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Abstract

We performed a numerical investigation to find out the optimal choice of the spatial discretization in the
distributed-Lagrangian-multiplier/fictitious-domain (DLM/FD) method for the solid/fluid interaction prob-
lem. The elastic solid bar attached on the bottom in a pressure-driven channel flow of a Newtonian fluid
was selected as a model problem. Our formulation is based on the scheme of Yu (2005) for the interaction
between flexible bodies and fluid. A fixed regular rectangular discretization was applied for the description
of solid and fluid domain by using the fictitious domain concept. The hydrodynamic interaction between
solid and fluid was treated implicitly by the distributed Lagrangian multiplier method. Considering a sim-
plified problem of the Stokes flow and the linearized elasticity, two numerical factors were investigated to
clarify their effects and to find the optimum condition: the distribution of Lagrangian multipliers and the
solid/fluid interfacial condition. The robustness of this method was verified through the mesh convergence
and a pseudo-time step test. We found that the fluid stress in a fictitious solid domain can be neglected and
that the Lagrangian multipliers are better to be applied on the entire solid domain. These results will be used
to extend our study to systems of elastic particle in the Stokes flow, and of particles in the viscoelastic fluid.

Keywords : finite element method, fictitious domain, Lagrangian multiplier, solid/fluid interaction

1. Introduction

The solid/fluid interaction problem is one of remaining
challenges in the numerical simulation of particle-filled
fluids. There are several methods available for the sim-
ulation of particle systems: e.g., the Brownian dynamics
(Allen and Tildesley, 1987; Hütter, 1999), meso-scale par-
ticle simulations (Trofimov, 2003), micro-macro simula-
tions, and direct numerical simulations (DNS). Each
method has its own pros and cons. For example, the
Brownian dynamics is not practical in solving the flow
field with many-body hydrodynamics; the meso-scale par-
ticle simulation such as the lattice-Boltzmann method, the
dissipative particle dynamics, and the fluid particle dynam-
ics make implicit assumptions for the potentials involved
in the system; the micro-macro simulation which is based
on the CONNFFESSIT (Calculation of Non-Newtonian
Flow: Finite Element and Stochastic Simulation Tech-
nique) algorithm (Laso and Öttinger, 1993) requires a large
number of particles with random noises. Our long-term
objective is to understand dynamics of deformable parti-

cles in complex flow fields with high precision. To take the
full hydrodynamic interaction into account, the direct
numerical simulation method has the advantage over the
others since it is possible to get the velocity field near the
particle, and moreover the constitutive models for both
solid and fluid can be easily combined (Hwang et al.,
2004).

For solid/fluid interaction problems, both Lagrangian and
Eulerian methods are widely used. The Lagrangian appro-
ach, e.g. Doner et al. (1981) or Hu (1996), usually needs
frequent remeshing and the projection of solutions and its
usage is seriously limited in 3D simulations due to dif-
ficulty in remeshing in solid/liquid flow. Using the ficti-
tious domain method, one can avoid remeshing and solve
the problem with a simple regular mesh, which is espe-
cially beneficial in 3D simulation. In this study, the fic-
titious domain method will be used with which constraints
on the solid boundary (or over the solid domain) are rep-
resented by the distributed Lagrangian multipliers (Glow-
inski et al., 1999). The overview of the distributed-
Lagrangian-multiplier/fictitious-domain (DLM/FD) method
is well documented in Glowinski et al. (1999), Baaijens
(2001), and Yu (2005).

In this study, we apply the distributed-Lagrangian-mul-*Corresponding author: wrhwang@gsnu.ac.kr
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tiplier/fictitious-domain (DLM/FD) method to a simple
elastic solid/Stokes flow interaction problem. We investi-
gate the effect of the distribution of the Lagrangian mul-
tipliers and the effect of interfacial conditions between the
fluid and solid meshes. A simple model problem is con-
structed such that an elastic bar attached on the bottom of
the wall is subjected to a pressure-driven channel flow. The
results from this study will be helpful in extending our
work to the system of a suspended elastic particle in a fluid
or in a viscoelastic fluid.

The paper is structured as follows. In section 2, we intro-
duce the problem definition and governing equations. In
section 3 the numerical methods and conditions are
explained. In section 4 we describe implementation tech-
niques. Then in section 5 we show the numerical results on
the mesh convergence, the pseudo-time step dependence,
the solid/fluid mesh ratio, etc. Finally we summarize the
results with some conclusions.

2. Governing sets of equations

As presented in Fig. 1, we consider an elastic solid bar
attached on the bottom under the pressure-driven channel
flow of a Newtonian fluid. The computational domain is
denoted by Ω, and its boundary is denoted by Γ. The sym-
bols P and P represent the solid domain and its boundary,
respectively.

2.1. Fluid domain
The set of equations in the fluid domain is simply of the

Stokes flow:

, (1)

, (2)

. (3)

Eqs. (1)-(3) are for the momentum balance, the conti-
nuity, and the constitutive relation, respectively, in the fluid
domain. The symbols σ f, vf, pf, I, η and D are the stress, the
velocity, the pressure, the identity tensor, the viscosity, and
the rate-of-deformation tensor, respectively, of the fluid.

2.2. Solid domain
The set of equations in the solid domain is given by the

linearized elasticity (Hughes, 2000):

, (4)

, (5)

. (6)

Eqs. (4)-(6) are for the momentum balance, the conti-
nuity, and the constitutive relation, respectively, in the solid
domain. The symbols σs, us, ps, µ, and ε are the stress, the
displacement, the pressure, the Lamé constant, and the
(infinitesimal) strain tensor, respectively, of the solid. The
incompressibility of solid is necessary in solid/fluid inter-
action problems, if the Dirichlet type boundary condition is
applied for all domain boundaries. In this case, the Poisson
ratio is 0.5 and then the Lamé constant in Eq. (6) is a mul-
tiple of Young’s modulus E:

. (7)

2.3. Solid/fluid interaction
The force balance and the kinematic continuity condition

around the solid boundary can be given by:

, (8)

. (9)

In Eqs. (8) and (9), n is the outward normal vector on the
solid boundary from the solid body, and  is a pseudo-
time step for connecting the fluid velocity and the solid
displacement. In the weak formulation of the finite element
method, the kinematic constraint is usually combined with
the Lagrangian multiplier and the force balance is then sat-
isfied implicitly through the multiplier. In this regard, we
use the no-slip constraint (Eq. (9)) only in the derivation of
the weak form.

3. Numerical methods

3.1. Combined weak formulation
We define the combined solution and variational spaces

for the fluid velocity and the solid displacement as follows:

, (10)

∂

∇ σf⋅ 0= in Ω\P( )

∇ vf⋅ 0= in Ω\P( )

σf pfI– 2ηD vf( )+= in Ω\P( )

∇ σs⋅ 0= in P

∇ us⋅ 0= in P

σs IPs– 2µε us( )+= in P

µ
E

2 1 v+( )
------------------ 1

3
---E= =

σf n⋅ σs n⋅= on ∂P

vf
us

t∆
-----= on ∂P

t∆

wv vf us,( ) vf H
1 Ω\P( )∈ us H

1
P( )∈, vf

us

t∆
----- on ∂P=,

 
 
 

=

Fig. 1. Schematic diagram of the model problem: an elastic solid
bar is attached on the bottom in a pressure-driven channel
flow.
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. (11)

The solution space for the fluid and solid pressure are
L2(Ω\P) and L2(P), respectively. The combined weak for-
mulation for the whole domain can be written as:

. (12)

Integrating the stress-divergence terms by parts, one gets:

:

: . (13)

The last two line integrals in Eq. (13) are canceled by
Eqs. (8) and (9) so that the final combined weak formu-
lation is as follows:

: : . (14)

We remark that the hydrodynamic force on the solid
boundary is canceled in combined momentum equation
(Eq. (14)). The weak formulation of the continuity equa-
tion for fluid and solid are as follows:

, (15)

. (16)

3.2. DLM/FD weak formulation
By applying the fictitious domain (FD) concept, we

extend the fluid domain (Ω\P) to the entire computational
domain (Ω). Extending the no-slip constraint on the solid
boundary to the interior of the solid domain, one gets:

: . (17)

By applying Eq. (17) to Eq. (14), the FD weak formu-
lation is presented as follows:

: : . (18)

Now we introduce the Lagrangian multiplier, ,
on the solid domain to combine the no-slip constraint on
the solid boundary (or over the solid domain). By using the
Lagrangian multiplier, one gets the distributed-Lagrangian-
multiplier/fictitious-domain (DLM/FD) weak formulation
as follows:

: , (19)

, (20)
 

: , (21)

, (22)

. (23)

Note that the line integrals in Eqs. (19), (21), and (23)
can be changed to domain integrals when the no-slip con-
straint is applied on the entire solid domain. For example,
the last term in Eq. (19) can be changed to:

.

3.3. Application to Newtonian fluid and Hookean solid
Now we consider the Newtonian constitutive equation

for the fluid and the Hookean constitutive equation for the
solid. Applying Eqs. (3) and (6) to Eqs. (19) and (21), one
gets the formulation for the Newtonian fluid and the
Hookean solid. As a result, the weak form for the whole
domain can be stated as follows:

Find , , ,  and
 such that

: , (24)

, (25)

:

, (26)

, (27)

, (28)

for all , , , 
and .

4. Implementation

4.1. Spatial discretization
Two discretization schemes have been used for solid/

fluid interaction problem. A regular rectangular discreti-
zation with the bi-quadratic interpolation of the velocity
and the linear discontinuous interpolation for the pressure
(  element) is employed for the fluid domain. In the
solid domain a regular rectangular discretization is also
used but with the bi-linear interpolation of the displace-
ment and the constant pressure element (  element).
To impose no-slip constraint on the solid boundary, we
applied the distributed Lagrangian multiplier method. For
the computational convenience, multipliers are imposed on
every nodal point on the solid boundary (or on the solid
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1
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domain).

4.2. Matrix equation
Using the discretization mentioned above, one gets the

following matrix equation at each time step for a given
solid configuration:

. (29)

Kf, Gf, Ks, Gs represent sub-matrices for the fluid velocity,
the incompressibility of the fluid, the solid displacement
and the incompressibility of the solid, respectively. The no-
slip constraint with the Lagrangian multiplier is denoted by
sub-matrices Nf and Ns. The sub-matrices I and P account
for the fluid stress inside the solid domain. The construc-
tion of I and P is not straight forward, since the evaluation
of fluid stress at the solid element cannot be done with the
conventional quadrature integral. In this regard, to access
the necessity of the use of I and P, we performed numerical
tests in section 5. In case of Yu (2005), the fluid stress in
the solid domain has been neglected.

The asymmetric sparse matrix is solved by a direct
method based on a sparse multifrontal variant of Gaussian
elimination (HSL/MA41) (Amestoy and Duff, 1989;
Amestoy and Duff, 1993; Amestoy and Puglisi, 2003).

4.3. Time integration
At each (pseudo) time step, the solid position changes

and we need to modify the solid configuration and the
stress. For a given initial solid configuration, one can con-
struct and solve the matrix equation in Eq. (29). Then,
from the solution of the previous time step, one can update
the solid configuration and the stress. One needs several
iterations to reach the steady state deformation. In this
study, we use the convergence criteria (tc) as follows:

, (30)

where  is the displacement of the first iterate and  is
the displacement at pseudo-time step t.

5. Results

5.1. Numerical experiment
We consider an elastic solid bar attached on the bottom

in a pressure-driven channel flow of a Newtonian fluid as
shown in Fig. 1. The height of the solid bar is a half of the
channel height, and the width of the solid bar is 1/5 of the

channel length. The computational domain is from (0, 0) to
(1, 1) and the bottom center of the solid bar is located at
(0.5, 0). The bottom of the solid domain is pinned by the
boundary condition. For the fluid domain, the no-slip
boundary condition is imposed on Γ2 and Γ4, and traction
boundary condition is imposed on Γ1 and Γ3 to generate the
pressure difference. To investigate the effect of the dis-
tribution of Lagrangian multipliers, we compared the
results of the Lagrangian multipliers over the entire solid
domain (D) with those of the Lagrangian multipliers on the
solid boundary only (B). Also, to assess the necessity of
considering fluid stress in the solid domain, we denote a
problem with sub-matrices I and P by SV and a problem
without I and P by V. The four sets, two different con-
ditions for each factor, have been listed in Table 1. To
understand the effect of each factor and to find the opti-
mum condition, we performed numerical experiments for
the four sets and checked the mesh convergence and the
pseudo-time step dependence to evaluate the robustness of
the present formulation. The results are presented from all
four sets together for the proper comparison.

5.2. Mesh convergence
We performed the mesh refinement test, using five dif-

ferent meshes: a 20-by-20 fluid mesh with a 2-by-10 solid
mesh, denoted by F(400)/S(20), to a 60-by-60 fluid mesh
with 6-by-30 solid mesh, denoted by F(3600)/S(180). All
five meshes have the same mesh size ratio between solid
mesh and fluid mesh. The solid displacements,

, along the left side of the solid bar,
the displacement from bottom-left (y=0) to top-left point
(y= 1) of the solid bar, are presented in Fig. 2. As shown
in Fig. 2, all four sets show good mesh convergence. The
mesh convergence is also confirmed in the prediction of
solid strains ε11 (Fig. 3) and ε22 (Fig. 4). Next, we assigned
a larger pressure gradient by the factor of 10 and inves-
tigated mesh convergence. As shown in Fig. 5, the result
shows good mesh convergence, even though the solid dis-
placement appears much larger than before (but still within

Kf Gf 0 0 Nf

Gf

T
0 0 0 0

I P Ks Gs Ns–

0 0 Gs

T 0 0

Nf

T 0 1
t∆

-----Ns

T– 0 0

vf

pf–

us

ps–

λ

f=

tc
us

t

us

0
-------= 10

5–≤

us

0
us

t
dus us x,( )2 us y,( )2+=

Table 1. Four different sets for numerical experiments

Distribution of
Lagrangian multipliers

Solid/fluid
interfacial condition

B_V on the solid boundary
w/o fluid stress inside 

the solid

D_V over the solid domain
w/o fluid stress inside 

the solid

D_SV over the solid domain
with fluid stress inside 

the solid

B_SV on the solid boundary
with fluid stress inside 

the solid
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Fig. 2. Mesh convergence: comparison of the solid displacement at ∆p =1, E=105, ν=0.5, ∆t=0.001. (a) B_V, (b) D_V, (c) D_SV, (d)
B_SV.

Fig. 3. Mesh convergence: comparison of the solid strain (ε11) at ∆p =1, E=105, ν=0.5, ∆t=0.001. (a) B_V, (b) D_V, (c) D_SV, (d)
B_SV.
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Fig. 4. Mesh convergence: comparison of the solid strain (ε22) at ∆p=1, E=105, ν=0.5, ∆t=0.001. (a) B_V, (b) D_V, (c) D_SV, (d)
B_SV.

Fig. 5. Mesh convergence: comparison of the solid displacement at ∆p =10, E=105, ν=0.5, ∆t=0.001. (a) B_V, (b) D_V, (c) D_SV, (d)
B_SV.
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Fig. 6. Pseudo-time step dependence: comparison of the solid displacement at ∆p=1, E=105, ν=0.5 with F(2500)/S(125) mesh set. (a)
B_V, (b) D_V, (c) D_SV, (d) B_SV.

Fig. 7. Solid/fluid mesh ratio: comparison of the solid displacement at ∆p=1, E=105, ν=0.5, ∆t=0.001 with fixed fluid mesh as
F(2500). (a) B_V, (b) D_V, (c) D_SV, (d) B_SV.
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Fig. 8. Solid/fluid mesh ratio: comparison of the solid strain (ε22) at ∆p=1, E=105, ν=0.5, ∆t=0.001 with fixed fluid mesh as F(2500).
(a) B_V, (b) D_V, (c) D_SV, (d) B_SV.

Fig. 9. The distribution of shear rate and the streamline: comparison of the results at ∆p=1, E=105, ν=0.5, ∆t=0.001 with fixed fluid
mesh as F(2500)/S(125). (a) B_V, (b) D_V, (c) D_SV, (d) B_SV.
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a linearized elasticity regime).
Interestingly, there is no significant difference among the

four sets, which indicates that the influence of the fluid
stress in the solid domain is very minor. Reminding that
the treatment of the fluid stress inside the solid domain, i.e.

construction of I and P sub-matrices, is a quite tedious pro-
cess, as implied from the results, it may be possible to
neglect this minor contribution.

5.3. Pseudo-time step dependence
To investigate the effect of pseudo-time stepping, we

tested the pseudo-time step from 0.1 to 0.0001, while other
conditions being fixed. Note that the pseudo-time step in
Eq. (9) was adopted to connect the fluid velocity and the
solid displacement, hence it is required that the results have
a little dependence on this pseudo-time step. As shown in
Fig. 6, there is almost no time step dependence. With this
result, we can assure the robustness of the present algo-
rithm. In addition, there is no significant difference among
the four sets, which implies that it is possible to neglect the
fluid stress inside the solid domain as mentioned before.

5.4. Solid/fluid mesh ratio
To find out the optimal solid/fluid mesh ratio, we change

the number of elements from 20 (2-by-10) to 500 (10-by-
50) for the solid mesh with fixed fluid mesh as 2500 (50-
by-50) elements. Since use 9-node quadrilateral elements
for the fluid and 4-node quadrilateral element for the solid,
the solid and fluid have the same mesh size of the ratio 1
when the number of elements of the solid mesh is 125 (5-
by-25). Note that the change of the solid mesh means the
change of the number of collocation points since we
applied Lagrangian multipliers on solid nodal points. The
finer solid mesh, the more Lagrangian multipliers on the
interface where the interfacial conditions are enforced.
When the solid mesh size gets bigger than or comparable
to the fluid mesh size, similar results are obtained as in Fig.
7 (the solid displacement) and Fig. 8 (the solid strain ε22
component). When the solid mesh size becomes smaller
than the fluid mesh size, there appear locking problems
with numerical errors, because of the excessive constraints
inside the fluid element. Especially, the results show that
this locking appears even worse, if the Lagrangian mul-
tipliers are distributed over the solid element. Conclusively,
it would be good to use comparable or bigger solid meshes
than the fluid mesh to avoid the locking problem.

5.5. Streamline and shear rate distribution
The streamline and shear rate distribution of the fluid

with the final shape of the solid bar are shown together in
Fig. 9. Here, the sets of D_V and D_SV in which
Lagrangian multipliers are on the entire solid domain show
smooth contours compared to the others. When Lagrangian
multipliers are applied only on the solid boundary, one can

observe the shear rate jump around the collocation points.
When the larger pressure gradient is applied, the shear rate
jump on the solid boundary is more serious if Lagrangian
multipliers are applied just on the solid boundary. One can
also observe velocity vectors passing through the solid
boundary in this case. In case of the Lagrangian multipliers
over the entire solid domain, one can see much smooth
shear rate distribution. Conclusively, it seems to be better
to apply the Lagrangian multipliers over the entire solid
domain.

6. Conclusions

In this study, the distributed-Lagrangian-multiplier/ficti-
tious-domain (DLM/FD) method has been applied to the
elastic solid/Stokes flow interaction problem. The purpose
of this numerical work is to find out the proper condition
in using the DLM/FD scheme to the solid/fluid interaction
problem. The robustness of this simulation algorithm has
been verified through the mesh convergence and pseudo-
time step dependence test. All four sets showed good mesh
convergence, and there was no pseudo-time step depen-
dence. We found that too many collocation points for the
Lagrangian multipliers may cause a locking problem
through the tests with different solid/fluid mesh sets. It is
recommended to use comparable or bigger solid meshes
compared to the size of the fluid mesh. We also found that
consideration of the fluid stress inside the solid domain on
the solid/fluid interface does not affect the results signif-
icantly. It has been found that the fluid stress in a fictitious
solid domain may be neglected and the no-slip condition
between the solid and fluid works since to be sufficient,
which makes the algorithm much easier to be imple-
mented. The dependency on the distribution of Lagrangian
multipliers was also investigated: shear rate jump has been
observed in case of the Lagrangian multipliers located only
on the solid boundary. Conclusively, the fluid stress of the
fictitious domain can be neglected and the Lagrangian
multipliers need to be applied on the entire solid domain.
Based on these results, we extend this algorithm to more
challenging problems such as a freely suspended elastic
particle in the Stokes flow, and systems of particles in a
viscoelastic medium.
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