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INTRODUCTION

 In the clinic, bone healing after fracture is typically 
identified by an experienced clinician by reading 

a common plane film to examine fracture line 
and callus growth. Whether the internal fixation 
device should be dislodged or not is assessed 
simultaneously. Because of the rapid development 
of computer hardware and progress of software 
technology, three-dimensional reconstruction and 
corresponding   element mechanical analysis can 
now be done on personal computers using the 
Windows operating system.1-5

 In this study, three-dimensional reconstruction 
software Mimics and finite element analysis 
software Abaqus were used to analyze preoperative 
and postoperative computed tomography (CT) 
data of femoral fracture patients due to receive 
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ABSTRACT

Objective: Finite element analysis was used to compare preoperative and postoperative stress distribution 

of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break 

or not after fixation dislodgement one year after intramedullary nailing.
Methods: Using fast, personalized imaging, bone healing models of femur fracture were constructed based 

on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software 

packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads 
were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, 

maximum stress, and its location was observed.

Results: According to 10 kinds of display groups based on material assignment, the nodes of maximum and 

minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von 

Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom 

quarter of the femur. The von Mises stress distribution was identical before and after surgery.

Conclusion: Fast, personalized model establishment can simulate fixation dislodgement before operation, 
and personalized finite element analysis was performed to successfully predict whether nail dislodgement 
would disrupt femur fracture or not. 
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device dislodgement during their 1-year follow-
up, to compare preoperative and postoperative 
stress distribution of the model by personalized 
finite element analysis, and, to determine bone 
healing conditions and provide evidence for device 
dislodgement.

METHODS

Equipment and software: The main equipment used 
included a 64-row, 128-slice volumetric CT scanner 
(Lightspeed VCT; GE Healthcare, Waukesha, WI, 
USA) and Windows 7 Ultimate 64-bit computer 
(CPU I7-Q720/1.6GHz, memory 4 G, hard disc 
320 GB, video card NVIDIA Quadro FX 880 M/1 
G) running  Mimics 10.01 (Materialise, Belgium), 
Geomagic Studio 12.0 (Geomagic, USA), and 
Abaqus 6.10 (Dassault Systèmes, France).
Construction of three-dimensional finite element 
models of the femur before and after surgery:
Model construction: A male volunteer with 
middle and distal femur fractures who underwent 
intramedullary nailing (165 cm height and 70 kg 
weight) was selected in this study at one year after 
internal fixation. X-ray analysis had confirmed that 
the internal fixation device could be dislodged. 
The femur of the affected extremity received CT 
scanning before and after internal fixation device 
dislodgement with scanning conditions: 120 kV, 
250 mA, 0.625 mm slice thickness, and 3-second 
slice acquisition time. Data were stored using the 
Dicom 3.0 standard. Dicom format default images 
were introduced into Mimics software. Threshold 
values were set according to the Bone (CT) Scale 
in Mimics. Gray values of the intramedullary nail 
were between 1800 and 3071. Through masking, 
each slice was erased and drawn. Hollows were 
filled in using contour lines. Three-dimensional 
models were reconstructed using Optimal, a setting 
in Mimics. An ASCII stereolithography (STL) file 
of the femurs was imported into Geomagic Studio. 
After deleting something resembling a nail in shape, 
reducing noise, rapidly smoothing, loosening, 
and locally removing, a surface mesh was output 
in STL format, converted to an Inp file, input into 
Abaqus, and converted to a fitted mesh. During 
preoperative model processing, the smoothed 
skeleton surface mesh and intramedullary nail 
surface mesh underwent Boolean operations, 
followed by meshing.
Material attribute assignment: After meshing, 
the file was input into Mimics. Elastic modulus 
assignment was done according to empirical 
formulae6,7: Density = −13.4 + 1017 × [Grayvalue], 

E-Modulus = −388.8 + 5925 × [Density], and Poisson’s 
ratio = 0.3,8 as materials contain 10 types.9 When 
density was negative, the elastic modulus was set 
as 1,000 Pa, and Poisson’s ratio as 0.3.
Finite element analysis and data acquisition: 
Nonlinear buckling analysis was used on the finite 
element models before and after intramedullary 
nail dislodgement. Static load testing was done on 
all nodes on the surface of a 3-cm diameter region 
above the femoral head. Load values were three 
and nine times body weight, 9 i.e. 700 N and 6300 N 
in the direction of gravity. All nodes on the surface 
of a region at 1 cm below the condyles of the femur 
were constrained, with 0 degrees of freedom. Stress 
distributions were directly revealed by plotting 
stress nephograms.

RESULTS

 The number of preoperative meshing nodes 
was 54,345, with 265,868 tetrahedra. The number 
of postoperative meshing nodes was 40,055, with 
195,999 tetrahedra. The maximum and minimum 
von Mises stress for different materials are shown in 
Tables-I and Table-II. Under different stress loads, 
the regions of maximum and minimum von Mises 
stress of various types of materials were identical. 
Material properties are shown in Table-III. Stress 
nephograms revealed that the maximum von Mises 
stress of each material was not near the broken ends 
of fractured bone. The stress was not concentrated 
surrounding the broken ends of fractured bone. The 
maximum von Mises stress was at the 1/4 juncture 
of the middle and distal femur, and preoperative 
and postoperative results were identical (Figs. 1 
and 2). Based on these results, preoperative finite 

Table-I: The maximum and minimum von Mises 
stress for different materials before operation (Pa).

Type of 2100 N 6300 N

material     max    min    max    min

All 1.059E+08 0.000E+00 3.178E+07 0.000E+00
mat1 1.585E+01 1.145E+00 4.754E+00 3.434E+00
mat2 2.198E+01 3.153E-01 6.594E+01 9.459E-01
mat3 5.422E+06 0.000E+00 1.626E+07 0.000E+00
mat4 7.892E+07 0.000E+00 2.368E+08 0.000E+00
mat5 5.713E+07 0.000E+00 1.714E+08 0.000E+00
mat6 8.612E+07 0.000E+00 2.584E+08 0.000E+00
mat7 1.043E+08 8.080E+05 3.129E+08 2.424E+06
mat8 1.059E+08▲ 2.143E+06 3.178E+08▲ 6.429E+06
mat9 4.808E+07 3.053E+06 1.442E+08 9.160E+06
mat10 4.747E+07 3.081E+06 1.424E+08 9.243E+06
▲: The maximum von Mises stress.
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element analysis can be used to decide whether the 
broken ends of the fractured bone would not break 
again after internal fixation device dislodgement.

DISCUSSION

 Clinically, bone healing, and whether an internal 
fixation device should be dislodged after fracture, 
is typically identified by fracture line and callus 
growth on common plane film. However, a precise, 
quantitative method for making the assessment 
was lacking. It is difficult to judge the condition of 
bone repair if complex or non-ideal bone healing 
has occurred.
 Finite element analysis, first proposed by 
Professor Clough from the United States in 1960, 
is a numerical technique for finding approximate 
solutions to boundary value problems. Applications 

of this technique in medicine have mainly been 
in the analysis of structural mechanics and the 
characteristics of materials. Finite element model 
construction, meshing production techniques, 
and arithmetic methods have recently matured. 
However, finite element used in Orthopedics 
mainly focused on development and exploitation 
of various internal fixation materials, but did not 
conduct personalized research in a single patient 
model.10,11

 Skeletal bones typically contain compact and 
cancellous bone. Different materials are compared 
and the rationality of novel structures was assessed 
by the elastic modulus and Poisson’s ratio.12-14 The 
skeleton is a composite of various materials, and 
its functions cannot be fully revealed by reductive 
studies. In this study, Mimics, Geomagic Studio, 

Fig.1: The maximum and minimum von Mises stress of material all 
and material 08 under nine times weight load before operation.

Fig.2: The maximum and minimum von Mises stress of material all 
and material 08 under nine times weight load after operation.
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and Abaqus software were used to perform model 
construction, smoothing, and material assignment. 
The assignment method was defined using an 
empirical formula.6,7 Mature modeling techniques, 
enhanced operating interfaces, and rapid processing 
speeds can be used to realize personalization in 
modeling,15,16 allowing the precise data of each 
patient to be obtained and used. The methods 
of calculating yield strength of cancellous bone, 
cortical bone, and callus are different, and the 
results are different in the different stages of callus 
formation. The computational procedure would 
be very complicated if we calculate corresponding 
yield strength and safety factor according to such 
conditions, and manual assignment has been 
commonly used for similar calculations.17,18 Callus 
measurement and calculation are only in the 
animal experiment stage.19,20 Weis21 used micro-
CT and finite element analysis to investigate 
callus, reporting that finite element analysis was 
appropriate for longitudinal and therapeutic effects, 

but only micro-CT could be used during the early 
stage of bone healing.
 How to carry out personalized construction 
in a bone healing model? We considered that in 
callus structure, with prolonged time, bone mass 
is deposited in the callus, bone density increases, 
and the CT value is also increased. Therefore, we 
tried to look over stress distribution in accordance 
with material type (i.e. density classification). That 
is, sclerotin with similar density was considered 
having equal yield strength, and assigned an 
equivalent material property. The callus with high 
density was assigned with high elastic modulus, 
which allowed for the personalization of bone 
healing models.
 Table-III shows that the number of materials 
with negative values after surgery was more than 
that before surgery. Moreover, there were clearly 
more preoperative high-density values than 
after surgery. This is probably due to imaging 
artifacts from the steel plate before surgery, which 
increased the CT values of surrounding sclerotin. 
This likely caused the large difference in pre- and 
postoperative maximum stress values by finite 
element analysis. The maximum stress bias was 
about 48.7%. Although the bias value was high, 
this study demonstrated that preoperative and 
postoperative stress concentration points were 
not at the broken ends of fractured bone, but at 
the 1/4 juncture of the middle and distal femur. 
Preoperative and postoperative stress distributions 
were identical, which was possible because the 
intramedullary nail went through >80% of the 
femur, and its artifact affected the CT values of 
the femur. Thus, we believe that the preoperative 
and postoperative results are truly identical. The 
preoperative results could also be used to decide 
whether the internal fixation device should be 
dislodged or not. After surgery, standing upright 

Table-II: The maximum and minimum von Mises 
stress for different materials after operation (Pa).

Type of 2100 N 6300 N

material     max    min    max    min

All 7.122E+07 0.000E+00 2.137E+08 0.000E+00
mat1 4.233E+00 5.879E-01 1.270E+01 1.764E+00
mat2 4.716E+00 1.281E+00 1.415E+01 3.843E+00
mat3 6.195E+00 1.168E+00 1.859E+01 3.504E+00
mat4 1.181E+02 0.000E+00 3.544E+02 0.000E+00
mat5 4.211E+07 0.000E+00 1.263E+08 0.000E+00
mat6 5.114E+07 0.000E+00 1.534E+08 0.000E+00
mat7 6.283E+07 0.000E+00 1.885E+08 0.000E+00
mat8 7.122E+07▲ 4.254E-21 2.137E+08▲ 1.276E-20
mat9 6.696E+07 6.496E+05 2.009E+08 1.949E+06
mat10 5.894E+07 1.346E+06 1.768E+08 4.038E+06
▲: The maximum von Mises stress.

Table-III: The material properties before and after operation.

Type of material Preoperation Postoperation

 Density Elastic modulus Poisson’s Density Elastic modulus Poisson’s
 (mm3)       (Pa)    ratio (mm3)         (Pa)    ratio

mat1 -8.186E+05 1.000E+03 0.3 -8.989E+05 1.000E+03 0.3
mat2 -4.047E+05 1.000E+03 0.3 -6.139E+05 1.000E+03 0.3
mat3 9.191E+03 5.446E+07 0.3 -3.290E+05 1.000E+03 0.3
mat4 4.231E+05 2.507E+09 0.3 -4.398E+04 1.000E+03 0.3
mat5 8.370E+05 4.959E+09 0.3 2.410E+05 1.428E+09 0.3
mat6 1.251E+06 7.411E+09 0.3 5.260E+05 3.116E+09 0.3
mat7 1.665E+06 9.864E+09 0.3 8.110E+05 4.850E+08 0.3
mat8 2.079E+06 1.232E+10 0.3 1.096E+06 6.494E+09 0.3
mat9 2.493E+06 1.470E+02 0.3 1.381E+06 8.182E+09 0.3
mat10 2.906E+06 1.722E+10 0.3 1.666E+06 9.871E+09 0.3
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cannot lead to further breakage of the fractured 
zone.
 In this study, personalized model construction 
of a single patient was done to simulate fixation 
dislodgement using finite element analysis. Model 
construction and arithmetic were conducted on a 
personal, mobile workstation. A skilled engineer 
constructed the single model and completed 
finite element analysis in 4–5 hours. This time has 
decreased, but it remains too long. We will try to 
improve the operational approach or test method, 
decrease judgment time, and enhance efficiency for 
practical application.
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