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Finite Element Analysis 

of Fluid-Conveying 

Timoshenko Pipes 

A general finite element formulation using cubic Hermitian interpolation for dynamic 
analysis of pipes conveying fluid is presented. Both the effects of shearing defor­
mations and rotary inertia are considered. The development retains the use of the 
classicalfour degrees-of-freedomfor a two-node element. The effect of moving fluid is 
treated as external distributed forces on the support pipe and the fluid finite ele­
ment matrices are derived from the virtual work done due to the fluid inertia forces. 
Finite element matrices for both the support pipe and moving fluid are derived and 
given explicitly. A numerical example is given to demonstrate the validity of the 
model. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

The dynamic behavior of pipes transporting fluid 

has been a subject of increasing research inter­

est. Pai'doussis et al. (1976, 1986) examined the 

stability of tubes conveying fluid using global 

trial functions. To facilitate the analysis of more 

complex structures, such as pipes with interme­

diate supports, masses, and more general bound­

ary conditions, Pramila and Laukkanen (1991) 

applied a finite element formulation by using lin­

ear shape functions to independently interpolate 

the displacements and rotations of a Timoshenko 
beam element. Because the element used experi­

ences severe problems for thin beams, known as 

shear locking, reduced integration by employing 

one point quadrature must be used to improve 

the accuracy (Hughes et aI., 1977). 

It has been demonstrated that for static analy­

sis considering shear effect, the element using 

consistent interpolation with quadratic approxi-
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mation of displacement and linear approximation 

of rotation yields more accurate results than the 
element with linear shape functions with reduced 

integration, due to better representation of the 

load (Reddy, 1993). To further improve the anal­

ysis accuracy, cubic approximation of displace­

ment can be considered. Such an element was 

developed by Narayanaswami and Adelman in 

1974 for static analysis including shear effect 

without using additional nodal degrees-of-free­

dom; three additional degrees-of-freedom are re­

quired to control transverse shear for the ele­

ment developed by Nickell and Secor (1972). The 

purpose of this study is to extend this more accu­

rate formulation developed by Narayanaswami 

and Adelman (1974), with the classical formula­

tion of two-node element with four degrees-of­

freedom still retained. Both the effects of shear­

ing deformations and rotary inertia are con­

sidered for dynamic analysis of pipes conveying 

fluid. 
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Mter completion of this work we were aware 

of a somewhat similar study by Stack et al. 

(1993), where the standard form of Hamiltonian 

principle was applied to derive the equations of 

motion, and an interesting analysis of the dy­

namic behavior of Coriolis mass flow meters was 

conducted. However, the analysis is limited to 

fluid-conveying pipes with supported ends. 

When one end of the pipe is free, the extended 

Hamiltonian principle must be used to take into 

account the outflow dynamics (McIver, 1973). 

Note that the Coriolis matrix is incorrectly given 
in Stack's paper. All vij terms should be replaced 

with Vo and the sign of b21 should be negative. 

In this article the effect of the moving fluid is 

taken as external loads acting on the pipe, with­

out differentiating whether the loads are conserv­

ative or nonconservative. The laborious deriva­

tion using the variational principle is avoided by 

considering the virtual work done by the fluid 

inertia forces. This analysis includes the outflow 
dynamics so that pipes with free ends can be cor­

rectly analyzed. Explicit beam and moving fluid 

element matrices will be given to facilitate design 

and analysis applications. The validity of this 

work will be verified by comparing the analysis 

results with those obtained by Pai'doussis et al. 

(1986). 

MODEL DEVELOPMENT 

The finite element model for both the support 
pipe and the moving fluid is presented in this 

section. This development will include analyses 

for both the Timoshenko and Bernoulli-Euler 
pipes. 

Timoshenko Pipe Element 

Narayanaswami and Adelman (1974) reported a 

straightforward energy minimization approach 

for static analysis of beam structures considering 

the shear effect. Correct formulation of the finite 
element characteristics was obtained without us­

ing additional nodal degrees-of-freedom. A tradi­

tional cubic polynomial can still be used to de­

scribe the transverse displacement. The shear 

strain within an element is described as 

aw 
y=--() 

ax 
(1) 

/ 

Neutral axis 

FIGURE 1 Deformation of the cross section consid­

ering shear effect 

where w denotes transverse displacement of the 

pipe, () the cross-section rotation, and y the shear 

strain. Figure 1 illustrates the deformation of the 

cross section considering the shear effect. The 

transverse displacement and rotation of the pipe 

are interpolated as 

w = lNJ {d}e, () = lNJ {d}e (2) 

where IN J and IN J denote 1 x 4 row vectors 

representing shape functions, {d}e the element 
nodal degrees-of-freedom vector including trans­

verse displacements and rotations. 

The following shape functions for both the 

transverse displacement and cross-section rota­
tion can be obtained with the Hermitian interpo­

lation being used to describe the transverse dis­
placement of the pipe. 

1 
NI = 1 - a(a2 + 12g) (12gx + 3ax2 - 2x3) 

N2 = a(a2 ~ 12g) [(a2 + 6g)ax 

- (2a2 + 6g)X2 + ax3] 
(3) 

1 
N3 = a(a2 + 12g) (12gx + 3ax2 - 2x3) 

1 
N4 = a(a2 + 12g) [-6gax 

+ (6g - a2)x2 + ax3] 



and 

where 

- 1 2 ) 
N\ = a(a2 + 12g) (6x - 6ax 

1 
N2 = a(a2 + 12g) [a3 + 12ga 

- (4a2 + 12g)x + 3ax2] 

N3 = a(a2 ~ 12g) (6ax - 6x2) 

1 [2 
N4 = a(a2 + 12g) 3ax 

- (2a2 - 12g)x] 

EI 
g == kGA 

(4) 

(5) 

and a is the beam element length, EI the bending 

rigidity, k the shear coefficient, G the shear mod­

ulus, A the cross-section area of the pipe ele­

ment, and x the coordinate along the longitudinal 

direction of the pipe element. For pipes with cir­

cular cross section, the shear coefficient derived 

by Cowper (1966) by integrating the three-dimen­

sional elasticity equations was used here: 

_ 6(1 + v)(1 + m2)2 5a 

k - (7 + 6v)(1 + m2)2 + (20 + 12v)m2 ( ) 

where v is the Poisson ratio and m the ratio of the 

inside diameter to the outside diameter. The 

strain energy including the shear effect for a pipe 

element of length, a, can be described as 

u =.! la EI (ae)2 dx + -21 la kGky2 dx. (6) 
e 2 0 ax 0 

The stiffness matrix can be obtained directly 

from the description of strain energy by substi­

tuting Eqs. (1) and (2) into Eq. (6). 

(7) 

where 

(8) 
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represents the bending effect, and 

[ks]e = J: kGA(LNxV - LNV)(LNxJ - LNJ) dx 

(9) 

describes the shear effect. The subscript x asso­

ciated with the shape functions denotes differen­
tiation. Thus 

k _ 12 EI 
[ ]e - (a2 + 12g) a 

a a2 

-+g 
2 3 

-1 
a 

2 

sym 

1 

which is the pipe element stiffness matrix includ­

ing the traditional bending effect with the addi­
tion of shear effect. Note that if g is zero, which 

represents an infinite shear rigidity, the matrix 

reduces to the classical element stiffness matrix 

using Bernoulli-Euler's beam theory. 
Equation (10) was available in the work by 

Narayanaswami and Adelman (1974), in which 

the static analysis of short beams considering the 

effect of shearing deformations was presented. 

For dynamic analysis of a short pipe, considering 
both the effects of shearing deformations and ro­

tary inertia, the mass matrix including these ef­

fects needs to be determined in addition to the 

previous development. 

The kinetic energy of the pipe can be written 

as 

where p is the mass density per unit volume of 

the pipe. Substituting the shape functions and 

knowing that they are functions of x only, the 

pipe element mass matrix, [mle , can be described 

as 

in which [mtle is the mass matrix for an element 

due to the translational inertia and can be shown 

to be 
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[mtle = J: LN V pALN J dx 

therefore 

til sym 

pAa t21 t22 
[mt]e = (a2 + 12g)2 

t31 t32 t33 

where 

t41 t42 t43 t44 

13 42 
til = - a4 + - ga2 + 48g2 

35 5 

- (~4 !!. 2 2) t21 - 210 a + 10 ga + 6g a 

t22 = (_1_ a4 + ! ga2 + ~ g2) a2 
105 5 5 

9 18 
t31 = 70 a4 + -5 ga2 + 24g2 

- (..Q.. 4 ~ 2 2) t32 - 420 a + 10 ga + 6g a 

( 1 1 6) t42 = - - a4 + - ga2 + - g2 a2 
140 5 5 

t43 = -t21 

t44 = t22 

(13a) 

(13b) 

(13c) 

and [mr]e is the element mass matrix denoting the 
contribution due to rotary inertia: 

thus 

'11 sym 

pAa ('r '21 '22 

[mr]e = (a2 + 12g)2 a 
'31 '32 '33 

(14b) 

'41 '42 '43 '44 

where 

6 
'11 = - a4 

5 

'21 = C~ a2 - 6g) a3 

'22 = C25 a4 + 2ga2 + 48g2) a2 

'31 = -'11 

(14c) 

where, is the radius of gyration of the pipe cross 
section. The above element mass and stiff­
ness matrices can be assembled to form the pipe 
structural matrices. Note that when pipe damp­
ing is considered, Rayleigh damping of the type, 
[C] = a[M] + ,8[K], can be used to form the pipe 
structural damping matrix. The constants, a and 

,8, can be determined from the modal dampings 
obtained using the experimental modal analysis 
technique (Ewins, 1986). When more than two 
modal dampings need to be accurately repre­
sented, a Caughey series can be applied to form 
the damping matrix (Bathe, 1982). 

Moving Fluid Model 

The development of the fluid finite element 
model for a Timoshenko or Bernoulli-Euler pipe 
conveying fluid is described in this section. By 
denoting the coordinate of the fluid as wo(x, t) 

and that of the support beam as w(x, t) and 
knowing that they are the same at the contact 

position, the time derivatives of Wo can be de­
scribed as 

Wo(x, t) = wxxx2 + 2wxz x + wxx + WI/ 

= wxxv2 + 2wxz v + wxv + WI/ 

(15) 

in which a subscript denotes partial differentia­
tion, and v is the fluid flow velocity with its over­
dot denoting the acceleration. From Eq. (2), the 

following relationship can be established 



Wxx = LNJxx{d}; Wn = LNJx{d} 

Wx = LNL{d}; Wtt = LNJ{d}. 
(16) 

In this article the effects of moving fluid are 

treated as external forces on the support pipe, 

and the forces turn out to be dependent on the 

system nodal variables. Equations (15) and (16) 

can be combined and integrated over the element 

span to obtain the fluid element mass, damping, 

and stiffness matrices for the moving fluid by 

considering the virtual work done by the fluid 

inertia forces 

8 We = -1: p8wdx (17a) 

where p denotes all fluid inertia forces. Note that 

there is no need to differentiate the conservative 

and nonconservative fluid inertia forces, as 

stated by Dupuis and Rousselet (1992), for cor­

rect derivation. Thus, 

[mde = /Lf J: LN YLN J dx + PfIr J: LN YLN J dx 

[cde = 2/LfV J: lNY[NLdx - /LfVLNYLNJ[: 

[kde = /Lf V2 J: LNYlNJxxdx + /L(V J: LNYLNJxdx 

- /LfV2 lN YlNL I::: (17b) 

where /Lf is the mass per unit length of the fluid. 

The last terms in the right-hand-side of the damp­

ing and stiffness matrices expressions, which are 

not attributed to Eq. (17a), represent the inflow 

at x = 0, and outflow at x = a, as the fluid enters 

the pipe element from one end and exits from the 

other to account for the fluid boundary condi­

tions (McIver, 1973). The above finite element 

matrices for both the pipe and the moving fluid 

can be assembled to form the structural matrices 

for analysis. Note that at the free end ofthe pipe, 

the outflow terms as depicted above need to be 

added to the structural matrices for correct for­

mulation. For a cantilever pipe with its right end 

unsupported, the outflow terms are explicitly 

shown as: 
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0 sym 

/LfV LN YLN J Ix=a = /LfV 
0 0 

(17c) 
0 0 

0 0 0 0 

and 

/Lf V2 LNYlN Jx I = (t:v2
12 ) x=a a a g 

0 0 0 0 

0 0 0 0 
(17d) 

-12g -6ag 12g a3 + 6ag 

0 0 0 0 

Fluid Model for Timoshenko Pipe Support 

The fluid element mass matrix can be written as 

[mfle = [mftle + [mfrle (18) 

where [mftle denotes the translational inertia ef­

fect of the moving fluid 

[mflle = /Lf J: LNYLNJ dx, (19a) 

thus 

ftIl sym 

/Lfa ft21 ft22 
(19b) [mftle = (a2 + 12g)2 

f t31 f t32 f t33 

f t41 f t42 f t43 f t44 

where 

13 42 
flIl = 35 a4 + 5 ga2 + 48g2 

fi _(~4!! 2 2) 
121 - 210 a + 10 ga + 6g a 

ft22 = (_1_ a4 + 1. ga2 + ~ g2) a2 
105 5 5 

9 18 
f t31 = 70 a4 + 5 ga2 + 24g2 

(19c) 

fi -(~ 4 ~ 2 2) 132 - 420a + 10 ga + 6g a 



252 Chu and Lin 

f l33 = fIll 

fl41 = -fl32 

fl42 = -C!O a4 + ~ ga2 + ~ g2)a2 

f l43 = -f121 

f l44 = fl22 

and [mfrle describes the fluid rotary inertia effect 

thus 

where 

frll sym 

f r 21 f r22 

[mfrle = PfIr 
f r31 f r32 f r33 

fr41 fr42 f r43 fr44 

frll = 5(a2 + 12g)2 

a4 - 60a2g 

fr21 = IO(a2 + 12g)2 

2a5 + 30a3g + 720ag2 

f r22 = 15(a2 + 12g)2 

fr31 = -frll 

f r32 = -fr21 

fr33 = frll 

f r41 = f r21 

-a5 - 60a3g + 720ag2 

f r42 = 30(a2 + 12g)2 

f r43 = -fr21 

f r44 = f r22. 

(20a) 

(20b) 

(20c) 

The fluid element damping matrix, known as 
gyroscopic matrix, is shown below 

o 

/Lf V 

[cfle = 30(a2 + 12g) 
-6(a3 + lOag) 

-30(a2+ 12g) 

6(a3 + lOag) 

6(a3 + lOag) 

o 

30(a2 + 12g) -6(a3 + lOag) 

6(a3 + lOag) -a4 

-6(a3 + lOag) 0 6(a3 + lOa g) 

a4 -6(a3 + lOag) 0 

(21) 

Note that the fluid damping matrix is skew 

symmetric. The fluid element stiffness matrix is 

[krle = [kyle + [kale 

where 

kVll 

-/LfV2 kV21 kV22 

[kyle = 60a(a2 + 12g)2 
kV31 kV32 kV33 

kV41 kV42 kV43 

in which 

kVll = 72(a4 + 20a2g + 120g2) 

kV21 = 6a5 

kV22 = 8(a6 + 15a4g + 90a2g2) 

kV31 = -kvlI 

kV32 = - kV21 

kV33 = kvll 

kV41 = kV21 

kV42 = -2(a6 + 60a4g + 360a2g2) 

kV43 = - kV21 

kV44 = kV22 

(22) 

sym 

kV44 

(23a) 

(23b) 

and the matrix for the effect of fluid acceleration 

IS 



- 30(a2 + 12g) 

fLrU 
[kale = 60(a2 + 12g) 

-6(a3 + lOa g) 

- 30(a2 + 12g) 

6(a3 + lOag) 

6(a3 + lOag) 30(a2 + 12g) -6(a3 + lOag) 

o 6(a3 + lOag) -a4 

-6(a3 + lOa g) 30(a2 + 12g) 6(a3 + lOag) 

a4 -6(a3 + lOag) 0 

Fluid Model for Bernoulli-Euler Pipe 
Support 

(24) 

For analysis of a Bernoulli-Euler pipe conveying 

fluid, the entries in the above element matrices 

are replaced by expressions shown below, using 

the ordinary shape function rather than that de­

picted in Eq. (3). The fluid element mass, damp­

ing, and stiffness matrices can be shown to be 

156 sym 

22a 4a2 
(25) 

54 13a 156 

-13a - 3a2 - 22a 4a2 

for the moving fluid element mass matrix, 

0 6a 30 -6a 

f.LfV -6a 0 6a -a2 
[crJe = 30 (26) 

-30 -6a 0 6a 

6a a2 -6a 0 

for the moving fluid element damping matrix, and 
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-36 sym 

f.LfV2 -3a -4a2 

[krle = 30a 
36 3a -36 

-3a a2 3a -4a2 

-30 6a 30 -6a 

f.LfU -6a 0 6a -a2 

+60 
-30 -6a 30 6a 

6a a2 -6a 0 

(27) 

for the moving fluid element stiffness matrix. 

MODEl EVALUATION 

The Timoshenko pipe/fluid element presented in 

this work was numerically implemented to exam­

ine the dynamic characteristics of a fluid-convey­

ing cantilever pipe with flow exiting from the free 

end. For a cantilever pipe the system is noncon­

servative and the Coriolis fluid forces do work 

for the system. When the flow velocity is low, 

the effect of fluid flow decreases the eigenfre­

quencies and introduces fluid damping to the sys­

tem. However, when the flow velocity increases, 

the Coriolis damping effect reaches a maximum 

and then diminishes. At sufficiently high flow ve­

locity, the total effective damping vanishes and 

the cantilever pipe loses stability by flutter. Ap­

parently the dynamic behavior of cantilever 

pipes conveying fluid is more complex than that 

of pipes with both ends supported, where the 

system can never lose stability by flutter 

(Holmes, 1978). 

The following dimensionless parameters are 

used in the present analysis: 

f.Lf f.Lf ( )
112 

{3 = f.Lf + pA ' Vcr = EI ucrL (28) 

_ (fLr + PA)L4)112 _ kGAL2 
0- EI w, A-~ (29) 

where L is the total pipe length and Ucr is the 

critical fluid moving speed for the fluid-convey­

ing pipe to become unstable. The parameter A is 

a measure of how slender the pipe is and hence 
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FIGURE 2 Nondimensional (a) critical velocity and 

(b) the corresponding angular frequency as a function 

of the slenderness ratio. (---) Bernoulli-Euler ele­

ment; (-) Timoshenko element (this work); (0) Ti­

moshenko theory (Pai"doussis et aI., 1986). 

for higher A, the analysis results using the Ti­

moshenko beam theory are expected to approach 

those using the Bernoulli-Euler beam theory, be­

cause the effects of shearing deformation and ro­

tary inertia are insignificant for long slender 

pipes. The first two modal damping ratios used to 

construct the structural damping matrix are ~I = 

~2 = 0.01 and the mass ratio f3 is 0.155. 

Figure 2 shows the nondimensional critical ve­

locity Ucr and the corresponding nondimensional 

angular frequency ncr as a function of the slen­

derness ratio A. If the pipe becomes shorter, cor­

responding to lower A, the nondimensional criti­

cal velocity Ucr and the corresponding 

nondimensional angular frequency ncr are 
smaller, and the classical Bernoulli-Euler's 

beam theory gives identical results independent 

of the slenderness ratio. This is in accordance 

with the fact that the Timoshenko beam theory, 

considering both the effects of shearing deforma­

tions and rotary inertia, gives a more realistic 

and accurate representation of short pipes by re­

leasing the constraints of infinite shear rigidity 

and zero rotary inertia as made in the Bernoulli­

Euler beam theory. This release of inappropriate 

constraints for a short pipe makes the structure 

less rigid, in addition to having more inertia ef­

fect, hence the moving fluid speed required to 

make the system unstable becomes smaller and 

the corresponding frequency of oscillation is de­

creased. As can be seen in Figure 2, the numeri­

cal results obtained here are in good agreement 

with those given by Paidoussis et al. (1986) that 

have been verified experimentally. 

CONCLUSIONS 

A general finite element formulation using cubic 

Hermitian interpolation has been presented to 

describe the dynamic behavior of pipes convey­

ing fluid. Both the Timoshenko and Bernoulli­

Euler theories are included in the development. 

The use of this finite element scheme provides 

accurate dynamic analysis for complicated sys­

tems such as structures with nonuniform cross 
section, complex boundary conditions, interme­

diate supports and masses, etc. Classical analyti­

cal approach may be quite difficult to apply in 

dealing with these complex practical systems. 

Explicit element matrices have been provided to 

facilitate design and analysis. 
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