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Finite Element Analysis of a Scattering Problem

By A. K. Aziz* and R. Bruce Kellogg**

Abstract. A finite element method for the solution of a scattering problem for the reduced
wave equation is formulated and analyzed. The method involves a reformulation of the
problem on a bounded domain with a nonlocal boundary condition. The space of trial
functions includes piecewise polynomial functions and functions arising from spherical
harmonics.

1. Introduction. In this paper we develop a finite element method for the
numerical solution of scattering problems for the reduced wave equation. In [4] and
[9] there are reported various schemes for solving electromagnetic scattering
problems. [6] and [18] give an engineering discussion of the finite element treatment
of the radiation boundary conditions. [7] and [10] deal with mathematical aspects
of the analysis of coupled finite element-boundary solution procedures.

Here we present a new numerical approximation technique with the following
features:

(i) The subspaces are a combination of finite element subspaces inside the
absorbing domain and spherical harmonics in the exterior domain. In addition to
introducing a novel way of coupling the spherical harmonics with the field inside
the body, the method has the feature that no finite elements are required outside
the absorbing body; see, e.g., [9].

(ii) The stiffness matrices are nonsingular and Gaussian elimination without
pivoting can be used for the solution of the linear system.

The formulation and the analysis of the present method as applied to the
reduced Maxwell equations shall be discussed in a forthcoming paper. The problem
considered here is important in many applications. Our work was motivated by a
study of the biological effects of microwave radiation. For this problem a computer
program, FEMS, has been written which uses the method described in this paper.
A discussion of the program and some numerical results will be presented
elsewhere.

In Section 2 we formulate our problem and in Section 3 we give the variational
formulation and prove a series of lemmas in order to obtain our main result,
Theorem 3.1. In Section 4 we describe the finite element procedure for our
problem. We also give in this section an error estimate and a brief discussion of the
finite-dimensional subspaces involved.
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262 A. K. AZIZ AND R. BRUCE KELLOGG

2. Formulation of the Problem. Let ß c R3 be a bounded domain with smooth
boundary T and ß0 = R3 \ ß be the exterior domain. Let (w, v) and ||u|| denote,
respectively, the inner product and norm in L2(ß). Similarly, let <w, u) and |w|
denote the inner product and norm in /^(T). We shall use the Sobolev spaces
H\Ü), HS(T), and we let \\u\\s and \u\s, respectively, designate the norms in these
spaces. We let n denote the exterior normal to ß and let u„ denote the normal
derivatve of u. Suppose k(x) is a bounded, complex valued function on R3 such
that
,_ ., I Im k(x)2 > a > 0,       x G ß,

[ k(x) = k0>0,       x G ß0.

Let fix) be a function on R3 with fix) = 0 for x G ßg, and let uQ satisfy
Au0ix) + KqU0íx) = 0, x G R3. We shall be concerned with the Problem I: to find
uix) in //^(R3) satisfying, with \x\ = r,

(2.2) Au + Kixfu = /   in R3 \ T,

u - u0 = Oir'1),       r^-oo,
(2.3)

-^(w - u0) - iK0iu - u0) = oir~l),       r-*oo.

We shall also introduce an auxiliary problem which we call Problem II ±. To this
end, let s G R1, and g G HS(T) be given. We seek a function v such that

(2.4) Av± +kI,v± = 0   inß0,
(2.5) v±ix) = gix),       xGT,

(26)                                     v±ix) = 0(r_1),        r^oo,

dv±/dr T ík0v± = oir~ ),        r ^> oo.

It is known [11] that the above problem has a unique solution, which can be
expressed in terms of a Green's function G±(x, v) by

(2-7) v±ix)=j^ix,y)giy)dsy.

The function G±ix,y) is smooth for x G ß0,y E T, but becomes singular as jc —» v.
It is also known that the normal derivative dv±/dn is well defined on T, and
dv±/dn G HS-\T). We let K±: Hs(r)-> HS-\T) be the mapping defined by
K± g = 8u±/3rt. Then for each j G R1, Ä+ is a bounded map from H*iT) into
HS~\T). Also, A"± is a pseudodifferential operator on HS(T) of order 1. If, in a
neighborhood N of a point x* G T, the surface T coincides with the plane x3 = 0,
and, in N, ß lies in the half space x3 < 0, it may be shown, using the Fourier
transformation, that the symbol of K± at x* is

(2-8) o±ix*,tx,i2) = -{i2 + t2)x/\

For the theory of elliptic boundary value problems with pseudodifferential opera-
tors, see, for example, [2].

3. Variational Formulations. To give a finite element procedure for the approxi-
mate solution of (2.2) and (2.3), we reformulate the problem by introducing a
bilinear form. To this end let y denote the trace operator, restricting a function to
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FINITE ELEMENT ANALYSIS OF A SCATTERING PROBLEM 263

T. Thus, y: //'(ß)-» H1/2(T) is a bounded operator. Let (g, h} denote the inner
product in L\T), and also the pairing between g G H\T) and h G H ~\T). We
define a bilinear form on H '(ß) X H '(ß) by

Biu, w) = - (Vu, Vw) + (k2m, w) + (K+yu, yw).

Clearly B is a bounded form. Using B, we formulate Problem III: find u G //'(ß)
such that

(3.1) Biu, w) = 5(m0, w) + (/ - Au0 - k2«o, "),        w G #'(ß).

Using the following lemma, we see that Problem III gives a reformulation of
Problem I.

Lemma 3.1. Let u solve Problem I, and suppose u G H\ü). Then u solves III.

Proof. Set z = u — u0. From Green's formula,

(/ - Au0 - k2u0, w) = (Az + k2z, w) = - (Vz, Vw) + Ík2z, w) + <z„, w).

In ß0, z solves Problem II+ with g = yz. Hence zn = K+yz, and we have (3.1).
Let

H2±iÜ) = (m G H\Ü): u„ = K±yu).
Then //2 (ß) is a closed subspace of //2(fi). We define mappings

A±:H2±iSl)^H°iQ),   A +u = Au + k2u,   A_u = Au + k2u.

Using Green's formula we have

(3.2) iA + u, w) = Biu, w),       u G //+(ß), w G #'(ß).

We show

Lemma 3.2.

(3.3) iA+u, w) = iu, A_w),       u G HÜ®), w G //2(ß),

(3.4) fl||tt||<|L4±K||,       «€#!(Q).

Proo/. Let m G //+(ß), w G //|(ß), so

(3.5) iA +u, w) = - iVu, Vw) + (k2w, w) + <«„, w>.

Let Í/ denote the solution of Problem II + with g = yu, and let W denote the
solution of Problem II ± with g = yw.

Since u„ = K+ u, we have U„ = un on T. Let BR denote the ball with center 0 and
radius R, and with surface SR. Choose R so that BR d ß, and let ß0Ä = BR n ß0-
Then, since Am + KqM = 0 in ß0,

(Mn)VV>=r     [_Vî/. Vlf + K2f7W] dx + f   Wj- da.

Inserting this formula in (3.5) and using (2.6), we obtain

iA+u, w) = -(Vm, Vw) + (k2m, w)

(3.6) +
R
lim if[-VU-VW+KlUW]dx + iK0f   UWdsV
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264 A. K. AZIZ AND R. BRUCE KELLOGG

Similarly, if w G //2(ß) and u G //2 (ß), we obtain

iA_w,u) = -(Vw, Vm) + (icV m)

+  lim  \f[-VW-VÜ + KlwU]dx-ÍK0f   WÜds\.

Comparing (3.6) and (3.7), we get (3.3). Setting m = w in (3.6) or (3.7), taking the
imaginary part, and using (2.1), we obtain (3.4).

Remark. Using (3.2), (3.4), and a limiting argument, we obtain

(3.8) ö||m||2 <|5(m, m)|,       m G //'(ß).

The density of //2(ß) in Hxiß) follows from Lemma 3.4 below and density
properties of interpolation spaces.

We regard A ± as an unbounded operator on L2(ß) with domain H2±(ß). With
this stipulation we have

Lemma 3.3. A±  is a closed, densely defined, invertible operator on L2(ß) and
iA±r = A^.

Proof. Since //^(ß) contains smooth functions which vanish near T, //2(ß) is
dense in L2(ß). From (3.4) it follows that A± is (1-1). We show that the boundary
condition un = K±u covers the operator A ± in ß. For suppose that, in a neighbor-
hood N of a point x* G T, the surface T coincides with the plane x3 = 0, and, in N,
ß lies in the half space x3 < 0. The covering condition at x* requires that if z(r)
satisfies the equations

z" - (£,2 + tí)* = 0,       t < 0,
z(f)->0,        t->-oo,

z'iO) = o±ix*,tx,QziO),
then z(/) = 0. Using (2.8), we easily verify this, so the covering condition is
satisfied at x*. Since the covering condition is preserved under a change of
independent variables, it follows that the covering condition holds at each point of
T. Hence the a priori inequality holds [2, p. 101], and, using (3.4), we obtain

(3.9) ||m||2 <c\\A±u\\,       m G //|(ß).
From (3.9) it easily follows that A ± is a closed operator and that the range of A ±

is a closed subspace of L2(ß). Since Problem I has a solution for all smooth /, the
range of A± is dense in L2(ß). Hence the range of A± is L2iQ), and (y4±)_1 is a
bounded operator on L2(ß). Setting A +u = f, A _w = g in (3.3), we obtain

(fAZlg)=iA-lf,g),       /,gGL2(ß).

Hence iA±1)* = Az\ so, from [17, Chapter 8, Theorem 6.2], (/1±)* = A-.

Lemma 3.4. [//2(ß), L2(ß)]i/2 = //'(ñ)-

Proof. Since //2(ß) c //2(ß), we see that the inclusion c holds. We must show
the converse inclusion. We make use of the spaces Hr>s defined in [8]. Given
/ G H '(ß) we must show that there is a function m(x, v) G //2''(ß, R ') such that

(3.9) uix, 0) = fix),       x G ß,
v3.10) unix,y) = K±uix,y),       x G T,y G R1.
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FINITE ELEMENT ANALYSIS OF A SCATTERING PROBLEM 265

To this end we must first discuss the operator K± on the space Hr,siT, R '). Let
— A be the Laplace-Beltrami operator on T; then / + A is positive definite and

(/ + Ay1/2:HriT)-^Hr±1iT).

Therefore (/ + A)~1^2K± is a bounded operator on HriT) and may be defined as a
bounded operator on H\T X R '). Since A is a second order differential operator,
by [8, Lemma 4.2],

A: Hr'"ir, fl ') — #'-2"-2*A(r, R ')
is a bounded operator. Hence, by interpolation,

(/ + A)1/2: HrsiT, R^^H'-^-^'iT, Rl)

is a bounded operator. Writing K± = (/ + A)1/2 • (/ + A)~ 1/2K±,
K± : HrsiT, R1)^ Hr~'•»-•/'(T, Rl)

is a bounded operator.
Returning to the solution of (3.9), (3.10) we set /0(x)w = fix). Since yf G

#1/2(T), by [8, Lemma 4.1], there is a g0(x, v) G //3/2-3/4(I\ *') such that g^x, 0)
= fix), xer. Then we find a w(x, v) G H2\Q, R') such that

u(x, 0) = /0(jc), x G ß,

"i*, y) = £o(*>.y)>    x g r, v g ä1,
"„(^7) = ^i(^> v),      jcGT.vGÄ1.

Hence m satisfies (3.9), (3.10) and the proof is complete.
We now establish the "inf sup condition" for the form B.

Theorem 3.1. There is a c > 0 such that for each u G //'(ß) there is a v G //'(ß)
such that |ä(m, v)\ > c\\u\\x\\v\\x.

Proof Regarding A ± as a bounded in vertible map of //2 (ß) -> L2(ß), we extend
^ + to a map of L2(ß) -* H2_iÜ)' as follows. If / G L2(ß), we consider ^4 + / as a
linear functional on i/2(ß) according to the formula

iA+f)iw) = if,A_w),       wG//2(ß).

In particular, if/ G //2 (ß), we see that

04+/)(w) = (,l+/,w),
so this definition agrees with the previous definition of A +. The extended map is
also easily seen to be (1-1) and invertible. By interpolation we find that

A + : [Hliü), L2(ß)],/2^[L2(ß), //2(ß)']1/2

is a bounded, (1-1) invertible map. From Lemma 3.4 and the dual properties of
interpolation [5] it follows that A + : Hliiï) -» //'(ß)' is a bounded, (1-1) invertible
map. By taking the limit in (3.2), we find that for u G #'(ß), w G H\Q,),

iA +m)(w) = Biu, w),       m, wG7/'(ß).

Now let w G H '(ß) be given. Select £ G H '(ß)' such that

(3.11) é(hO-|MIi.   ItöU-w-i-
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266 A. K. AZIZ AND R. BRUCE KELLOGG

Let m = A - 'I G H '(ß). Then from (3.11) we have

Biu, w) =||w||, > c\\w\\x\\u\\x,
where c = H^ + 'H-1, and where the norm refers to the map A + 1: H '(ß)' -> H '(ß).

For our estimate we also require

Lemma 3.5. There are constants c¡ > 0 (/ = 1, 2) such that for u G H\íl)

|a(m,m)|>c1||m||2-c2||m||2.

Proof. We have

|5(m, u)\ > -Re Biu, u) = (Vm, Vm) - Re^V m) - Re(K+yu, yu)

> c3\\ufx - c4||m||o - Re<AT+yM, yu).
Let ß, be the region between ß and |x| < R, where R > diameter of ß, and denote
by U the extension of u to ßext. Then

oU

(3.12)

Hence

(3.13)

f   \-\VU\2+ K2\U\2]dx = -(        U^r- ds+ (K+yu,yu)
Ja, j\x\ = r      or

Re(K+yu,yu) <k2[   \U\2 dx + f        \UUr\ds.
JQ, J\x\ = R '

,2 :„Now we select R so that k2. is not an eigenvalue of the problem

Az + Az = 0   in ß„       z(jc) = 0,   x G 3ß,.

Then we may consider U as the solution of the well-posed Dirichlet problem

(3.14) AU+k21U = 0   inß„       Ugiven on 3ß,.

We now show that, for any real s, there is a constant eis) > 0 such that

(3.15) \\U\\H,ICI¡) < cis)\\U\\„,->/H3aô.

(See, e.g., [3, Theorem 2.4.2] for a related assertion.) To prove this, we first note
that if <j> satisfies

A<¡> + Kq<¡> = /   in ß,,       <f> = g   on 3ß„
then

(3.16) |M|w'^(íí,) < ciC0[||/||//'(n,) +||s||//'+'/i(o1)],       s > °-
Setting <i> = U, we obtain (3.15) for s > 2. Next, we choose <i> so that g = 0. Then,
by Green's formula,

¿&
^n, •'an,

Hence, using (3.16) and the trace inequality

3<f>
//'♦'^(an,)dn

(   Ufdx = -f    U^ds.
Ja. ¿da,     on

nequality

< c2is)\mH,*2(Sii),   s > o,

we obtain

f   Ufdx
Jax

cÁs)\\U\\h — '^(3í2,)||/||//'(a,)-       s > 0.
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Dividing both sides by the norm of / and taking the supremum over smooth /, we
obtain (3.15) for s < 0. Now let A be the solution operator for the problem (3.14).
Thus, we have shown that

(3.17) A:Hs-l/2idüx)^HsiÜx)

is a bounded operator for s < 0 and s > 2. By interpolation we conclude that
(3.17) is a bounded operator for all s, so (3.15) holds for all s.

Using (3.15) with s =\, and (3.13), we obtain

(3.18) Re(K+yu,yu) <c5{\u\20+ f        (| U\2 +| Ur\2) ds).
{ J\x\ = R 1

We now use (2.7) and the fact that SR is at a positive distance from T, so
dG±ix, y)/any is a smooth function for x G SR,y G T. We obtain

f (\U\2+\U,\2)ds<C6\u\l
J\x\~R

Using these in (3.18),

Re<AT+YM, yu) < c7\u\20 < c7|m|2_1/2 < c8||m||2,       \ < 9 < 1.

From (3.12) and the inequality \\u\\2e < e\\u\\2 + c(e)||u||o, we obtain the result.

4. The Discrete Problem. To formulate our discrete approximation to Problem I,
we specify a finite-dimensional subspace S c //'(ß), and, in analogy with (3.1), we
seek a m G S such that

(4.1) Biü, w) = 5(m0, w) + (/ - Am0 - k2m0, w),        w G S.

We shall refer to m as the approximate solution of Problem I, using the subspace S.
We first show that the approximate solution ü is well defined.

Lemma 4.1. There is exactly one m G S satisfying (4.1).

Proof. The equation (4.1) when written in terms of a basis for S, comprise a finite
system of linear equations. To show that the system is nonsingular, it suffices to
show that if z G S and if 5(z, w) = 0 for all w E S, then z = 0. Choosing w = z
and applying (3.8), we obtain

a||z||2 <\B(z, z)| = 0.

To analyze the discretization error u — ü, we shall show that B satisfies a
discrete form of the inf sup condition. For this we first prove a weak form of the
inf sup condition that may also be of use in other problems. (See Schatz [14] for a
similar result.)

Lemma 4.2. Let H¡, i = 0, 1, 2, be three Hilbert spaces. Suppose H0 D Hx with
compact injection. Let B be a bounded bilinear form on Hx X H2 which satisfies: if
u G Hx and Biu, v) = 0, v G H2, then u = 0. For n = 1,2, ... , let Min c H¡,
i = 1, 2, be two finite-dimensional subspaces of equal dimension. Suppose M2n c
M2n+\ and U„ M2n is dense in H2. Suppose B satisfies the "weak inf sup condition":
there are c¡ > 0, / = 1,2, such that for u G Mln there is a v G M2n such that

(4.2) \Biu,v)\>[cx\\u\\H¡-c2\\u\\Ho]\\v\\H2.
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Then there is an integer N > 0 and a constant c3 > 0 such that for n > N, if
u G MXn, there is a v G M2n such that

|*(k, c)| > c3H*,if>|jra.

Proof. Let M2n denote the space of linear functionals on M2n and define a map
L: MXn -* M'2n by

(Lu)(v) = Biu, v) ,       uGM2n.

Then there is an integer N > 0 and a constant c4 > 0 such that if n > N

(4.3) ||m||Ho < c4||Lm||a/2„,        m G M,„.

For, if (4.3) does not hold, there are sequences «, -» oo and Uj G Mx   such that

NU*"1«     llL"/IU¿,,^°-
Let u, G Af2 be chosen to satisfy (4.2) and normalized so \\vj\\Hj = 1. Then from
(4.2) it follows that

\\Luj\\mí„> \i^j)ivj)\ = \BiuJ, vj)\ > cx\Uj\Hk - c2\Uj\\Ha.

Hence

Cl||"/IU, <C2+ °0)>

so Uj is a bounded sequence in Hx. Hence, selecting a subsequence, we may assume
that Uj -" u in Hx, Uj —> u0 in H0. Let v G H2 be arbitrary and, from density, let
& G A/2 • be chosen so that \\v — Vj\\H -^0. Then

|Ä(ij,c)j<|Ä(i^^)|+|Ä(i9,c-^)|

<llL«ylL¿BIL2 + c\H\h\\v - ^ll//2^°-
Hence Biu, v) = 0 for all u G //2. By our hypothesis, u = 0 which is a contradic-
tion and proves (4.3). Now, for u G MXn, choose v G Af2„ to satisfy (4.2) and with
||d||2„= l.Then

||Lw||a/¿, > |B(m, ü)| > c,||m||h. - c2||m||^0,

so we obtain from (4.3)

(4.4) \\u\\„t <c5||Lm||m2„,        n>N.

Now let n > N, u G Af,„, and let t; G M2n satisfy

iLu)iv)=\\Lu\\MÍ„,    \\v\\h2=1.

Then, using (4.4), we have

|5(m, ü)| =\\Lu\\MÍi > c5"1||M||//,||t;||H2,

and the proof is complete.
We now show that our approximate method gives, in a quasi-optimal sense, as

good an approximation to the solution as can be expected from the subspace that is
being used.

Theorem 4.1. Let S¡ c //'(ß) be an increasing family of finite-dimensional sub-
spaces of H l(ß) such that U Sj is dense in H '(ß). Let Uj G Sj be the approximate
solution  of Problem  I  using  the subspace  S,.   Then  there  is a  constant c > 0,
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independent of j but depending on the family (S,}, such that, if u is the solution of
Problem I,
(4.5) II"-"J, <cinf{||M-z||1:zG^.}.

Proof. In Lemma 4.2, we set Hx = H2 = H\ü), H0 = #°(ß). Then, using
Lemma 3.5, we see that the hypotheses of Lemma 4.2 hold. Using Lemmas 4.1 and
4.2, we find that there is a J > 0 such that, for / > J, the hypotheses of [3,
Theorem 6.2.1] hold. Hence there is a c > 0 such that, for/ > J, (4.5) holds. Since
the cases/ = 1, 2, . . . , J — 1 are finite in number, we see that (4.5) holds for all/,
which proves the theorem.

To find the approximate solution ü using a subspace S, we select a basis {z,},
1 < i < m, of S. Setting

A=[au],   atJ~Biz„Zj),   F = [/.],

fi = 5(m0, z,) + (/ - Am0 - k2Mo, z,),        1 < / < m,

and writing m(x) = 2 u¡z¡ix), U = [u¡], we see that (4.1) may be written as the
matrix system AU = F From Lemma 4.1, this matrix equation always has a
solution. It is important to be able to handle large matrices. In finite element
programs this is frequently done with sparse matrix routines. The aim of the next
lemma is to show that the matrix A can be factored without pivoting, so the
unknowns can be arranged to minimize the storage requirements of the matrix.

Lemma 4.3. We may write A = LU, where L and U are, respectively, left and right
triangular.

Proof. Let / be a subset of (1, . . . , m), and let A¡ be the principal minor of A
obtained by removing column / and row j for each / G /. Let S¡ c S denote the
subspace spanned by {z,, i G /}. Then A, is the matrix used in finding the
approximate solution u, using the subspace S,. From Lemma 4.1, A, is nonsingular.
Hence [13], [15] the factorization A = LU may be accomplished.

Our approximate method has a potential difficulty, in that the operator K+, and
hence the bilinear form B, is difficult to evaluate. We overcome this difficulty by a
judicious choice of subspaces, which we now describe. Let VN c H^iß^ be a
finite-dimensional collection of functions which satisfy
(4.6) Av + KqV = 0   in ß0,

vix) = 0(r-'),        r^.oo,

(4J) \ ov. . .        , _h— (a:) - iK0vix) = oir    ),        r-> co.
or

A specific choice of VN arises, for example, from the separation of variables in
spherical coordinates applied to (4.6). Suppose 0 G ß. Let Y^O, <j>) be a surface
harmonic, and let h\ip) be a spherical Bessel function [1, Chapter 10]. Then
t>(r, 9, <j>) = hliK0r)Ymni9, <b) is a particular solution of (4.6), (4.7). We may take VN
to be the collection of all such solutions with 1 < n < N.

Regarding the subspace VN we shall make the following
Assumption 1. The set y( \JN VN) is dense in H X/2(T). For the spherical harmonic

subspaces described above, the density of yi{JN VN) in L2(T) has been recently
proved in [12]. See also [19].
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We also require a collection of functions of finite element type. Let there be
given a decompostion of R3 into simplices of maximum size h. Let Wh be the set of
restrictions to ß of continuous piecewise linear functions on this triangulation. Let
^h0=whn tfjiß).

The subspace of functions used in our variational principle is formed by
combining the spaces Wm and VN. We describe two ways in which this can be
done. For the first way, we pick a smooth function f such that f = 1 near T and
f = 0 near 0. If t> G VN, then ft; is a smooth function in ß, so the resulting
restriction of ft> to ß is in H '(ß). We also let ft> denote this restriction. We then set
Sis =Wh0 + ÇVN. We have

Lemma 4.4. If the subspaces VN satisfy Assumption 1, then the collection of all the
subspaces SkN, h > 0, N = 1, 2, . . . ,  is dense in //'(ß).

Proof. Supposing the contrary, we have, for some z G H '(ß), z ¥= 0,

(4.8) ff [Vz ■ Vu + zu] dx = 0,       uG Wh0 + $VN.

Setting m G Wh0 and using the fact that the union of these spaces is dense in H¿iQ¡),
we find that (4.8) holds for all u G //0'(ß). Hence - Az + z = 0 in ß, and z has a
normal derivative z„ on T with z„ G H~ l/2iT). Set u = ft>, v G VN. Then from
(4.8) we obtain

(4.9) f z„v da = 0.

By Assumption 1, (4.9) holds for all v G //1/2(r). Hence zn = 0, so z = 0, which is
a contradiction.

Using Lemma 4.4, we may apply Theorem 4.1 to obtain an error estimate when
the subspace SkN is used. This subspace, however, has a certain disadvantage. The
support of the functions in ÇVN depends on the support of f, and hence is
independent of h. As a result, the number of nonzero matrix elements in the
stiffness matrix is 0(A-3). To avoid this problem, we now give a second choice of
subspace and a modified variational principle which commits a "variational
crime".

For given h and A', let PhN: VN —> yiWh) be a linear map such that P^v — v is
small on T. To be precise, we assume that \\yiPhNv — v)\\Hi/ïtr) is small. For
example, if the surface T were a polyhedron, and if the triangulation conformed
with T, we could define PhN by piecewise linear interpolation. We let SkN be the
collection of all functions v G Wh such that yv G PhNiVN). In particular, Wm c
Sh\. We let QhN: y( Wh) -^ VN be a map such that PhNQhN = /. Thus, QhN is a right
inverse of PhN. We define a bilinear form B on S^N by

(4.10) Biu, w) = - (Vm, Vw) + (»A, w) + (K+yQhNu, yw),       u,wG S2N.
In analogy with (3.1) we define an approximate method as follows. We seek a
m G SJfN such that
(4.11) Biü, w) = Biu0, w) + (/ - Am0 - k2u0, w),       w G S¿N.

We remark that the subspace SkN depends not only on the spaces Wh and VN,
but also on the choice of the approximation operator PhN. The bilinear form B
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depends not only on SkN, but on the choice of the right inverse QhN. It is not
evident that the system (4.11) has a solution ü. If there is a solution, the following
theorem gives an error estimate for it. To state the theorem, we need another
assumption on the family of subspaces VN and approximation operators PhN.

Assumption 2. The set yiUN Phn^n) is dense in H1/2iT).

Theorem 4.2. Suppose that the subspaces VN and maps PhN satisfy Assumption 2.
Then there is a constant c > 0, which does not depend on h or N, such that if u
satisfies (3.1) and ü satisfies (4.11), then

(4.12)    ||m - m-||, < c inf{||M - u*\\x: u* G S2N) + c||(/ - PhN)QhNü\\Hu1(T).

Proof. Using Assumption 2, the proof of Lemma 4.4 shows that U SkN is dense
in H '(ß). From Lemma 4.2, B satisfies the inf sup condition on SkN. Let u* G SkN
be arbitrary. Then there is a w G SkN such that

c\\ü-u*\\x<Biü-u*,w),    H),-1.
Hence

c||w - h*||, < Biü - a*, w) = 5(m -u,w) + 5(m - u*, w)

< Biü, w) - Biü, w) + Biü, w) - Biu, w) + cx\\u - u*\\x.

Using (3.1) and (4.11), we see that the middle two terms of this expression combine
to vanish. Also, using the properties of K+,

Biu, w) - Biü, w) = {K+yü -K+yQhNü, w) < c2||ö -QhNù\\H>/2(rr
Hence we obtain

c\\ä -u*\\ < c2||m - Ôwv"||W'/2(r) + <?i||« ~ "*||i-

Since m — m = m — m* + m* — m, we may now use the triangle inequality to obtain
the asserted result.

Remark. The last term on the right side of (4.12) is due to the "variational crime"
that has been incorporated into the bilinear form B. It would be of interest to
estimate the size of this term.
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