ∈ τ by

y =
l∑

j=1

λj

λ∗ ψj ∈ τ .

Then using the normal projection p(y) ∈ Γ of y given by (2.1) and we define ΦT by (see Fig. 1)

ΦT (x̂) =
{

(λ∗)k+2(p(y) − y) if x̂ /∈ σ̂ ,

0 if x̂ ∈ σ̂ .
(4.4)

We now follow a sequence of lemmas from Bernardi (1989) to show that ΦT satisfies (4.3).

Lemma 4.2 The mapping y is of class Ck+1 on T̂\σ̂ and satisfies

‖Dm
x̂ y‖L∞(T̂\σ̂ ) �

ch

(λ∗)m
for 1 � m � k + 1. (4.5)

Proof. See Bernardi (1989, Lemma 6.3). �

Lemma 4.3 The mapping p(y) is of class Ck+1 on T̂\σ̂ and we have the bound

‖Dm
x̂ (p(y) − y)‖L∞(T̂\σ̂ ) �

ch2

(λ∗)m
. (4.6)

Proof. We remark, using Bernardi (1989, Equation 2.9),

‖Dm
x̂ (p(y) − y)‖L∞(T̂\σ̂ ) � c

m∑

r=1

⎛
⎝‖Dr

y(p(y) − y)‖L∞(τ )

m∏

q=1

‖D
q

x̂
y‖iq

L∞(T̂\σ̂ )

⎞
⎠

where i = (i1, . . . , im) is a multiindex in N.

m∑

q=1

iq = r and

m∑

q=1

q iq = m.

We note that p(y) = y if y = ψj for any 0 � j � l, so y|τ can be seen as a linear interpolant of p(y) on τ .

Hence, from our geometric assumptions on Γ (Dziuk, 1988), ‖Dr
y(p(y) − y)‖L∞(τ ) � ch2−r for 0 � r � 2.
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Using (4.5) we see, if m � 2,

‖Dm
x̂ (p(y) − y)‖L∞(T̂\σ̂ ) � c

m∑

r=1

h2−rh(
∑ m

q=1 iq)(λ∗)−(
∑ m

q=1 qiq) �
ch2

(λ∗)m
,

and if m > 2,

‖Dm
x̂ (p(y) − y)‖L∞(T̂\σ̂ ) � c

(
2∑

r=1

h2−rh(
∑ m

q=1 iq)(λ∗)−(
∑ m

q=1 qiq) +
m∑

r=3

h(
∑ m

q=1 iq)(λ∗)−(
∑ m

q=1 qiq)

)

�
ch2

(λ∗)m
.

�

Proposition 4.4 The mapping ΦT (x̂) = (λ∗)k+2(p(y) − y) is of class Ck+1 on T̂ and satisfies

‖DmΦT‖L∞(T̂) � ch2 for 0 � m � k + 1. (4.7)

Furthermore, ΦT satisfies (4.3).

Proof. Using the Leibniz formula, we have for any x̂ in T̂\σ̂ ,

DmΦT (x̂) = Dm
x̂ ((λ∗)k+2(p(y) − y))

=
m∑

r=0

(
m

r

)
(k + 2)· · ·(k + 3 − r)(λ∗)k+2−r(Dx̂λ

∗)r Dm−r
x̂

(p(y) − y),

so that applying (4.6),

‖Dm
x̂ ((λ∗)k+2(p(y) − y))‖L∞(T̂\σ̂ ) � c

m∑

r=0

(λ∗)k+2−r ch2

(λ∗)m−r
� ch2(λ∗)k+2−m.

The mapping ΦT is of class Ck+1 on T̂\σ̂ with derivatives of order less than or equal to k + 1 tending

to zero when x̂ tends to a point in σ̂ . Hence, it can be extended to a Ck+1 mapping on T̂ (Gilbarg &

Trudinger, 1983) which satisfies (4.7).

Since |∂ x̂l/∂xj| � c/h (Ciarlet & Raviart, 1972a, p. 239), we know that

|A−1
T | = c

h
.

This result together with (4.7) shows

CT � sup
x̂∈T̂

|DΦT (x̂)||A−1
T | � ch,

hence ΦT satisfies (4.3) for h small enough. �

Remark 4.5 Note that we could have chosen ΦT (x̂) = λ∗(p(y) − y). However, this function is not

C1(T), and the interpolation theory of Bernardi (1989) would be unavailable. Our construction is a

combination of ideas from Lenoir (1986) and Dubois (1990).
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10 of 26 C. M. ELLIOTT AND T. RANNER

Fig. 2. A plot of two sections of triangulations. The left shows three tetrahedra in Ťh and the right shows the corresponding three

tetrahedra in T e
h . The surface is shown by spots on both sides. The red and yellow tetrahedra (left and right in each image) share

a face with the boundary (l = 3) and the blue tetrahedron (centre in each image) shares an edge with the boundary (l = 2). This

means that the red and yellow curved tetrahedra have four curved faces and the blue tetrahedron has two curved faces.

We will call the exact triangulation, defined by Fe
T above, T e

h . Note that under this construction,

simplices in T e
h , which have more than one vertex on the boundary, can have more than one curved

face. See Fig. 2, for example.

4.1.2 Computational domain. We can now define our computational domains Ω
(k)
h and Γ

(k)
h . Let T ∈

Ťh and φk
1 , . . . , φk

nk
be a Lagrangian basis of degree k on T̂ corresponding to the nodal points x̂1, . . . , x̂nk .

Then for x̂ ∈ T̂ , we can define a parametrization of a polynomial simplex T (k) by

F
(k)
T (x̂) =

nk∑

j=1

Fe
T (x̂j)φk

j (x̂).

We can carry out this procedure for each simplex T ∈ Ťh. Since the basis functions {φk
j } are unisolvent,

F
(k)
T is also a diffeomorphism. We define Ω

(k)
h as the union of elements T

(k)
h given by

T (k) := {F(k)
T (x̂) : x̂ ∈ T̂}, T

(k)
h := {T (k)|T ∈ Ťh}. (4.8)

Then Γ
(k)

h is the boundary of the domain Ω
(k)
h with the triangulation T

(k)
h |

Γ
(k)

h
. This construction admits

quasi-uniform triangulations T
(k)

h and T
(k)

h |
Γ

(k)

h
for Ω

(k)
h and Γ

(k)
h , respectively. Note that, like the exact

simplices in T e
h , the simplices in T

(k)
h can have curved (polynomial) faces.

4.2 Bulk estimates

We define a function Gh : Ω
(k)
h → Ω locally by Gh|T (k) := Fe

T ◦ (F
(k)
T )−1 for each T (k) ∈ T

(k)
h . This is

a homeomorphism, which when restricted to interior simplices (those with at most one vertex on the

boundary) is the identity.

We use the notation DGh for the gradient of Gh, where (DGh)ij = (∂/∂xj)(Gh)i, and DG T
h for its

transpose. We will also write DG−1
h for D(G−1

h ) = (DGh)
−1. We denote by Jh|T the absolute value of the

determinant of DGh|T .
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ANALYSIS OF A COUPLED BULK–SURFACE FINITE ELEMENT METHOD 11 of 26

We denote by Bh the union of elements in T
(k)

h which have more than one vertex on the boundary

Γ
(k)

h and Bℓ
h the associated exact elements in T e

h . Note that Bh is the region where Gh is different from

the identity.

Let us use the notation that for a fixed x̂ ∈ T̂ , we denote F
(k)
T (x̂) = x; then one may write that

Gh(x) = Fe
T ((F

(k)
T )−1(x)) = Fe

T (x̂) = x + (Fe
T (x̂) − F

(k)
T (x̂)). (4.9)

Lemma 4.6 If Γ is Ck+1, then Gh|T ∈ Ck+1(T (k)) for each T (k) ∈ T
(k)

h and we have that ‖Gh‖W k+1,∞(T (k))

is bounded independently of h.

Proof. Using (4.9), we can write Gh as

Gh(x) = FT (x̂) + ΦT (x̂).

Since x 	→ x̂ is smooth, Gh is the sum of an affine function and a Ck+1 function, so Gh is of class Ck+1

on T (k). To achieve the bound independently of h, we use (4.3). �

Proposition 4.7 (Geometric bulk estimates) Let T ∈ T
(k)

h be a boundary simplex (one which has more

than one vertex on the boundary Γ
(k)

h ), and Te the associated exact triangle in T e
h . Under the assumption

that Th is quasi-uniform, for sufficiently small h, we have that

‖DG T
h |T − Id‖L∞(T) � chk , (4.10a)

‖Jh|T − 1‖L∞(T) � chk . (4.10b)

Proof. We will bound ∣∣∣∣
∂

∂xj

(Gh)i − δij

∣∣∣∣ ,

which will show the estimates above.

We start by taking the xj derivative of Gh to get

∂

∂xj

(Gh)i =
∑

l

∂(F
(k)
T )−1(x)l

∂xj

∂(Fe
T (x̂))i

∂ x̂l

,

where we have used the substitution F
(k)
T (x̂) = x. We note that this means

∑

l

∂(F
(k)
T )−1(x)l

∂xj

∂(F
(k)
T (x̂))i

∂ x̂l

= ∂(F
(k)
T )−1(x)

∂xj

= δij.

Hence
∂

∂xj

(Gh)i − δij =
∑

l

∂(F
(k)
T )−1(x)l

∂xj

∂

∂ x̂l

(Fe
T (x̂) − F

(k)
T (x̂))i.

It is classical (Ciarlet & Raviart, 1972a, Lemma 7, p. 238) that

∣∣∣∣∣
∂((F

(k)
T )−1(x̂))l

∂xj

∣∣∣∣∣ =
∣∣∣∣
∂ x̂l

∂xj

∣∣∣∣ �
c

h
,
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12 of 26 C. M. ELLIOTT AND T. RANNER

and from standard interpolation theory, we see that

∣∣∣∣
∂

∂ x̂l

(Fe
T (x̂) − F

(k)
T (x̂))i

∣∣∣∣ � c‖Dk+1
x̂

(Fe
T )‖L∞(T̂).

However, we may use the fact that |Dm+1
x̂

xj| � chm (Ciarlet & Raviart, 1972a, p. 239) and change coor-

dinates to see

‖Dk+1
x̂

(Fe
T )‖L∞(T̂) � chk+1‖(Fe

T ◦ (F
(k)
T )−1)‖W k+1,∞(T (k)) = chk+1‖Gh‖W k+1,∞(T (k)).

From Lemma 4.6, we know ‖Gh‖W k+1,∞(T (k)) is bounded independently of h, this shows that

∣∣∣∣
∂

∂xj

(Gh)i − δij

∣∣∣∣ � chk .
�

We can now lift a function defined on Ω
(k)
h onto a function defined on Ω .

Definition 4.8 For a function ηh : Ω
(k)
h → R, we define its lift ηℓ

h : Ω → R by

ηℓ
h := ηh ◦ G−1

h .

For a function η : Ω → R, we can also define an inverse lift η−ℓ : Ω
(k)
h → R by

η−ℓ := η ◦ Gh.

In this case, it follows that (η−ℓ)ℓ = η.

We also have equivalence of norms via this lifting process.

Proposition 4.9 Let ηh : Ω
(k)
h → R and let ηℓ

h : Ω → R be its lift. Then there exist constants c1, c2,

independent of h, such that

c1‖ηℓ
h‖L2(Ω) � ‖ηh‖L2(Ω

(k)

h )
� c2‖ηℓ

h‖L2(Ω), (4.11a)

c1‖∇ηℓ
h‖L2(Ω) � ‖∇ηh‖L2(Ω

(k)

h )
� c2‖∇ηℓ

h‖L2(Ω). (4.11b)

Proof. We can write integrals over Ω
(k)
h in the following way:

∫

Ω
(k)

h

ηh(x) dx =
∫

Ω

ηℓ
h(y)

1

Jℓ
h (y)

dy,

and the gradient on Ω
(k)
h as

∇xηh(x) = DG T
h (y)∇yη

ℓ
h(y).

The results follow simply from applying the previous proposition. �

In the subsequent error analysis, we will require the following narrow band trace inequality.
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ANALYSIS OF A COUPLED BULK–SURFACE FINITE ELEMENT METHOD 13 of 26

Fig. 3. A cartoon of the setup of Ωs (yellow) and Γs lying inside Ω (red).

Lemma 4.10 Let Nδ ⊆ U be the band of width δ < δΓ given by

Nδ = {x ∈ Ω : −δ < d(x) < 0}.

It holds that for η ∈ H1(Ω)

‖η‖L2(Nδ) � cδ1/2‖η‖H1(Ω). (4.12)

Proof. First, we may assume that η ∈ C1(Ω), since the more general result will follow by a density

argument. Note that d ∈ C2(Nδ) and |∇d| ≡ 1 on Nδ . We can apply the co-area formula to integrals

over Nδ as follows:

∫

Nδ

η(y)2 dy =
∫

Nδ

η(y)2|∇d(y)| dy

=
∫ 0

−δ

∫

Γs

η2|Γs
do ds.

Here Γs denotes the C2 hypersurface which is the inverse image of s under d, namely, Γs = {x ∈Nδ :

d(x) = s}. Next, we wish to apply a trace-inequality type argument to bound the right-hand side of this

equation. We follow the proof of the trace inequality from Grisvard (2011, Theorem 1.5.1.10). Let the

vector field D : Ω̄ → R
N be an extension of ∇d of class C1 on Ω̄ , equal to ∇d on Nδ , with the bound

‖D‖C1(Ω̄) � c‖d‖C2(Nδ). Setting Ωs = {x ∈ Ω : d(x) < s}, (see Fig. 3), we have that

∫

Ωs

∇(η2) · D dx = 2

∫

Ωs

η∇η · D dx.

On the other hand, applying Green’s theorem, using the notation ns for the normal to Γs, we obtain

∫

Ωs

∇(η2) · D dx =
∫

Γs

η2D · ns do −
∫

Ωs

η2∇ · D dx.

Since D · ns = 1 on Γs, combining these two equations we have that

∫

Γs

η2D · ns do = 2

∫

Ωs

η∇η · D dx +
∫

Ωs

η2∇ · D dx,
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14 of 26 C. M. ELLIOTT AND T. RANNER

which means that
∫

Γs

η2 do � 2 max
Ω̄s

|D|
∫

Ωs

|η||∇η| dx + max
Ω̄s

|∇ · D|
∫

Ωs

η2 dx.

Since we have that Ωs ⊆ Ω , applying Young’s inequality gives

∫

Γs

η2 do � c‖D‖C1(Ω̄)

∫

Ω

|∇η2| + η2 dx.

Hence we have that ∫

Nδ

η2 dy � cδ‖η‖2
H1(Ω). (4.13)

�

4.3 Surface estimates

We have the following geometric estimates for the surface Γh. They follow since Γh can be viewed as

an interpolant of Γ . Details can be found in Dziuk (1988), Dziuk & Elliott (2007a), Dziuk & Elliott

(2007b) and Demlow (2009).

Proposition 4.11 (Geometric surface estimates) Under the above assumptions on Γ and Γh, we have

that

‖d‖
L∞(Γ

(k)

h )
� chk+1.

Let µh be the quotient of the measures on the surface and the approximate surface, so that do = µh doh.

Then we have the estimate

sup
Γ

(k)

h

|1 − µh| � chk+1. (4.14)

Let P and Ph denote the projections onto the tangent spaces of Γ and Γh, respectively. We introduce the

notation

Qh = 1

µh

(Id − dH)PPhP(Id − dH), (4.15)

then we have the estimate that

|Id − µhQh| � chk+1. (4.16)

A proof can be found in Dziuk (1988) and Dziuk & Elliott (2007a) for the linear case and Demlow

(2009) for higher orders.

We use the closest point operator (2.1) to define the lift and inverse lift of surface functions.

Definition 4.12 Given ξh : Γ
(k)

h → R, we define its lift, denoted by ξ ℓ
h : Γ → R, by

ξ ℓ
h (p(x)) := ξh(x).

Similarly, for a function ξ : Γ → R, we define its inverse lift, written ξ−ℓ : Γ
(k)

h → R, by

ξ−ℓ(x) := ξ(p(x)).

It can be shown that the following norms are equivalent via this lifting process (see Fig. 4).
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p (x)

n (x)
n (x)

x

h x

p (x)

Fig. 4. A section of a surface triangulation with normal lifts shown in R
3.

Proposition 4.13 Let ξh : Γ
(k)

h → R and let ξ ℓ
h : Γ → R be its lift. Then there exist constants c1, c2,

independent of h, such that

c1‖ξ ℓ
h ‖L2(Γ ) � ‖ξh‖L2(Γ

(k)

h )
� c2‖ξ ℓ

h ‖L2(Γ ), (4.17a)

c1‖∇Γ ξ ℓ
h ‖L2(Γ ) � ‖∇Γh

ξh‖L2(Γ
(k)

h )
� c2‖∇Γ ξ ℓ

h ‖L2(Γ ). (4.17b)

A proof is given in Dziuk (1988), Dziuk & Elliott (2007a) for k = 1 and Demlow (2009) for any

k > 1.

5. Finite element method

In this work we will use piecewise polynomial finite element functions of the same degree as the approx-

imation of the domain. This leads to so-called isoparametric elements which will give the optimal rate

of convergence. One could also implement this method with different order finite element functions, but

this would lead to suboptimal convergence.

5.1 Isoparametric finite element spaces

We use this section to define the finite element spaces Vh and Sh that our finite element method will

be based on. We recall that the computational domains Ωh and Γh are defined elementwise by a

parametrization F
(k)
T : T̂ → T (k) ⊂ Ω

(k)
h as in (4.8). In both the bulk and surface cases, we define the

finite element functions to be continuous functions which are piecewise polynomials of degree k with

respect to the barycentric coordinates of the reference element in dimensions N and N − 1. An important

part of the construction is that the trace of a function on Γ
(k)

h in Vh lies in Sh.

More precisely, for the bulk finite element functions,

Vh = {ηh ∈ C(Ω
(k)
h ) : ηh|T = η̂h ◦ (F

(k)
T )−1 with η̂h ∈ Pk(T̂) for all T ∈ Th}.

For the surface finite element functions, we introduce

Sh = {ξh ∈ C(Γ
(k)

h ) : ξh|τ = ξ̂h ◦ (F
(k
T )−1 with ξ̂h ∈ Pk(τ̂ ) for all T ∈ Th with τ = T ∩ Γh |= ∅}.
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16 of 26 C. M. ELLIOTT AND T. RANNER

We have used the notation τ̂ = (F
(k)
T )−1(τ ) for the face of the reference element T̂ corresponding to τ ,

and Pk(ω) for the space of polynomials of degree k on ω.

From now on we will assume k is fixed and write Ωh, Γh, Th for Ω
(k)
h , Γ

(k)
h , T

(k)
h , without ambiguity.

5.2 Description of the method

We define approximate data fh, gh using the appropriate inverse lifts. That is,

fh = f −ℓJh, gh = g−ℓµh. (5.1)

The approximate problem is then to find (uh, vh) ∈ Vh × Sh such that

α

∫

Ωh

∇uh · ∇ηh + uhηh dx + β

∫

Γh

∇Γh
vh · ∇Γh

ξh + vhξh doh

+
∫

Γh

(αuh − βvh)(αηh − βξh) doh = α

∫

Ωh

fhηh dx + β

∫

Γh

ghξh doh

for all (ηh, ξh) ∈ Vh × Sh, (5.2)

where ∇Γh
is the surface gradient on Γh.

Remark 5.1 This choice of fh and gh is not fully practical for arbitrary (f , g) ∈ L2(Ω) × L2(Γ ) as the

right-hand side integrals would need to be calculated via some numerical integration rule. We are not

concerned in analysing such errors in this paper and will assume that it is possible to calculate these

integrals exactly. For general results on numerical integration in the context of curved domains, see

Ciarlet & Raviart (1972b) and Barrett & Elliott (1987).

Remark 5.2 To implement the method, we use exact quadrature rules to calculate mass and stiffness

matrices on reference elements using the transformation (4.8).

We introduce bilinear and linear forms on Vh × Sh:

ah((wh, yh), (ηh, ξh)) = α

∫

Ωh

∇wh · ∇ηh + whηh dx

+ β

∫

Γh

∇Γh
yh · ∇Γh

ξh + yhξh doh

+
∫

Γh

(αwh − βyh)(αηh − βξh) doh,

lh((ηh, ξh)) = α

∫

Ωh

fhηh dx + β

∫

Γh

ghξh doh,

so that we can write (5.2) as: find (uh, vh) ∈ Vh × Sh such that

ah((uh, vh), (ηh, ξh)) = lh((ηh, ξh)) for all (ηh, ξh) ∈ Vh × Sh. (5.3)
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Theorem 5.3 The finite element method defined in (5.2) has a unique solution (uh, vh) ∈ Vh × Sh which

satisfies the bound

‖(uh, vh)‖H1(Ωh)×H1(Γh) � c‖(f , g)‖L2(Ω)×L2(Γ ), for all h. (5.4)

Proof. It is clear that the equations have a unique solution since ah is also coercive; This follows from

the same reasoning as (3.2). To show the bound, we use the coercivity of ah, the equivalence of norms

shown in (4.17a), (4.11a), (4.14) and (4.10) to see that for h small enough,

‖(uh, vh)‖H1(Ωh)×H1(Γh) � c‖(fh, gh)‖L2(Ωh)×L2(Γh)

� c‖(f , g)‖L2(Ω)×L2(Γ ). �

5.3 Lifted finite element spaces

In order to prove error bounds, we define the lifted finite element spaces that lifts of finite element

functions live in. In particular, this allows us to define (uℓ
h, vℓ

h): the lifts of the finite element solution

defined on the same domain as the solutions of the continuous problem. We define the lift of the finite

element spaces as

V ℓ
h = {ηℓ

h : ηh ∈ Vh} ⊆ H1(Ω),

Sℓ
h = {ξ ℓ

h : ξh ∈ Sh} ⊆ H1(Γ ).
(5.5)

It is important to note that the traces on Γ of functions in V ℓ
h live in Sℓ

h.

Proposition 5.4 (Approximation property) For the lifted finite element spaces V ℓ
h , Sℓ

h defined above,

there exists an interpolation operator Ih : Hk+1(Ω) × Hk+1(Γ ) → V ℓ
h × Sℓ

h such that for 2 � m � k + 1,

‖(w, y) − Ih(w, y)‖L2(Ω)×L2(Γ ) + h‖(w, y) − Ih(w, y)‖H1(Ω)×H1(Γ ) � chm‖(w, y)‖Hm(Ω)×Hm(Γ ) (5.6)

for all (w, y) ∈ H2(Ω) × H2(Γ ).

Proof. We start by defining the interpolation operator Ĩh : H2(Ω) × H2(Γ ) → Vh × Sh so that (w, y)

and Ĩh(w, y) agree at the nodes of Ωh and Γh. We use both lifts to define Ih(w, y) = (̃Ih(w, y))ℓ. The

error bounds follow from given interpolation theory; see Bernardi (1989, Corollary 4.1) for the bulk

and Demlow (2009) for the surface. �

Using the fact that

∇(wℓ
h) = ∇(wh ◦ G−1

h ) = DG−T
h (∇wh)

ℓ,

(writing DG−T
h for (DG−1

h )T) and from Dziuk (1988),

(Ph(Id − dH))∇Γ (yℓ
h) = (∇Γh

yh)
ℓ,
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we have that

ah((wh, yh), (ηh, ξh)) = α

∫

Ω

(DGT
h ∇wℓ

h · DGT
h ∇ηℓ

h + wℓ
hη

ℓ
h)

1

Jℓ
h

dx

+ β

∫

Γ

Qℓ
h∇Γ yℓ

h · ∇Γ ξ ℓ
h + yℓ

hξ
ℓ
h

1

µℓ
h

do

+
∫

Γ

(αwℓ
h − βyℓ

h)(αηℓ
h − βξ ℓ

h )
1

µℓ
h

do

=: aℓ
h((w

ℓ
h, yℓ

h), (η
ℓ
h, ξ ℓ

h )),

for all (wh, yh), (ηh, ξh) ∈ Vh × Sh with lifts (wℓ
h, yℓ

h), (η
ℓ
h, ξ ℓ

h ) ∈ V ℓ
h × Sℓ

h.

For the right-hand side, we immediately have that lh((ηh, ξh)) = l((ηℓ
h, ξ ℓ

h )) since

∫

Ωh

fhηh dx =
∫

Ωh

(f −ℓJh)ηh dx =
∫

Ω

(f −ℓJh)
ℓηℓ

h

1

Jℓ
h

dx =
∫

Ω

fJℓ
hηℓ

h

1

Jℓ
h

dx =
∫

Ω

f ηℓ
h dx,

and

∫

Γh

ghξh doh =
∫

Γh

(g−ℓµh)ξh doh =
∫

Γ

(g−ℓµh)
ℓξ ℓ

h

1

µℓ
h

do =
∫

Γ

gµℓ
hξ

ℓ
h

1

µℓ
h

do =
∫

Γ

gξ ℓ
h do.

Hence, we may rewrite (5.3) as: find (uℓ
h, vℓ

h) ∈ V ℓ
h × Sℓ

h such that

aℓ
h((u

ℓ
h, vℓ

h), (η
ℓ
h, ξ ℓ

h )) = l((ηℓ
h, ξ ℓ

h )) for all (ηℓ
h, ξ ℓ

h ) ∈ V ℓ
h × Sℓ

h. (5.7)

In the following, we will make use of the fact that aℓ
h now makes sense for all function pairs in

H1(Ω) × H1(Γ )

6. Error analysis

In this section, we wish to compare the error of the solutions (u, v) of the exact problem (1.1) to the

solutions (uh, vh) of the approximate problem (5.2) defined in Section 5.

One of the problems we have to overcome is the fact that the two problems are posed over different

domains. However, the lift operators we have defined will help us.

In order to derive optimal order estimates for k > 1, we must assume higher regularity of the smooth

solution (u, v) of (2.10) and the surface Γ . We require (u, v) ∈ Hk+1(Ω) × Hk+1(Γ ) which requires Γ

to be Ck+2 (Wloka, 1987).

Theorem 6.1 Let (u, v) ∈ Hk+1(Ω) × Hk+1(Γ ) be the solution of the variational problem (2.10) and

let (uh, vh) ∈ Vh × Sh be the solution of the finite element scheme given by (5.2). Denote by uℓ
h and vℓ

h

the lifts of uh and vh, respectively. Then we have the following error bounds:

‖(u − uℓ
h, v − vℓ

h)‖H1(Ω)×H1(Γ ) � C1hk , (6.1)

where

C1 = c(‖(u, v)‖Hk+1(Ω)×Hk+1(Γ ) + ‖(f , g)‖L2(Ω)×L2(Γ )),
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and

‖(u − uℓ
h, v − vℓ

h)‖L2(Ω)×L2(Γ ) � C2hk+1, (6.2)

where

C2 = c(‖(u, v)‖Hk+1(Ω)×Hk+1(Γ ) + ‖(f , g)‖L2(Ω)×L2(Γ )).

6.1 Geometric errors

Part of the error of the finite element method comes from the fact that there is a so-called ‘variational

crime’, that is, we are using different bilinear forms in the exact and approximate formulations and

Vh �⊆ H1(Ω) and Sh �⊆ H1(Γ ). These errors come from the change in geometry of the computational

domain.

Lemma 6.2 For (w, y), (η, ξ) ∈ V ℓ
h × Sℓ

h, we have

|a((w, y), (η, ξ)) − aℓ
h((w, y), (η, ξ))|

� chk‖w‖H1(Bℓ
h)
‖η‖H1(Bℓ

h)
+ chk+1‖(w, y)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ ). (6.3)

Proof. To prove this lemma, we will split the forms a and aℓ
h into bulk, surface and cross terms. That

is,

a(Ω)(w, η) = α

∫

Ω

∇w · ∇η + wη dx,

a(Γ )(y, ξ) = β

∫

Γ

∇Γ y · ∇Γ ξ + yξ do,

a(×)((w, y), (η, ξ)) =
∫

Γ

(αw − βy)(αη − βξ) do.

We define a
(·)ℓ
h similarly.

Given w, η ∈ V ℓ
h , for the bulk term we see that

∣∣∣∣
∫

Ωh

∇w−ℓ · ∇ηℓ dx −
∫

Ω

∇w · ∇η dx

∣∣∣∣ =A1 + A2 + A3,

where

A1 =
∫

Ω

(DGT
h − Id)∇w · DGT

h ∇η
1

Jℓ
h

dx,

A2 =
∫

Ω

∇w · (DGT
h − Id)∇η

1

Jℓ
h

dx,

A3 =
∫

Ω

∇w · ∇η

(
1

Jℓ
h

− 1

)
dx.

Making use of the fact that

1

Jℓ
h

− 1 = 0 and DGT
h − Id = 0, in Ω\Bℓ

h,
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we actually have

A1 =
∫

Bℓ
h

(DGT
h − Id)∇w · DGT

h ∇η
1

Jℓ
h

dx,

A2 =
∫

Bℓ
h

∇w · (DGT
h − Id)∇η

1

Jℓ
h

dx,

A3 =
∫

Bℓ
h

∇w · ∇η

(
1

Jℓ
h

− 1

)
dx.

Using Proposition 4.7, we see that the three terms Aj are bounded by

chk‖∇w‖L2(Bℓ
h)
‖∇η‖L2(Ω).

Similarly,

∣∣∣∣
∫

Ωh

w−ℓη−ℓ dx −
∫

Ω

wη dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

wη

(
1

Jℓ
h

− 1

)
dx

)∣∣∣∣ � chk‖w‖L2(Ω)‖η‖L2(Ω).

Given y, ξ ∈ Sℓ
h, using Proposition 4.11, we see that for surface terms,

∣∣∣∣
∫

Γh

∇Γh
y−ℓ · ∇Γh

ξ−ℓ doh −
∫

Γ

∇Γ y · ∇Γ ξ do

∣∣∣∣

=
∣∣∣∣
∫

Γ

(Id − µℓ
hQ

ℓ
h)∇Γ y · ∇Γ ξ do

∣∣∣∣ � chk+1‖∇Γ y‖L2(Γ )‖∇Γ ξ‖L2(Γ ),

and ∣∣∣∣
∫

Γh

y−ℓξ−ℓ doh −
∫

Γ

yξ do

∣∣∣∣ =
∣∣∣∣
∫

Γ

yξ

(
1

µℓ
h

− 1

)
do

∣∣∣∣ � chk+1‖y‖L2(Γ )‖ξ‖L2(Γ ).

Using the previous result, we also have that

∣∣∣∣
∫

Γh

(αw−ℓ − βy−ℓ)(αη−ℓ − βξ−ℓ) doh −
∫

Γ

(αw − βy)(αη − βξ) do

∣∣∣∣

=
∣∣∣∣
∫

Γ

(αw − βy)(αη − βξ)

(
1

µℓ
h

− 1

)
do

∣∣∣∣

� chk+1‖(w, y)‖L2(Γ )×L2(Γ )‖(η, ξ)‖L2(Γ )×L2(Γ )

� chk+1‖(w, y)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ ).

This shows (6.3). �

We remark briefly that since Bℓ
h is contained in Ω , we also have for functions (η, ξ) ∈ H1(Ω) ×

H1(Γ ),

|a((w, y), (η, ξ)) − aℓ
h((w, y), (η, ξ))|

� chk‖(w, y)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ ). (6.4)
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Finally, we remark that we can use Lemma 4.10 for integrals over Bℓ
h.

Lemma 6.3 For η ∈ H1(Ω),

‖η‖L2(Bℓ
h)

� ch1/2‖η‖H1(Ω). (6.5)

Proof. We may apply Lemma 4.10 to the domain Nδ . We can choose δ such that δΓ > ch > δ > h > 0,

since the width of Bℓ
h is just one element. Hence

‖η‖L2(Bℓ
h)

� ‖η‖L2(Nδ) � cδ1/2‖η‖H1(Ω) � ch1/2‖η‖H1(Ω). �

6.2 Proof of error bounds

Let (u, v) ∈ Hk+1(Ω) × Hk+1(Γ ) be the solution of the variational problem (2.6) and let (uh, vh) ∈ Vh ×
Sh be the solution of the finite element scheme given by (5.2). Denote by uℓ

h and vℓ
h the lifts of uh and vh,

respectively. Define Fh : H1(Ω) × H1(Γ ) → R by

Fh((η, ξ)) := a((u − uℓ
h, v − vℓ

h), (η, ξ)). (6.6)

Lemma 6.4 If (η, ξ) = (ηℓ
h, ξ ℓ

h ) ∈ V ℓ
h × Sℓ

h, then Fh is bounded by

|Fh((η
ℓ
h, ξ ℓ

h ))| � chk‖(uℓ
h, vℓ

h)‖H1(Ω)×H1(Γ )‖(ηℓ
h, ξ ℓ

h )‖H1(Ω)×H1(Γ ). (6.7)

If (η, ξ) ∈ H2(Ω) × H2(Γ ), then we can improve the bound on Fh to

|Fh(η, ξ)| � (chk+1‖(uℓ
h, vℓ

h)‖H1(Ω)×H1(Γ ) + chk‖(uℓ
h − u, vℓ

h − v)‖H1(Ω)×H1(Γ )

+ chk+1‖(u, v)‖H2(Ω)×H2(Γ ))‖(η, ξ)‖H2(Ω)×H2(Γ ). (6.8)

Proof. First, we note that if (η, ξ) = (ηℓ
h, ξ ℓ

h ) ∈ V ℓ
h × Sℓ

h, using the fact that (u, v) satisfies (2.6) and

(uℓ
h, vℓ

h) satisfies (5.7), Fh can be written as

Fh((η
ℓ
h, ξ ℓ

h )) = a((u − uℓ
h, v − vℓ

h), (η
ℓ
h, ξ ℓ

h ))

= l((ηℓ
h, ξ ℓ

h )) − a((uℓ
h, vℓ

h), (η
ℓ
h, ξ ℓ

h ))

= (l((ηℓ
h, ξ ℓ

h )) − l((ηℓ
h, ξ ℓ

h )))

− (a((uℓ
h, vℓ

h), (η
ℓ
h, ξ ℓ

h )) − aℓ
h((u

ℓ
h, vℓ

h), (η
ℓ
h, ξ ℓ

h )))

= −(a((uℓ
h, vℓ

h), (η
ℓ
h, ξ ℓ

h )) − aℓ
h((u

ℓ
h, vℓ

h), (η
ℓ
h, ξ ℓ

h ))).

Applying the result from (6.4) gives (6.7).

To show the second result, we assume (η, ξ) ∈ H2(Ω) × H2(Γ ) and introduce the interpolant

Ih(η, ξ) ∈ V ℓ
h × Sℓ

h of (η, ξ), so that

Fh((η, ξ)) = a((u − uℓ
h, v − vℓ

h), (η, ξ))

= a((u − uℓ
h, v − vℓ

h), (η, ξ) − Ih(η, ξ)) + a((u − uℓ
h, v − vℓ

h), Ih(η, ξ)).

Then, again we can use the fact that (u, v) satisfies (2.6) and (uℓ
h, vℓ

h) satisfies (5.7), so that

Fh((η, ξ)) = a((u − uℓ
h, v − vℓ

h), (η, ξ) − Ih(η, ξ)) + (aℓ
h((u

ℓ
h, vℓ

h), Ih(η, ξ)) − a((uℓ
h, vℓ

h), Ih(η, ξ))).
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Hence we have that

Fh((η, ξ)) = a((u − uℓ
h, v − vℓ

h), (η, ξ) − Ih(η, ξ))

+ (aℓ
h((u

ℓ
h, vℓ

h), Ih(η, ξ) − (η, ξ)) − a((uℓ
h, vℓ

h), Ih(η, ξ) − (η, ξ)))

+ (aℓ
h((u

ℓ
h − u, vℓ

h − v), (η, ξ)) − a((uℓ
h − u, vℓ

h − v), (η, ξ)))

+ (aℓ
h((u, v), (η, ξ)) − a((u, v), (η, ξ))). (6.9)

We bound each of the terms on the right-hand side of (6.9) in turn. For the first term we apply (6.1)

together with the approximation property (Proposition 5.4) to see

|a((u − uℓ
h, v − vℓ

h), (η, ξ) − Ih(η, ξ))| � C1hkch‖(η, ξ)‖H2(Ω)×H2(Γ ).

For the second term, we use the geometric bound (6.4), again with the approximation property

(Proposition 5.4) to get

|aℓ
h((u

ℓ
h, vℓ

h), Ih(η, ξ) − (η, ξ)) − a((uℓ
h, vℓ

h), Ih(η, ξ) − (η, ξ))|

� chk‖(uℓ
h, vℓ

h)‖H1(Ω)×H1(Γ )ch‖(η, ξ)‖H2(Ω)×H2(Γ ).

A bound for the third term follows by applying the geometric bound (6.4):

|aℓ
h((u

ℓ
h − u, vℓ

h − v), (η, ξ)) − a((uℓ
h − u, vℓ

h − v), (η, ξ))|

� chk‖(uℓ
h − u, vℓ

h − v)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ ).

Finally, for the fourth term, we simply apply (6.3) followed by the result from Lemma 6.3 to see

|aℓ
h((u, v), (η, ξ)) − a((u, v), (η, ξ))|

� chk‖u‖H1(Bℓ
h)
‖η‖H1(Bℓ

h)
+ chk+1‖(u, v)‖H1(Ω)×H1(Γ )‖(η, ξ)‖H1(Ω)×H1(Γ )

� chk+1‖(u, v)‖H2(Ω)×H2(Γ )‖(η, ξ)‖H2(Ω)×H2(Γ ).

Adding the previous four results into (6.9) gives (6.8). �

Remark 6.5 Note that for (η, ξ) = (ηh, ξh) ∈ Vh × Sh, in the absence of domain perturbation then

Fh((ηh, ξh)) = 0,

where this is simply Galerkin orthogonality, whereas in the absence of the bulk equations then the bound

would be of order hk+1 (see Demlow 2009).
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Proof of Theorem 6.1. The error estimate (6.1) follows simply by combining the approximation

property (Proposition 5.4) with the bound on Fh from (6.7). We rewrite the error as

a((u − uℓ
h, v − vℓ

h), (u − uℓ
h, v − vℓ

h))

= a((u − uℓ
h, v − vℓ

h), (u, v) − Ih(u, v))

+ a((u − uℓ
h, v − vℓ

h), Ih(u, v) − (uℓ
h, vℓ

h))

= a((u − uℓ
h, v − vℓ

h), (u, v) − Ih(u, v)) + Fh(Ih(u, v) − (uℓ
h, vℓ

h)).

The result follows from the application of a Cauchy inequality and the coercivity of the bilinear form

a in (3.2). To show the given value of C1 we use (5.4) from Theorem 5.3 and (4.17), (4.11) to bound

‖(uℓ
h, vℓ

h)‖H1(Ω)×H1(Γ ).

We will use an Aubin–Nitsche duality argument to show the L2 bound. For ζ = (ζ1, ζ2) ∈ L2(Ω) ×
L2(Γ ), we define the dual problem: find zζ ∈ H1(Ω) × H1(Γ ) such that

a((η, ξ), zζ ) = 〈ζ , (η, ξ)〉L2(Ω)×L2(Γ ) for all (η, ξ) ∈ H1(Ω) × H1(Γ ). (6.10)

Here, 〈(w, y), (η, ξ)〉 ∈ L2(Ω) × L2(Γ ) denotes the sum of the L2 inner products between w and η on Ω

and y and ξ on Γ . Similarly to Theorem 3.2, one can show the following regularity result for the dual

problem:

‖zζ‖H2(Ω)×H2(Γ ) � c‖ζ‖L2(Ω)×L2(Γ ). (6.11)

We write the error,

e = (u − uℓ
h, v − vℓ

h) ∈ L2(Ω) × L2(Γ ),

as the data for the dual problem and test with (η, ξ) = e so that

‖e‖2
L2(Ω)×L2(Γ ) = a(e, ze) = Fh(ze).

Hence, using (6.8) combined with the H1 error bound (6.1) and the dual regularity result (6.11), we have

‖e‖2
L2(Ω)×L2(Γ ) = Fh(ze) � C2hk+1‖e‖L2(Ω)×L2(Γ ),

with C2 as in the statement of the theorem. �

7. Numerical results

We have implemented the above finite element method using the ALBERTA finite element toolbox

(Schmidt et al., 2005).

The data were chosen, with α = β = 1, so that the exact solution is

u(x1, x2, x3) = β exp(−x1(x1 − 1)x2(x2 − 1)),

v(x1, x2, x3) = (α + x1(1 − 2x1) + x2(1 − 2x2)) exp(−x1(x1 − 1)x2(x2 − 1)).

We calculate the right-hand side by setting (fh, gh) = Ĩh(f , g). We ran two simulations: one with k = 1,

one with k = 2. We present the error calculated after solving the matrix system at each mesh size in

Tables 1–4. A plot of the solution is provided in Fig. 5. We define the experimental order of convergence

(eoc) between two errors E(h1) and E(h2) at mesh sizes h1 and h2 by eoc(h1, h2) = log E(h1)

E(h2)
(log h1

h2
)−1.
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Table 1 Error table for the case k = 1: bulk errors, ‖u − uh‖

h L2 error eoc H1 error eoc

1.000000e+00 1.556084e−01 — 8.412952e−01
8.201523e−01 6.945582e−02 4.068547 6.031542e−01 1.678406
4.799888e−01 2.375760e−02 2.002490 3.485974e−01 1.023385
2.555341e−01 6.692238e−03 2.009740 1.831428e−01 1.021009
1.321787e−01 1.744647e−03 2.039433 9.301660e−02 1.027742
6.736035e−02 4.427043e−04 2.034429 4.672631e−02 1.021320
3.399254e−02 1.112504e−04 2.019429 2.339324e−02 1.011617

Table 2 Error table for the case k = 1: surface errors, ‖v − vh‖

h L2 error eoc H1 error eoc

1.000000e+00 5.080238e−01 — 2.908569e+00
8.201523e−01 1.591067e−01 5.855554 1.607240e+00 2.991664
4.799888e−01 4.342084e−02 2.424061 8.413412e−01 1.208220
2.555341e−01 1.108272e−02 2.166144 4.247143e−01 1.084348
1.321787e−01 2.785873e−03 2.094697 2.128454e−01 1.048012
6.736035e−02 6.973524e−04 2.054635 1.064757e−01 1.027520
3.399254e−02 1.743772e−04 2.026669 5.324210e−02 1.013381

Table 3 Error table for the case k = 2: bulk errors, ‖u − uh‖

h L2 error eoc H1 error eoc

1.000000e+00 3.894207e−02 – 3.511490e−01
8.172473e−01 1.034114e−02 6.570149 1.476235e−01 4.293793
5.060717e−01 1.304277e−03 4.320133 4.026584e−02 2.710747
2.773996e−01 1.737998e−04 3.352355 1.061322e−02 2.217832
1.447909e−01 2.259868e−05 3.137667 2.723960e−03 2.091786
7.391824e−02 2.882693e−06 3.062727 6.894787e−04 2.043497

Table 4 Error table for the case k = 2: surface errors, ‖v − vh‖

h L2 error eoc H1 error eoc

1.000000e+00 1.538024e−01 – 1.258018e+00
8.172473e−01 2.188515e−02 9.661695 3.745396e−01 6.003538
5.060717e−01 3.332406e−03 3.927097 1.052173e−01 2.649211
2.773996e−01 4.516347e−04 3.324205 2.718041e−02 2.251310
1.447909e−01 5.816879e−05 3.152298 6.874227e−03 2.114402
7.391824e−02 7.342240e−06 3.078402 1.725037e−03 2.056324
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Fig. 5. Plot of the solution of the finite element scheme at h ≈ .2, k = 2, along the plane x = y in Ωh, with mesh (left) and the

surface Γh (right).
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