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Finite Element Analysis of
Biow Molding and Thermoforming
Using a Dynamic Explicit Procedure

G. MARCKMANN, E. VERRON*, and B. PESEUX

Laboratoire de Mécanique et Matériaux
Division Structures
Ecole Centrale de Nantes
BP 92101, 44321 Nantes cedex 3, France

This paper reports on the development of a dynamic finite element procedure for
the simulation of blow molding and thermoforming of thermoplastic hollow parts.
The Principle of Virtual Work written herein takes inertia effects into account. The
heat-softened parison is assumed to be a nonlinear hyperelastic Mooney-Rivlin
membrane and is meshed with classical linear triangular finite elements. We adopt
the explicit central differences time integration scheme with the special lumping
technique. The mold is divided into triangular elements and the contact between
the parison and the mold is assumed to be sticky. Therefore, contacted degrees of
freedom of the parison are fixed on the solid boundary until the end of the simula-
tion. Performances are highly improved by the use of an adaptive mesh refinement
procedure based on a geometric criterion for detection and on the simple addition of
a node at the mid-side of the longest edge for subdivision. The method is illustrated
through some examples of thermoformed and blow-molded parts. Our results are
compared with both experimental and numerical results from literature to validate

the present theory.

1 INTRODUCTION

hree different industrial techniques are used to

produce thin, hollow thermoplastic parts. These
techniques are presented in Fig. 1. The first is the ex-
trusion blow-molding process, which consists of three
steps: first the polymer melt is extruded through an
annular die to form a parison, then this parison is
clamped at its bottom end, and finally it is inflated in
the mold (see Fig. 1a). This process is widely used in
the production of irregularly shaped and irregularly
sized containers in various industries. The injection
stretch blow-molding process of PET bottles also in-
volves three steps: the making of a preform by injection
molding, the heating of this preform, and the simulta-
neous stretching and blowing in the mold (see Fig. 1b).
The last process is thermoforming: a previously ex-
truded thermoplastic sheet is clamped, then heated
far from its glass transition temperature and formed
into a mold cavity using a vacuum pressure (see Fig.
1c). This process is commonly used in the packaging
industry. Details on these different techniques can be
found elsewhere for blow molding (1) and for thermo-
forming (2).

*Carresponding author.

In these three processes, a thin plastic membrane is
heat-softened and inflated in a cold mold cavity. This
paper deals only with the blowing stage of each tech-
nique. Thus an analogous approach can be followed
in the numerical simulation of these processes. The
main goals of industrial process simulation are, first, to
predict the final thickness distribution in the molded
object or to obtain a desired final thickness distribu-
tion in the molded piece, and second, to optimize the
processing parameters such as temperature, pressure
or mold geometry.

In order to review the papers dealing with the ther-
moplastic forming simulation, we must first consider
works that are focused on the traditional rubber in-
dustry and do not explicitly mention blow molding or
thermoforming,. It is well known that parisons are
considered as incompressible hyperelastic or visco-
elastic isotropic membranes; therefore, the theoretical
work of Green and Adkins (3) on the inflation of rub-
ber membranes is commonly used as the basis of such
studies. In the general context of membrane inflation,
Hart-Smith and Crisp (4) examined the case of axisym-
metric rubberlike membrane inflation using shooting
procedures to solve the corresponding two-point bound-
ary value problem. Oden and Sato (5) were the first
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Fig. 1. Forming technigues of thin hollow thermoplastic parts: (a) extrusion blow-molding, (b} injection stretch blow-molding,

{c) thermoforming.

to use the finite element method to examine the 3D
membrane inflation problem. The authors considered
triangular linear membrane finite elements in which
strains and stresses are uniform. Then the incompres-
sibility assumption is immediately taken into account,
recalculating the parison thickness. Feng and co-work-
ers (6, 7) considered the free and confined inflations of
neo-Hookean and Mooney-Rivlin flat membranes. In
the viscoelastic field, Wineman (8, 9) derived the gov-
erning equation of inflation of nonlinear viscoelastic
membranes that obey a K-BKZ constitutive equation,
and Feng (10} used an integral Christensen model to
study the behavior of a viscoelastic circular plane

membrane. More recently, Khayat et al. (11) studied
the stability of cylinders subjected to both stretching
and internal pressure. Using a dynamic approach,
Verron et al. extensively examined the case of spheri-
cal membrane inflation both analytically (12) and nu-
merically (13).

The first two papers explicitly focusing on the simu-
lation of the industrial processes were produced by
Williams (14), which compared experimental and nu-
merical results on the thermoforming of poly(methyl)-
methacrylate, and by Petrie and Ito (15), which dem-
onstrated the efficiency of numerical calculations on
cylindrical parisons to estimate the final thickness of



molded parts. We can also cite the work of Ryan and
Dutta (16, 17): they examined the dynamic of high-
density polyethylene blow molding, highlighting the
contact evolution and the influence of blowing pres-
sure on the final geometry. These works are limited to
axisymmetric problems so that the governing differen-
tial equations are directly solved by appropriate nu-
merical methods. The three-dimensional simulation of
forming processes necessitates more complex proce-
dures, such as the finite element method (FEM). In
1989, Zamani et al. (18) reviewed publications dealing
with the application of the FEM in the thermoforming
process simulation. In this paper, we mention only the
more recent works on the subject. One of the major
contributions is by deLorenzi and Nied. They simu-
lated both blow-molding and thermoforming proc-
esses for two-dimensional (19) and three-dimensional
(20) shapes. Using experimental observations, they
assumed that the parison is membrane-like and used
hyperelastic constitutive equations (Mooney and Ogden
models) for the behavior of thermoplastics. They solved
both isothermal and non-isothermal equations using
linear triangular and quadrilateral finite elements. At
the same time, Charrier and co-workers used the
same approach with both hyperelastic (21) and visco-
elastic (22) material behaviors. More recently, Khayat
and Derdouri used a hybrid finite element/finite dif-
ference method to solve the governing two-point bound-
ary value problem of confined inflation of rubberlike
membranes (23). Their results are successfully extend-
ed to the simulation of stretch blow molding (24). All
these papers deal with a quasi-static treatment of the
problem. Some authors prefer to consider dynamic
equations and solve these equations with explicit time
integration procedure classically used for metal stamp-
ing simulation. This is the case of Bourgin et al. (25)
and Marckmann et al. (26).

In this paper, we report on a finite element proce-

dure for the three-dimensional simulation of blow-
molding and thermoforming processes. The dynamic
part of the problem is taken into account and we use
an explicit time integration scheme to solve temporal
equations. The parison is assumed to be an incom-
pressible hyperelastic rubberlike membrane. The stick-
ing contact assumption between the parison and the
mold is made. In order to improve our procedure, an
efficient contact algorithm is coupled with an adaptive
mesh refinement procedure.
- In Section 2, the governing equations, constitutive
equations, and boundary conditions are given. The fi-
nite element procedure is presented in Section 3. In
that section, spatial and temporal discretization meth-
ods are briefly described, and the more special as-
pects such as contact treatment and adaptive mesh
refinement are detailed. Three numerical examples are
described in Section 4. Two of these examples study
the thermoforming process and the last focuses on ex-
trusion blow molding. They demonstrate the capabil-
ity of our procedure to simulate industrial processes.
Finally, concluding remarks are given in Section 5.

2 PROBLEM FORMULATION

In this part, governing equations of the confined in-
flation of rubberlike membranes are briefly recalled.
For more details on theoretical aspects, the reader can
refer to (13).

As mentioned in the bibliographic review, the heat-
softened parison is usually assumed to be a membrane.
Its position can be therefore described in relation to
the position of its mid-surface, and its thickness be-
comes a function of the mid-surface position. The
membrane is submitted to a uniform pressure dif-
ference denoted P(t). The Principle of Virtual Work is
written in a hybrid Lagrangian-Eulerian form:

I au(t) poti(t)dVy = —[ SE(t) : S(t)dV, +

J du(t)P(t)n(t)dS  Vaua(t) (1)

In this equation, V, and 8V are respectively the vol-
ume of the undeformed membrane and the boundary
surface of the deformed membrane, p, is the constant
mass density and n(t) is an external normal vector
to the deformed membrane. ii(t) stands for the accel-
eration vector, and du(t) is a compatible virtual dis-
placement vector. Tensors E(t} and S(t) are respec-
tively the Green-Lagrange strain tensor and the second
Piola-Kirchhoff stress tensor. In Eq 1, the left-side
term represents the virtual work of inertia forces, the
first right-side term stands for the virtual strain en-
ergy stored by the membrane, and the second right-
side term is the virtual work done by the inflating
pressure acting on the deformed body.

Thermoplastics heated far above their glass transi-
tion temperature are usually considered as rubber-
like materials (20). Rubberlike materials are slightly
viscoelastic, highly nonlinear and incompressible {27).
Therefore, authors implement hyperelastic and/or non-
linear viscoelastic constitutive equations in their nu-
merical procedures (18). In our work we consider the
two types of behavior, but only the implementation of
hyperelastic constitutive equations is presented here,
because the numerical examples we found in litera-
ture were all in the elasticity field (see (13) for more
details on viscoelasticy implementation). In order to
use a hyperelastic constitutive relation, we have to de-
fine the form of the strain energy function. Here, we
adopt the classical Mooney form of W (28). There are
only two material parameters, ¢ and a, and the strain
energy function is given by:

W=c[(traoec- 3) +~;—(tracezc - tracecz—G)-\
4

2)

where C is the right Cauchy-Green deformation tensor
related to the Green-Lagrange strain tensor by the fol-
lowing relation:

C=2E+I (3)



in which I is the identity tensor. The corresponding
stress-strain relation can be cast in the following form:

S=-pC'+2¢c[I+a(I-C) 4

where p is the hydrostatic pressure relative to the in-
compressibility assumption.

Now, we examine the displacement boundary condi-
tions. First we consider the initial boundary condi-
tions. Initially the parison is assumed to be free; only
clamped parts of it are constrained and will not move
during the process simulation. The second type of
boundary condition is due to contact between the pari-
son and the mold. During the process, the heated pari-
son comes in contact with the cold mold surface. Then
the polymer rapidly cools down and its properties
change: the membrane becomes stiffer and the blow-
ing pressure is not sufficient to continue to deform it.
Thus, each point of the parison in contact with the mold
becomes fixed and its displacements are no longer un-
known. Noting t, the contact time of a parison point P
and ¢ the final blowing time, the displacement vector
of P at current time ¢, Up(t), is given by:

Up(t. = t=<t) = Up(t,) (5)
and consequently its position Xg(t) is fixed:
Xp(t.=t=1t) = Xy (6)

where Xy, is the position of the coinciding point on the
mold surface. It is noteworthy that the problem be-
comes a smaller and smaller free inflation problem as
the parison comes in contact with the mold.

3 NUMERICAL PROCEDURE

In this section we present the finite element proce-
dure adopted to solve the problem described above.
Since the free inflation simulation aspects are detailed
elsewhere (13), we briefly cover them and we highlight
the more special aspects related to the industrial proc-
esses simulation.

3.1 Finite Elements and Time Integration Scheme

The parison is discretized in linear triangular finite
elements and the Principle of Virtual Work Eq 1 is
written for each element. The elementary contributions
are assembled on the parison mesh and the system to
be solved can be written as:

Fig. 2. Geometry of the contact
problerm.

MU(t) = FU(t) — Fot (1) @)

in which M is the mass matrix constant in time, U(t)
is the nodal acceleration vector (U(t) stands for the
vector of nodal displacements), and F=t (t) and Fint (t)
are respectively the external and internal nodal force
vectors,

Equation 7 is a system of ordinary nonlinear differ-
ential equations of the unknown t. In order to solve it,
the time is discretized using the explicit second-order
central difference method. This scheme is condition-
ally stable so that a small time step has to be adopted.
Moreover, the resolution algorithm is greatly improved
by the use of the special lumping technique proposed
by Zienkiewiecz and Taylor: the mass matrix M can be
approached by a diagonal mass matrix denoted M’
(29). Thus the system to be solved becomes diagonal
and each term of the nodal displacement vector, U,
(degree of freedom i), at time t + At depends only on
its previous values at times t and t — At:

Ut + a8 = 25 (Pe (1) - P o)

+ 2U(t) - Uft — At) @)

In order to initiate the scheme, we impose that dis-
placements and velocities of all nodes are equal to
zero initially.

3.2 Contact Treatment

As mentioned above, the parison is supposed to stick
to the mold. Hence the contact problem is reduced to
two steps: the detection of the contacted parison
nodes and their projection on the mold for the rest of
the simulation.

First, in the detection step, we list the nodes that
came through the mold during the last time incre-
ment. Consider a parison node i which occupies the
position N at the discrete time t,. Note N’ its position
at the previous discrete time t,_,. In order to perform
the detection, the mold is divided in 3-nodes triangu-
lar elements. We note (DEF) one of these mold ele-
ments. Figure 2 presents the problem geometry. The
goal of the detection step is to determine if the trajec-
tory of the node i crossed the element (DEF) during
the time step At = ¢, — t,_,. Geometrically it is equiva-
lent to determine if the intersection point, noted M,

N: position of node i at time ¢,

mold triangular element

N': position of node i attime ¢,



between the straight line (L) that passes through N
and N’ and the plane (P) that passes through D, E
and F is both between N and N’, and in the triangle
(DEF). M lies on the line (L) if:

N'M =BN'N (9)
where B is a real number, and on the plane (P) if:
DM = yDE + 5DF (10)

in which y and § are two real numbers. Using these
two equations, the problem is reduced to a linear sys-
tem of three equations written under the following
vectorial form:

BNN’' + yDE + §DF = DN’ (11)

where B, v and & are the three unknown coefficients.
Finally, the node i came in contact with element (DEF)
during the time step if the previous coefficients verify
simultaneously the four following conditions:

O0=f=1 O=y=1 O0=d8=1,
0=1-vy-8=1 (12)

Second, after having tested all nodes with all mold
elements, the contacted nodes list is established, and
we must project these nodes onto the mold. To sim-
plify the discussion, we consider the previous node i
and we suppose that it came in contact with the mold
on (DEF). Moreover we assume that the motion of i
between the two geometric points N’ and N is linear
during the time step At. This assumption is not very
restrictive because the time step is very small owing to
the explicit temporal integration scheme adopted. Con-
sequently, the projection point is M (defined above)
and the projection of the node is made using the coef-
ficient B which places M between N’ and N. The node i
is then fixed at this new position until the end of the
simulation.

Recall that in contact problems, the number of op-
erations and tests is very large; note that this method
is very powerful because there is no assumption on
the mold elements’ size.

2D

TITIY T/

3.3 Adaptive Mesh Refinement Scheme

One of the major problems with the use of triangu-
lar linear finite elements is that these elements always
stay plane. Taking into account their large deforma-
tions, it becomes impossible to closely simulate geo-
metrical changes of the parison near mold edges or
corners without using many finite elements. Such dif-
ficulties are illustrated in Fig. 3. In order to overcome
this difficulty, some authors present the mesh refine-
ment as an interesting perspective, without imple-
menting it (20).

In this section, we present the refinement criterion
and the refinement algorithm that we implemented.
As this work is one of the first examples of mesh re-
finement applied to polymer blowing simulation, a
very simple criterion and algorithm were retained.

Because of large displacements, large strains and
contact, the forming process simulation is geomet-
rically highly nonlinear. That is the reason why we
adopt a geometrical criterion based on angular differ-
ence between neighboring elements. When we decide
to refine the mesh, for example each k time step, each
parison finite element is tested: elements that share
one side with it are listed and a mean normal vector is
calculated by summing every normal vector. After
that, angles between each element normal vector and
the mean normal vector are computed and compared
with a user-defined limit value. If one (or more) of
these angles is greater than the limit value, the corre-
sponding element is divided before the next time step.
Moreover, the user can define an elementary limit sur-
face to prevent the creation of too small elements. Fig-
ure 4 shows a tested element: this central element is
numbered 1 and the neighboring elements are num-
bered from 2 to 4.

As mentioned above, the goal of this part of the work
is to evaluate the capability of adaptive mesh refine-
ment in polymer forming simulation context. Thus we
decided to adapt and implement the algorithm devel-
oped by Nambiar et al. (30) because it seems to be both
simple to implement and efficient. Their technique is

3D

Fig. 3. Contact problem in mold corners with a coarse mesh.



Fig. 4. A group of finite elements tested for refinement.

based on the addition of a node only at the mid-side of
the longest edge of refined elements. We briefly recalled
the subdivision method used in Fig. 5. The method
depends on three geometrical cases.

¢ The element to be divided has its longest edge on
the boundary of the domain (see Fig. 5a). Then a
new node is created at the mid-side of this edge
and two new elements replace the previous one.

e The longest edge of the element to be divided is
also the longest edge of the element facing it (see
Fig. 5b). In this case the common side is bisected
and four new triangles are created.

e The longest edge of the element to be divided is
not the longest edge of the element facing it (see
Fig. 5c). This case arises when one element is to
be divided (triangle 1 in the figure} and its fac-
ing element is not to be divided (triangle 2 in the

figure). Then the second triangle is added to the
list of elements for subdivision and the procedure
is applied to this element (previous case).

In order to implement this method, the triangles to
be subdivided are sorted in order of increasing length
of their longest edge. The subdivision algorithm is pre-
sented in Fig. 6. More details on this method are given
in the original article of Nambiar et al.

4 NUMERICAL EXAMPLES

In order to validate the free inflation part of the pres-
ent formulation, we extensively examined elsewhere the
deformation of spherical and ellipsoidal membranes
{13). In this paper we focus on the capability of our
program to simulate industrial processes including
the use of contact and adaptive remeshing (if neces-
sary) procedures.

4.1 Cylindrical Shape Thermoforming

This problem was previously studied by deLorenzi
and Nied both experimentally and numerically (20).

We consider a deep conical cylinder obtained by
vacuum forming. The material is high-impact poly-
styrene and the undeformed polymer sheet is circu-
lar. The sheet radius and thickness are respectively
129.54 mm and 0.254 mm. The mold geometry and
mesh are shown in Fig. 7. Because of the problem sym-
metry, only a quarter of the structure is studied. The
mold is discretized in 63 triangles (see Fig. 7b}. Fol-
lowing the experimental work of Schmidt and Carley
(31), high-impact polystyrene behavior can be mod-
eled by a modified Mooney-Rivlin strain energy func-
tion given by:

W=Ag (I, —3) + Aga (I, — 3)?
in which:

(13)

Agy = 0.143 MPa, Ay, = 2.2 X 1075 MPa (14)

=P =47
LR =R =R

(c)

Fig. 5. The three methods of elernent subdivision
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subdivision elements list
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Is the common edge
the longest of both
elements?

Is the last element on
the domain boundary?

End of subdivision }
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added at trla_etend of the is divided
isf

Fig. 6. Adaptive mesh refinement algorithm.

The number of finite elements on the initial mesh is
27. This number is small and the mesh is relatively
coarse. Therefore, we use the mesh refinement proce-
dure presented above: at the end of the simulation,
there are 996 finite elements. Figure 8 presents four
stages of the dish thermoforming. Note the quality of
the final mesh (Fig. 8d): only the use of a mesh refine-
ment procedure can produce such an appropriate ele-
ment distribution. DeLorenzi and Nied experimentally
obtained wall thickness in the formed shape and prin-
cipal extension ratios by measuring the deformation
of circles printed on the initial parison. Thus we com-
pare our numerical results with their measures in the
following figures:

* Figure 9 shows the non-dimensional thickness,
h/hg (h and h, are respectively the final and ini-
tial thickness), versus the curvilinear distance
from the axis of symmetry,

* Figure 10 presents the principal stretch ratios
(radial A in Fig. 10a and circumferential Ay in
Fig. 10b) versus the distance from the center of
the sheet in the undeformed state.

Thickness calculations agree well with experimental
results especially at the bottom of the cylinder, At
the outside edge of the dish, for curvilinear distances
greater than 250 mm, numerical thickness values are
underestimated. The major reason for this difference
may be due to the final coarse mesh on the edge. In
fact the corresponding finite elements entered in con-
tact very soon and were not subdivided enough to give
sufficiently accurate results. In Fig. 10 the calculated
stretch ratios seem to be less in agreement with ex-
perimental results. Figure 10a shows that radial stretch
ratio is overestimated on dish edge and underestimated
near the symmetry axis (25%). For the circumferential
stretch ratio, the results are good at the edge of the
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Fig 9. Non-dimensional thick-
ness in thermoformed cylinder:
{I} experimental results from (20),
(O) our numerical results.

h/hg

dish, but we observe a difference of 25% near the sym-
metry center (see Fig. 10b). Nevertheless, our numeri-
cal predictions are relatively good both qualitatively
and quantitatively, taking into account experimental
difficulties invoked by the authors for measuring prin-
cipal stretch ratios.

Moreover, our numerical results are identical to
deLorenzi and Nied's numerical results obtained with
a classical quasi-static formulation and with an initial
fine mesh.
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4.2 Thermoforming of a Complex Shape

We now examine a more academic case to inten-
sively validate our contact and remeshing procedures.

The mold is a box with a central insert at the top.
Figure 11 presents the mold geometry (Fig. 11a) and
the mold mesh of 26 triangular elements (Fig. 11b).
The mold is a 3D non-convex shape. Non-convexity
often involves problems during contact treatment: an
element can be in contact with the mold even ff its three
nodes did not come through the mold wall during the
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Fig. 10. (a) Radial stretch ratio in thermgformed cylinder, (b) circumferential stretch ratio in thermoformed cylinder: (I) experimental

results from (20}, (—) our numerical results.
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(b)

Fig. 11. (a) Mold geometry for the box with insert, {(b) mold mesh.

last time step. Then, using automatic remeshing, it
becomes possible to create a new node that is already
outside the mold. Consequently, the present example
is a severe test for our procedures. The initial parison
is a rectangular sheet whose. thickness is set to 2 mm.
Its dimensions are the same as those of the box bot-
tom and its four edges are clamped. The correspond-
ing boundary nodes are fixed during the simulation.
Four stages of the process are displayed in Fig. 12.
The initial mesh has 128 finite elements (see Fig. 12a)
and the final mesh contains 3752 finite elements (see
see Fig. 12d). The precision of the final mesh in the

vicinity of corners and edges of the insert compared
with the initial coarse mesh is to be noted. Figure 13
shows wall thickness in the molded part and Fig. 14a
and b present the wall thickness and the final shape
in the symmetry planes (xz) and (yz), respectively.
These symmetry planes are identified in Fig. 11a.

The present example highlights the capability of our
procedures: the contact algorithm can handle with
non-convex molds, and the remeshing procedure al-
lows the use of initial coarse meshes in order to re-
duce the user’s effort (it is well known that one of
the major obstacles in using a finite element analysis

Fig. 12. Four stages of thermoforming of a box with insert.



Fig. 13. Thickness distribution in the thermoformed box with insert.

package is the design of an initial locally refined mesh,
which is necessary to obtain a confident solution).

4.3 Blow Molding of a Bottle With Handle

The last example focuses on the extrusion blow-
molding process. We examine the case of a soap bottle
with handle. This problem was previously studied by
Khayat and Derdouri (24) both experimentally and
numerically.

During the industrial process, the bottle parison is
extruded before being pinched by the two parts of the
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mold. Then, the bottom and edges of the bottle and
the edges of the handle are clamped. The geometry
and mesh of the corresponding semi-parison after the
extrusion stage are presented in Fig. 15. This shape
was obtained by Khayat and Derdouri just before in-
flation began. In practice, all flattened parts are cut
out after the blowing stage. The bottle height and max-
imum radius are, respectively, 230 mm and 40 mm.
Initial thickness is assumed to be uniform and equal
to 2.25 mm. The initial parison is meshed with 802 fi-
nite elements, and we do not use the mesh refinement
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Fig. 14. Deformed profile and final thickness distribution in the symmetry planes: (a) (xz), (b) (yz).



“* AVANNENN 24N

. AV Pl A VAR T

AT

_‘.
SATNTS

V4
X
A

S

N

S
5
"~
AR

2
=AW

N
i
N/

\

é
&,
AN

%

DNOASALLEES

N
§
AN
ot
O
X!

/
Ry
X
R
Y
N
=

W
N
X
Q)
K
A

A

3
20
<]

%

PAY

<

%

(a) (b)

Fig. 15. Initial parison for the soap bottle: (a) at 45°, (b) at
90°.

procedure. The mold discretization is shown in Fig.
16. This mesh has 1215 triangular elements. The ma-
terial is PET and it is modeled by a Mooney-Rivlin
constitutive equation with (24):

o= 0.5 (15)

Figure 17 shows the final reduced thickness distri-
bution along the bottle surface from two different views.
As Khayat and Derdouri, we observe 60% thinning in
the body of the bottle, 20% thinning in the neck and
approximately 50% in the bottom (see Fig. 17a). In
the handle, the thinning is mostly uniform in the order
of 50%-60%. Comparisons between our results and
both numerical and experimental results of Khayat
and Derdouri are reported in Fig. 18. Figures 18a and
b show final thickness distribution along lines A-B-C
and a-b-c, respectively. These lines are identified in
Fig. 17. The curves display the final thickness distri-
bution versus the curvilinear distance from the bottom
to the top of the soap bottle. First, our results agree
well with numerical results from (24) even if numeri-
cal procedures are highly different. Second, examining
the comparison with experimental results for the bot-
tle body (see Figs. 17a and 18a), the difference be-
tween our numerical and their experimental results
changes from 10% to 20% following the line A-B-C
from the bottom to the neck. Along the line a-b-c (see

nuv‘mﬂq;} 4
‘ VY
KN
S

N

o
N
74
S

Pt P Vit Vet W VA VA WV
\AAAAAAAA LT

N
N

\r1>
X
/|
>
2

S

W\
\/]
/N
eﬁ
/N
N\
[N
\V,

AVAV‘YA;%VAYAVAYA

Yo
%y
Vé
I
S~

AT

N

a'
VAVE

A\

NAAANNNAANNNNL
A

gﬂﬂﬂ

AVAV]
ANANANAN

JAVAVAY,
N

\VAVAVAYAV
>

ANNNNNNN

N/
V/\
A

AN

vX¢X¢VAVAVAVAV
G

Y/
N\

=

e Pt Wt Pt Vg Vg o g

ANAVAVANANANAW R

Vi
K
ANAVAVAVAVAVAVAN
ANANAN

E‘E‘mmﬂ'ﬂb

A Y i

NN
[N
N
N

/\
N/
VANAN

-~

VAVAVAVAVAVAVAVAVA

\AANAANNANN
VAVAYA

VAV
VAV,
ASANAY

\AANANANANNANNNN

N P g Vg P

5;5
7\

AVAV . VAVLVA
[RERKAKLTS

N
N

Fig. 16. Mold mesh for the bottle blow-molding.

Figs. 17b and 18b) the differences are very slight at the
bottom (point a), 50% in the body (point b) and they
oscillate around the experimental curve in the handle
(point c). These oscillations are due to the mesh behav-
ior during the contact: in the handle some elements
enter into contact very early without thinning and
some others enter into contact very late. As mentioned
by Khayat and Derdouri, the differences might be due
to the assumed uniform initial thickness distribution.
It is well known that the final thickness distribution de-
pends highly on the initial thickness distribution (15).
In fact, as the parison is extruded and clamped, we
can affirm that the hypothesis of uniform initial thick-
ness is false and that it is the main cause of the differ-
ence between experimental and numerical results,

6 CONCLUSION

A dynamic nonlinear finite element procedure has
been developed to simulate the blow-molding and ther-
moforming industrial processes. The heated polymer
parison is assumed to be an incompressible hyper-
elastic rubberlike membrane and is meshed with lin-
ear triangular elements. The use of an explicit time
integration scheme reduces the problem to a vectorial
iterative equation and highly simplifies the contact
and remeshing procedures implementation.
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The comparison between our numerical results and
different experimental and numerical results from lit-
erature is fairly good for both blow-molding and ther-
moforming simulations.

Further developments will be necessary to improve
the quality of the results. One of the main develop-
ments will be a better knowledge of material behavior
such as the influence of temperature on material stiff-
ness. This experimental aspect will pave the way to
further numerical issues.
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