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ABSTRACT 

The coupling between lateral and torsional vibrations has 
been investigated for a rotor dynamic system with breathing 
crack model. The stiffness matrix has been developed for the 
shaft element which accounts for the effect of the crack and all 
six degrees of freedom per node. Since the off-diagonal terms 
of the stiffness matrix represent the coupling of the respective 
modes, the special attention has been paid on accurate 
determination of their values. Based on the concepts of fracture 
mechanics, the variation of the stiffness matrix over the full 
shaft revolution is represented by the truncated cosine series 
where the fitting coefficient matrices are extracted from the 
stiffness matrices of the cracked shaft for a number of its 
different angular positions. The variation of the system 
eigenfrequencies and dynamic response of the rotor with two 
cracks have been studied for various shaft geometries, crack 
axial locations, and relative phase of cracks.  

 
INTRODUCTION 

Any new advancement in on-line detection and diagnosis 
of critical malfunctions in rotating machinery can be extremely 
beneficial to industry [1]. This especially applies to fatigue 
cracks on the shaft, which present a potential source for 
catastrophic failures of rotating machinery. Most reported 
studies are focused on two crack signatures, i.e., twice the 
running frequency component (2X) and the subharmonic 
component at approximately half of the shaft critical speed. A 
study done by Tondl [2] was one of the first to investigate the 
effect of the coupled lateral and torsional vibrations on 
turbogenerator rotor stability. He concluded that the combined 
effect of torsional stiffness and bending stiffness results in 
speed intervals where the rotor vibrations due to residual 
unbalance become unstable. A comprehensive literature review 

of various crack modeling techniques and system behavior of 
cracked rotor is given by Wauer [3]. Papadopoulos and 
Dimarogonas [4] used a non-rotating cracked Timoshenko shaft 
to demonstrate the existence of an apparent coupling of 
torsional and bending vibration. They modeled crack using the 
local flexibility matrix, and then proceeded to study the 
vibration spectra in the presence of harmonic excitations. Other 
researchers also dealt with the problem of coupled vibrations, 
for example Plaut and Wauer [5] investigated resonances and 
instabilities in coupled flexural and torsional vibrations of a 
rotating shaft. Muszynska et al. [6] analytically and 
experimentally analyzed lateral/torsional coupling mechanisms 
resulting from combinations of unbalance, shaft stiffness 
asymmetry, and radial sideload. Muszynska experimentally 
observed torsional resonance at speeds equal to 1/8, 1/6, 1/4, 
and 1/2 of the lowest torsional natural frequency.  Bently et al. 
[7] continued this study with special attention paid to the 
analysis of a “snapping” action which occurs when during 
rotation the rotor experiences a peak torsional acceleration.   

The topic of cracked rotor vibrations has been analyzed in 
a number of published works [8-16]. They have been focused 
on the study of dynamic behavior of rotors with the so-called 
breathing type of crack during the passage through the critical 
speed at the constant angular acceleration or deceleration. For 
example, Sawicki et al. [9, 10] studied the accelerating cracked 
rotor response using the angle between the crack centerline and 
the rotor whirl vector to determine the closing and opening of 
the crack. This allows one to study the rotor dynamic response 
with or without the rotor weight dominance by taking into 
account nonsynchronous whirl. Henry [11] investigated how 
the gravity and the unbalance affect the vibration response of a 
cracked shaft. A theoretical and experimental study of the 
effects of a transverse crack on the rotor dynamic system was 
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given by Mayes [12]. From the experimental results, it is 
observed that the crack has most significant effects on the 
response of the rotor dynamic system when the phase angle 
between unbalance and crack is in the range of 45o and 135o. 
Out of this range, the rotor behaves like an un-cracked rotor. 
Gash [13, 14] provided a comprehensive investigation of the 
stability behavior and insightful study of harmonic resonances 
of a cracked Jeffcott rotor with the hinge model of the crack. 
Mayes and Davies [15] modified hinge model to account for 
deep cracks, by introducing the crack cross flexibility. Collins 
et al. [16] used axial impulses for crack detection in rotating 
shafts. 

Practical simulation of cracked rotordynamic systems calls 
for application of finite element analysis to account for 
geometric characteristics of the rotor. Papadopoulos and 
Dimarogonas [17] derived flexibility matrix for the shaft 
element with open crack. Later, they studied [18] coupling 
between bending, longitudinal and torsional modes of vibration 
for non-rotating shaft with an open crack. Sekhar [19] 
presented results of finite element analysis of the flexural 
vibration response of the cracked rotor with two open 
transverse cracks, focusing mainly on the stability study and 
eigenfrequency analysis. However, an open crack model in a 
case of rotating shaft is not practical. The rotor vibration 
characteristics with such crack model can be very different than 
with the breathing crack model. Darpe et al. [20] presented 
study of coupled longitudinal, lateral, and torsional vibrations 
for the cracked rotating shaft using a response-dependent non-
linear breathing crack model. The signs of the overall stress 
intensity factors (SIF) at any point along the crack edge are 
used to judge whether the crack is open or close, thus 
determining the crack closure line position.  

In this paper, the coupled lateral and torsional vibrations of 
a rotating shaft with two breathing cracks are investigated using 
the finite element approach. Based on the concepts of fracture 
mechanics, the variation of the stiffness matrix over one rotor 
revolution is expressed by the truncated cosine series, in which 
the fitting coefficient matrices are determined from the stiffness 
matrices of the cracked shaft at five different angular positions. 
The method accurately predicts not only the direct stiffness 
terms, but also the off-diagonal terms which account for 
coupling mechanisms of the respective modes. The developed 
approach accurately describes crack breathing action and can 
be effectively applied to the frequency analysis of the rotor 
with two cracks at two different angular and/or axial positions, 
and for different shaft geometric ratios. Coupled lateral and 
torsional vibrations of a rotating shaft with two breathing 
cracks of different relative phase, under unbalance, gravity and 
external torque excitations are studied.  

 
NOMENCLATURE   
a           Depth of the crack 
a           Normalized depth of the crack ( /a R ) 
b           Half-width of the crack 

b           Normalized half-width of the crack 22a a−  
cc     Cracked element flexibility matrix 

C        Global damping matrix 
D           Shaft diameter 
E           Modulus of elasticity 
F      Global force vector   

G          Shear modulus of elasticity 
6 6×I        Identity matrix  

J         Strain Energy Density Function 
PJ          Polar moment of inertia 

DJ        Diametral moment of inertia 
,  c ck K  Cracked element stiffness matrix in rotor-fixed  

              and inertial coordinate systems, respectively 
( )tωK   Global stiffness matrix 

l             Length of shaft element  
L           Length of rotor 
M          Disk mass 
M       Global mass matrix 
q       Displacement nodal vector     
R          Shaft radius 
t         Instantaneous time 

eT       Torsional excitation 
κ           Shape coefficient for circular cross section 
ν     Poisson’s ratio 
ρ           Material density 
ε      Unbalance eccentricity 
ω       Shaft spinning speed 

eω        External excitation frequency 
θ      Rotational angle of the rotor  

, ,x η ξ   Rotor-fixed rotating coordinate system 
, ,x y z   Inertial coordinate system 

 
MODEL OF THE CRACKED SHAFT ELEMENT 
 Figure 1 shows a shaft element with a transverse crack of 
depth a, at distance x from node 1, loaded with axial forces 

1 7,  P P , shear forces 2 3,  P P , 8 9,  P P , bending moments 5 6,  P P , 

11 12,  P P , and torsional moments 4P , 10P . All six degrees of 
freedom per node are considered.   
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Figure 1.  Cracked shaft element in general loading. 
 
 Since the strain energy induced at the tip of the loaded 
crack introduces the considerable local flexibility in the specific 
cracked beam element, the crack affects only the stiffness 
matrix of the given finite element. The geometry of shaft 
section with partially open crack is shown in Fig. 2, where a is 
the depth of the fully open crack and b is the half-width of the 
crack. 
 The node displacement in the direction of load iP , induced  
only  due  to  the  presence  of  the  crack  with  depth α, can be 
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 calculated as follows [19]:  

( )c
i

Ai
u J A dA

P
∂ ⎡ ⎤= ⎢ ⎥⎣ ⎦∂ ∫                           (1) 

α

ξ

η

β dβ

 
 

Figure 2.  Geometry of the shaft section with partially open 
crack. 

 
where A is the area of the cracked section of the shaft (see 
Figure 2) and J is the Strain Energy Density Function expressed 
as [21]: 

( ) ( )
2 2 26 6 6

1 1 1

1 1Ii IIi IIIi
i i i

J A K K K
E

ν
= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑    (2)  

Here, E is the modulus of elasticity, ν is the Poisson ratio, ijK  
are the crack Stress Intensity Factors (SIF) for i = I, II, III crack 
displacement modes and load index j = 1,2,…,6.  
 For a strip of unit thickness with a transverse crack the 
values of SIF are known [19] and thus, employing integration 
along the tip of the crack with the variable crack depth, yields 
the approximate values for SIF in Eq. (2). Based on Eq. (1), the 
local flexibility due to the crack is calculated as [22]: 

   ( )
2

ij
Ai j

c J A dA
P P
∂ ⎡ ⎤= ⎢ ⎥⎣ ⎦∂ ∂ ∫                           (3) 

The expressions for terms of the total flexibility matrix of the 
cracked element c ijc⎡ ⎤= ⎣ ⎦c  (i,j =1,2,...,6) are given in 
Appendix A.  

MODEL OF THE CRACK BREATHING ACTION 
For the majority of rotating machinery, the static deflection 

is much larger than the rotor’s vibration amplitude. Under this 
assumption, the instantaneous shaft angular position can be 
employed to determine the amount of crack opening. Two 
extreme scenarios exist when the crack is either closed ( 0θ = ) 
or open (θ π= ). For the spinning rotor at constant speed, a 
truly breathing crack behavior is represented by gradual 
opening of the crack from its fully closed to the fully open state 
and visa-versa. Since the flexibility of the cracked shaft section 
changes with different amount of crack opening, the concept of 
Crack Transition Line (CTL) is introduced. The CTL, which 
separates the open and closed portions of the crack, as 
illustrated in Fig. 2, is an imaginary line perpendicular to the 
crack edge. The integration limits for evaluation of flexibility 
coefficients depend on the amount of crack opening.  

The crack edge is divided  into (N+1) points. For any shaft 
angular   position   ( )180i Nθ = ,   the   CTL   is   located    at 

2b ib N−  ( )0...i N=  along the crack edge. The terms of 
flexibility matrix are continuously updated for each angle 

180 Nθ = . In this way CTL keeps changing with different 
angles of shaft rotation, and thus reflecting the true crack 
“breathing” action. 
 The stiffness matrix for the shaft cracked element in the 
rotor-fixed coordinates system is calculated as: 

 

[ ] [ ] 1
mn mni ik c −=     , 1, 2,...,6;  0...m n i N= =         (4) 

 
where formulas for [ ]mn ic  are given in Appendix A.  
 In order to ensure the effectiveness of simulation, the 
variation of the cracked element stiffness with time (angular 
position), can be expressed by the truncated cosine series [23]:  

( )
4

0
1

cos tc i
i

iω
=

= +∑k k k                              (5) 

The coefficient stiffness matrices ,  0,1,...4j j =k , are 
calculated based on the assumed amount of the crack’s opening 
at its specific (five) angular positions.  
 Let define that stiffness matrices ,uck ,qk 2 ,qk 3 ,qk and 

opk  to correspond to the rotor angular location at 0, 4π , 2π , 

3 4π , and π , respectively. They are calculated by assigning 
value of 0i = , 4 ,N  2 ,N  3 4N , and N , respectively, in 
Eqs. (A2), i.e., by solving the following set of equations: 
 

0c t ucω = =k k ,   
4

|c qt πω =
=k k ,   2

2

|c qt πω =
=k k   

3 3
4

|c qt πω =
=k k , |c t opω π= =k k                     (6) 

As a result, the fitting coefficient matrices take the following 
form: 

                     2 3
0 4 8 8 4 4

q op q quc= + + + +
k k k kk

k  

                      ( )1 3
1 2 2
4 uc op q q= − + −k k k k k  

                      ( )2 2
1 2
4 q uc op= − + +k k k k                        (7) 

( )3 3
1 2 2
4 uc op q q= − − +k k k k k  

                      2 3
4 4 8 8 4 4

q op q quc= + + − −
k k k kk

k  

 The developed method predicts very well the variations of 
all terms of cracked element stiffness matrix due to the 
“breathing” action of the crack, over one shaft revolution (see 
Fig. 31). Papadopoulos and Dimarogonas [17, 23] proposed 
similar approach but they assumed that the stiffness terms reach 
minimum values for the fully open crack, which is correct for 

                                                           
1 Figure 3 is shown in Appendix B. 
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diagonal coefficients ( ,  1,...,6iik i = ) but not for all cross-
coupled terms. Some of the cross-coupled stiffness coefficients 
reach maximum or minimum values when the crack is half-
open or half-closed, and become zero when the crack is fully 
open (see Fig. 3).  
 From the finite element static equilibrium conditions, 12 
degrees of freedom of one element can be written as 
 

( ) ( )1 2 12 1 2 6, ,..., , ,..., TTq q q q q q= T                    (8) 
where  

6 6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

l
l

×⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

I

T                         (9) 

 
Next, the stiffness of the cracked element in inertial coordinates 
system can be found as 

T T
c e c eK = TT k T T                                (10) 

 
where eT  is the transformation matrix from rotor-fixed 
coordinates system to the inertial coordinates system 
 

a
e

a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

T 0
T

0 T
                                   (11) 

and: 

                      ( ) ( )
( ) ( )

1 0 0
0 cos sin
0 sin cos

a t t
t t

ω ω
ω ω

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

T                       (12) 

 
When assembling the global stiffness matrix for the shaft, 

the cracked element stiffness matrix cK  replaces the stiffness 
matrix of the corresponding uncracked element. The equations 
of motion for the complete rotor system in an inertial 
coordinates system take the following form: 

 
( )tωMq + Cq + K q = F                           (13) 

 
where M, C, and ( )tωK  are the mass, damping and stiffness 
matrices, respectively, for the whole rotor system. The stiffness 
matrix is continuously updated with the angular position tω  of 
the shaft. The force vector F  can contain any kind of forces 
and moments applied at any nodes in the global inertial 
coordinate system. 

NUMERICAL SIMULATIONS 
 A two-disk rotor system considered for numerical studies 
is shown in Fig. 4. Physical parameters of the model are listed 
in Table 1. The boundary conditions for the model follow the 
same conditions as for simply supported beam except constrain 
imposed on torsional degree of freedom at the right support. 

The shaft is divided into 8 equal-length finite elements and two 
shown cracks shown are located at element 6 and 7, near the 
right disk (see Fig. 4). 
 
Table 1: Numerical Model Physical Parameters. 

 

 Physical parameter Value Units 

L Shaft length 1.12 m 
D Shaft diameter 0.03 m 
ρ Material density 7750 Kg/m3 

ν  Poisson’s ratio 0.3  
E Modulus of elasticity 2.07×1011 N/m2 

G Shear modulus of elasticity 7.96×1010 N/m2 
M Disk mass 3 kg 
JP Disk polar moment of inertia 0.018 kg m2 

JD Diametral moment of inertia 0.01 kg m2 
ε Unbalance eccentricity 5.4×10-5 m 

 

 
 

Figure 4. A two-disk rotor system with two cracks near the 
right disk. 
 
Frequency Analysis 
 Frequency analysis is carried out for an undamped non-
rotating rotor. Three cases are considered for the cracks located 
at different axial locations, different phases, depth, and shaft 
geometric ratios. 
 
Case1: 
 Two open cracks of depths of 1 2 0.4a D a D= = ; the 
position of one crack is fixed (0.756 m from the left support, 
see Fig. 4) while the position of the other one keeps changing 
from the left to right end.  

The variation of the first two mode frequencies, as a 
function of axial position of the second crack, is illustrated in 
Fig. 5(a). When the second crack is near the ends of the rotor 
the frequencies are almost the same as for the rotor with only 
one crack. The effect of the second crack on the rotor first two 
mode frequencies gradually increases, reaching the maximum 
as the crack’s position approaches the middle of the shaft. 
 The third mode frequency, shown in Fig. 5(b), 
predominantly torsional, is very little affected by the position of 
the second crack. One can observe that when this position is 
between the left support and the left disk, the mode frequency 
is almost identical as for the rotor with one crack, i.e., 598 
rad/s. For the position anywhere between two disks, the 
frequency drops to 595 rad/s, and for the position between right 
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disk and the right support the frequency is reduced further to 
591.5 rad/s. 
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Figure 5. Variation of mode frequencies for various 
positions of the second crack: (a) first two mode 
frequencies, and (b) third mode frequency. 
 
 
Case 2: 
 Two cracks have fixed axial positions; one crack at the 
distance 0.756 m and the second one at 0.896 m, measured 
from the left support (see Fig. 4). The first crack, of fixed depth 

1 0.4a D = , is always open, while the second is allowed to be 
oriented at any angle (phase) with respect to the positive z-axis, 
and have different depths. The changes of rotor mode 
frequencies with different depths and angular position of the 
second crack are illustrated in Fig. 6. It should be noted that the 
crack center line is defined as a line perpendicular to the crack 
edge, and here, the crack phase angle is defined as the angle 
between the positive z-axis and the crack’s centerline (see Fig. 
2). As expected, that the maximum reduction of frequencies 
happens to be when both cracks are fully open (phase 180°). 
Also, with the growing depth of the second crack, the rotor 
frequency reduction becomes more significant.   
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Figure 6. Variation of mode frequencies for various values 
of phase and depth of second crack: (a) first mode 
frequency, and (b) third mode frequency. 

 
 

Case 3:  
 Two cracks are located at fixed axial positions. Both cracks 
have fixed depths ( 1 2/ / 0.4a D a D= ≡ ), but the shaft has 
different geometric ratios, i.e., for the given length of the shaft 
(L = 1.12 m) the shaft diameter is varied (D = 0.2, 0.08, 0.06, 
0.04, 0.02 m). Also, the phase of the second crack keeps 
changing. As can be seen on Fig. 7(a), the third, predominantly 
torsional mode frequency is not much affected by the crack’s 
phase. To emphasize the scale of possible changes Figs. 7(b) 
and 7(c) show changes of the normalized frequency (with 
respect to its maximum value). For the rotor with smaller 
geometric ratios (i.e., larger shaft diameter), the variation of the 
frequencies is more sensitive to the phase change of the crack.  
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Figure 7. Variation of mode frequencies for different shaft 
geometric ratios: (a) variation of the third mode frequency 
(b) variation of the normalized frequency for the third mode, 
(c) variation of the normalized frequency for the first mode. 
 
 
Lateral and Torsional Vibration Response 

In this part of investigation two breathing cracks (rotating 
rotor) located at element 6 and 7 have the same depth 

1 2/ / 0.4a D a D= ≡ . The stiffness variation property of the 
cracked element has been described in the previous section. 
The bending and torsional frequencies of the uncracked rotor 
are 214.4 rad/s and 601.3 rad/s, respectively.  

In order to explore the crack-induced mode coupling 
phenomenon, an external sinusoidal excitation torque 

( )600sine eT tω=  is applied at the first disk (node 3), with 
322eω = rad/s as an excitation frequency. The selected shaft 

spinning speed is 43ω =  rad/s. The purpose is to investigate 
how the torsional excitation affects the lateral vibration 
response of cracked rotor. Vibration responses for the three 
different phases of the two cracks are shown in Fig. 82.  
 In all these plots of Fig. 8, the existence of the first 
harmonic (1X) and super-harmonics (2X, 3X, 4X,) of the shaft 
running frequency in lateral frequency spectrum provide strong 
indication of the cracks’ presence. One can also notice the 
existence of torsional frequency, eω , in the lateral frequency 
spectrum, which clearly  demonstrates the coupling mechanism 
between the lateral and torsional vibration modes. The 
appearance of sum and difference frequencies ( e nω ω± ) 
around the torsional excitation frequency is the result of 
interaction of the torsional excitation and the synchronous 
frequency and its higher harmonics (2X, 3X, 4X).  
 For the case with cracks’ phase difference of 0°, shown in 
Fig. 8(a) and 8(b), the two cracks simultaneously open or close 
during the rotor’s rotation.. In this case the vibration spectrum 
of the two-crack rotor is similar to the one-crack rotor’s 
behavior, except the increased amplitude due to higher stiffness 
reduction.  

For the case with phase difference of 90 , shown in Fig. 
8(c) and 8(d), whenever one crack is closed, the other one is 
always half-opened and half-closed. While 2X, 3X and 5X 
peaks remain about the same, as in Fig. 8(a) and 8(b), the 
amplitude of 4X peak is dramatically decreased in the 
frequency spectra, and the vibration amplitude is slightly 
reduced.  

The third case with the phase difference of 180  implies 
that whenever one crack is fully opened, the other one must be 
closed. In this case the vibration amplitudes are reduced further 
than in the previous case. Although the super-harmonic 2X and 
4X peaks are similar as in Fig. 8(a) and 8(b), 1X, 3X and 5X 
peaks are appreciable decreased to their minimum values. 

Due to the lateral and torsional coupling mechanism 
induced by the presence of cracks, the externally applied 
torsional excitation significantly affects the rotor lateral 
vibration behavior. This is clearly shown in Figs. 93 (a) and (b), 
where the vibration response orbits are presented without and 
with torque, respectively. The Fig. 9(b) shows the orbit that 
rotates (thin line) in the opposite direction of the rotor’s 
rotating direction. Simulations of orbits considering frequencies 
shown in corresponding to this case FFT spectrum (see Fig. 
8(b)) have shown presence of frequency components being 
backward whirl fraction. The vibration in the presence of the 
applied external torque is not periodic but quasi-periodic, where 
the ratios of the involved frequencies are not the ratios of 
integers. 
                                                           
2 Figure 8 is shown in Appendix B. 
3 Figure 9 is shown in Appendix B.  
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CONCLUSIONS 
 Coupled lateral-torsional vibration finite element analysis 
of a rotor with two breathing cracks has been conducted for 
frequency analysis and dynamic response to excitation forces 
such as mass unbalance, weight, and the external torque. The 
multi-crack rotors have much more complicated stiffness 
asymmetry behavior being parametric, time-varying systems 
with dissimilar inertia moments in two perpendicular directions 
and at various axial shaft locations. The issue of accurate 
modeling of the stiffness matrix with the periodic coefficients 
in the global inertial coordinates system is crucial to account 
for the proper breathing behavior of multi cracks located at 
various axial and angular positions.  
 The developed model for the “breathing” cracked element 
is based on fracture mechanics. The direct stiffnesses, as well 
as cross coupling stiffnesses are estimated as the crack opens 
and closes. The stiffness matrix variation due to the crack 
breathing is determined by the stiffness matrices of cracked 
shaft with the crack located at five different angular positions. 
Such an approach simplifies frequency and dynamic response 
analysis regardless of a number of finite elements and cracks’ 
location.  
 The axial location of cracks affects the rotor frequencies. 
Once the two cracks are located close to the middle section of 
the shaft, the maximum reduction of frequencies occurs. The 
frequencies also depend on the relative orientation of two 
cracks and the shaft geometric ratios. The variation of rotor 
mode frequencies is the most significant for the small shaft 
geometric ratios. The modes which affected the most are 
predominantly bending modes. If the two breathing cracks are 
in phase, i.e., both of them are simultaneously either opened or 
closed, the vibration behavior pattern is almost the same as for 
the rotor with one crack, except the change in vibration 
amplitude. For the case of two out-of-phase cracks, the 
vibration spectrum presents different signatures, with 
diminished 1X, 3X and 5X harmonics.  Finally, for the cracks’ 
phase difference of 90°, the peak of super-harmonic frequency 
4X is dramatically reduced in the vibration spectrum. It is 
noteworthy that the 2X peak stays the same all the time. 
 The orbit analysis reveals that there are specific crack 
signatures due to the vibration mode coupling. When the 
external torque is applied the mode coupling induced by the 
crack causes vibration to become quasi-periodic, with the 
response orbit rotating in the direction opposite to the direction 
of rotation of the rotor.  
 The presented method is applicable to analyze the dynamic 
response of rotating shafts with two or more breathing cracks. 
The uniqueness of the observed crack signatures, captured by 
the analytical approach, presents potential in early diagnosis of 
rotor cracks. 
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Figure 3. Variation of stiffness coefficients over one revolution of a cracked shaft element 
(a/D = 0.4, l = 0.14m, D=0.03m). 
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(a). Phase difference 0 ; no torsional  excitation. (b). Phase difference 0 ; torsional excitation 
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(c). Phase difference 90°; no torsional excitation. (d). Phase difference 90°; torsional excitation. 
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(e). Phase difference 180°; no torsional excitation. (f). Phase difference 180°; torsional excitation. 

Figure 8. Vibration response FFT of a rotor with two breathing cracks of different phase. 
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Figure 9. Vibration response orbits with phase difference 0°: (a) without torsional excitation, (b) with torsional excitation. 

 


