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Abstract. This paper presents a finite element-based model for the 
prediction of 2-D and 3-D internal flow problems. The Eulerian velocity 
correction method is used which can render a fast finite element code 
comparable with the finite difference methods. Nine different models for 
turbulent flows are incorporated in the code. A modified wall function 
approach for solving the energy equation with high Reynolds number 
models is presented for the first time. This is an extension of the wall 
function approach of Benim and Zinser and the method is insensitive to 
initial approximation. The performance of the nine turbulent models is 
evaluated by solving flow through pipes. The code is used to predict 
various internal flows such as flow in the diffuser and flow in a ribbed 
channel. The same Eulerian velocity correction method is extended to 
predict the 3-D laminar flows in various ducts. The steady state results 
have been compared with benchmark solutions and the agreement appears 
to be good. 
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1. Introduction 

Internal flows, such as the flow through straight and curved ducts, cascades, diffusers, 
nozzles, combustion chambers, turbomachinery stators and rotors are among the 
most complex flows encountered in practice. The fluid dynamics and heat transfer 
behaviour of laminar and turbulent flows in channels and ducts are of interest because 
of wide applications in heat exchangers. The analysis of the hydrodynamics and heat 
transfer for flow in non-circular ducts is generally more complicated than in the case 
of circular pipe flow. For example the determination of developing flow, prediction 
of local and fully developed friction factors and Nusselt number requires a three- 
dimensional analysis. 

Most flows of technological interest are turbulent, at least in some regions. For 
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many of these flows, relatively simple prediction methods suffice to produce results 
of engineering accuracy. Turbulence is one of the least understood phenomenon in 
fluid dynamics. The boundary layer in the earth's atmosphere, water currents below 
the surface of oceans, flow of water in rivers and canals, flow of fluids in heat exchangers 
and most combustion processes are some examples of turbulent flows. 

Heat transfer augmentation studies in internal geometries with obstructions are 
of great relevance to the design of heat exchangers. For example, a two-dimensional 
flow over parallel ribs mounted on the surface of tubes or plates gives rise to separation 
and recirculation of the flow, which promote turbulent mixing and thereby enhance 
the rate of heat transfer. These advantages may be offset by an increase in pressure 
drop, with consequent increase in pumping power. The ability to predict these flows 
would, therefore, assist in optimizing the design of these devices. 

Interest in heat exchanger surfaces with a high ratio of heat transfer area to core 
volume, as in the case of compact heat exchangers, is increasing at an accelerated 
pace. Because of the smaller flow passage hydraulic radius the heat exchanger design 
range usually falls well within laminar flow regime. A common understanding is that 
turbulent flows provide high heat transfer coefficients and hence are desirable in heat 
exchanger applications. Laminar flow heat exchangers can also offer substantial 
weight, volume, space and cost savings. Hence the knowledge of fluid friction and 
heat transfer in ducts of various flow cross-section geometries is important. In addition 
to compact he,it exchangers, applications of laminar flow theory are also of interest 
in the aerospace, nuclear, biomedical, electronics and instrumentation fields. 

Finite element method (FEM) is capable of handling complex geometries with ease 
and it is versatile in dealing with the mixed boundary conditions. FEM has an enviable 
generality in its approach. However, it is not as fast as finite difference techniques 
due to its lengthy assembly procedure. Attention is focussed on an algorithm which 
can render a fast finite element code in this work. Heat transfer augmentation by 
introducing obstructions in the flow path can be studied conveniently using FEM. 
Thus different types of obstructions with complicated shapes can be easily investigated. 

The present work is aimed at predicting internal two- and three-dimensional flows. 
General purpose finite element codes for 2-D and 3-D have been developed. Nine 
different turbulence models have been incorporated in the code for the prediction of 
turbulent flows in 2-D. 

The 2-D code is developed for axisymmetric geometries. It can also be used to 
solve plane problems with a simple idea. A straight line is nothing but part of a circle 
whose radius tends to infinity. A plane problem can also be viewed as an axisym- 
metric problem whose axis of symmetry lies far away, in principle, at infinite distance. 
Numerically infinity can be specified only as a big number. Hence by shifting the 
value of radial coordinate by a large number, the accuracy of calculation will not be 
affected. This approach is a valid short cut for solving a plane problem with a code for 
axisymmetric geometry without altering the code. The 3-D laminar code is developed 
in Cartesian coordinates. 

2. Survey of previous work 

2.1 Turbulent flows 

Turbulent flows are characterized by their randomness. The diffusivity of turbulence, 
which causes rapid local mixing and increased rates of momentum, heat and mass 
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transfer, is another important feature of turbulent flows. Although the Navier-Stokes 
equations have been assumed to apply in principle, equally to laminar and turbulent 
flows, the character of the small-scale details of turbulence prevents a complete analysis 
when using the present day computers. In order to achieve approximate solutions 
turbulent flow is often described in terms of averaged quantities. The process of 
averaging, however, necessitates the appearance of fluctuating velocities in conservative 
equations. No direct way of knowing the magnitudes of these terms is currently 
available. This leads to the well-known turbulence closure problem. To overcome 
this difficulty various turbulence models have been proposed. 

A good number of review articles on modelling and computer simulation of 
turbulent flows is available in the literature (Mellor & Herring 1973; Reynolds 1978, 
pp. 193-231; Bradshaw et al 1981; Haines 1982; Johnson & Launder 1982; Launder 
1982; Rodi 1982, 1984; Lumley 1983; Ferziger 1987; Hussaini & Zang 1987; Hutton 
& Smith 1987, pp. 289-310; Nallasamy 1987; Deissler 1988, pp. 1153-81; Markatos 
1988, pp. 1221-75; Murphy 1988, pp. 1131-51; Lakshminarayana et al 1989). 
Nallasamy (1987) gives an excellent review of turbulent flows in internal geometries. 
Finite element simulation of turbulent flow is discussed at length by Hutton & Smith 
(1987, pp. 289-310). 

One-point turbulence closure models are the most popular ones among all levels 
of turbulence modelling. These models are based on the averaging of Navier-Stokes 
equations. There are different levels of complexity in one-point closure, ranging from 
mixing length models to stress equation models. Many review papers give an extensive 
introduction to the models coming under one-point closure (Mellor & Herring 1973; 
Rodi 1982, 1984; Ferziger 1987; Nallasamy 1987; Markatos 1988, pp. 1221-75; 
Murphy 1988, pp. 1131-51). 

All the one-point closures are valid only in the fully turbulent regions. These models 
neglect the effect of molecular viscosity in comparison with the eddy viscosity. Such 
an assumption is valid only in fully turbulent regions. There are two distinct 
approaches to overcome this drawback. The wall function method is also called the 
high Re version models, while the other one, incorporating damping functions in the 
model, is also called the low Re version of the turbulence models. In the present code 
both high and low Re versions of k-1, k-e and q- f  models have been incorporated. 

2.2 Turbulent heat transfer modelling 

The current status of turbulent heat transfer is reviewed well by Launder (1984, 1988). 
Pletcher (1988) focusses the attention of his review on forced convection heat transfer. 
The reviews by Michelic & Wingerath (1988, pp. 1393-1428), Patankar (1988) and 
Shih (1985, 1987, 1989) give an overall picture of the heat transfer research. The 
present work confines itself to forced convection heat transfer, where heat is treated 
as a passive scalar. The wall function methods used to specify the velocity at the wall 
layer (Benim & Zinser 1985), for the high Re version of the models are utilised for 
the specification of temperature also for the first time. A wall heat flux temperature 
T, is defined on similar lines to U..  

2.3 3-Dimensional laminar flows 

Although a large number of numerical methods have been proposed with the progress 
in computers, the transient 3-D analysis of flow remains a difficult task due to the 
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enormous amount of computational storage and effort required. The explicit time 
integration scheme has the advantage of saving computational storage owing to mass 
lumping. The implicit time integration scheme is reported to be more stable than the 
explicit scheme but the inversion and storage of large matrices are required. 

With the advent of modern electronic computers, several different finite-different 
formulations of the steady-state, three-dimensional Navier-Stokes equations have 
been investigated. Difficulties in imposition of the pressure boundary conditions and 
satisfaction of the continuity equation are encountered in the primitive variables 
approach. General numerical marching procedures for the calculation of the transport 
processes in three-dimensional ducts have been proposed by Caretto et al (1972) and 
Curr et al (1972). 

Gresho et al (1981) developed a finite element program for the time-dependent 
solution of the 3-D Navier-Stokes equations. The model is based on the Galerkin 
approximation of the primitive variable formulation of the Navier-Stokes equations. 
Reddy (1982) presented results of a penalty finite element analysis for three-dimensional 
incompressible flows in enclosures. 

In the present study, a general purpose finite element code for full Navier-Stokes 
equation to predict the recirculating flows is developed. The explicit time-integration 
scheme is used to save computer storage and computational time. 

3. Fractional step methods 

There are a variety of fractional step methods which can be obtained by appropriately 
combining the pressure~ viscous and the convective terms in the equations. Ferziger 
(1987) gives an excellent review on the different numerical schemes available. 
Ravikumaur (1988) uses a fully explicit scheme with mass lumping of the matrices. 
Mass lumping of the matrices and explicit scheme render a well matched technique 
(Donea et al 1982). Mass lumping shifts the frequency downwards and the explicit 
scheme upwards, thereby each balancing the other. Reduced order integration is used 
for pressure (Smith 1984; Benim & Zinser 1985; Autret et al 1987; Gresho & Sani 
1987; Utnes 1988). Ravikumaur (1988) uses equal-order interpolation with the 
Eulerian velocity correction scheme. Chequer-board splitting (or spurious pressure 
oscillations) is a ubiquitous phenomenon. Averaging the pressure field is often resorted 
to for presenting the results. Specification of the pressure boundary condition is well 
discussed in Gresho & Sani (1987). Traction-free exit boundary condition is often 
preferred. 

3.1 Governing equations 

The non-dimensionalised governing equations for unsteady-state incompressible flow 
are given below. The index j is 3 for 3-D equations and 2 for 2-D problems. For 2-D 
plane problems X 2 becomes very large and its contribution is thus negligible. Also 
the equations should be read without X 2 for 3-D problems. 
Continuity equation 

1 [ u , ) ]  = 
X2L / o. (1) 
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Momentum equations (In X i direction) 
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where Qk is the source term given by 

~<s,r~v, ~ ' , l - ~  
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e equation: 
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where QE is the source term given by 

(5) 

(6) 

(7) 

(8) 

~-+ '~, ,¢,a~,LX2~, 1 ~,/~x, zj Q,=o, 

for j =  1,2,3, 

where P is pressure and vr is turbulent momentum diffusivity. This is zero for laminar 
flow problems. Appropriate reference values of velocity Ur, t and length Lr,f along 
with the kinematic viscosity v, density p and thermal diffusivity ~t are used so that 
the variables are dimensionless. Time is non-dimensionalised by Lref/Urc f. 

Reynolds number is defined by 

Re = U,~f x L~,f/v. (3) 

Energy equation 

t~T OT 1 0 [- /1  + ~tT~X / OT "X-] 
_ _  - _ X 2 - -  m , 

o, +~' ox, L / ~o ) bx , ) J  (~) 'aXi X2 

where ~tr is turbulent thermal diffusivity which is zero for laminar flow problems, 
and Pe is Peclet number. 

Even though nine models are used to study the flow through the pipe, only the 
details of k-e model are given which is widely reported in literature. Lam & Bremhorst 
(1981) damping is used for low Re version of k-e model. 

k-e model: The turbulent momentum diffusivity is obtained through the solution 
of two partial differential equations. Lam & Bremhorst's (1981) model is used. k is 
non-dimensionalised by U 2 and e by a U r©f / L r©f. ref 

k equation: 
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Cu, C,1, C,2, ak and tr, are constants equal to 0.09, 1.44, 1.92, 1.0 and 1.3 respectively. 
The damping functions f~, f l  and f2 are given by 

f# = (1 - exp ( -  0.0165 Rek))2(1 + 20"5/Rer), 

f ,  ---- 1 + (O-05/fu) 3, 

f 2  = 1 - -  exp( -  Re2). 

Re z and RCk are defined by the following equations 

Rer = Re k2/e,, 

Rek = Re k °'s" y. 

(9) 

(10) 

(11) 

(12) 

(13) 

Turbulent momentum diffusivity is then calculated by 

v r = RefuCuk2/e. (14) 

3.2 Method of solution 

The Eulerian velocity correction method, a solution algorithm for unsteady, 
incompressible Navier-Stokes equations, is used to solve the momentum equations. 
Solution is advanced in three steps within every time step. The three steps involved 
are calculation of pseudo velocities, calculation of pressure from the Poisson equation 
and correction of pseudo-velocities to obtain velocities at the next time step. 

Step 1. Calculation of pseudo velocities: The pseudo velocities V~ are calculated 
from (2) by dropping the pressure terms. Since these velocities will not satisfy the 
continuity equation, they are known as pseudo velocities. 

av, av, I a r {1+v~{av, a v ~ l  

- , , 2 X ~ \ ~ ¢ - - ¢  j ,  for j=1 ,2 ,3 .  (15) 

An explicit Euler's scheme is used to expand the time derivative of the above 
equation in the time domain, 

a v ,  _ v ' ;  + '  - u "  

Ot At" 
(16) 

From (15) and (16) pseudo velocity V~ can be calculated. 

Step 2. Pressure Poisson equation: 

is obtained, 
By modifying (2) and (15), the following equation 

aU, aV, = aP .  (17) 
dt at dX~ 
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Both the time derivatives are expanded explicitly, 

OP" + 1 V~ + x _ U~ + 1 

OX i At" 
(18) 

Taking the partial derivative of(18) with respect to X~ and after some modification, 
the following pressure Poisson equation is obtained, 

1 x 1 1 (19) 

Step 3. Velocity correction: The original velocities of the next time step U~' + ~ are 
obtained by correcting the pseudo velocities using the evaluated pressure field 

UT+ 1 = V.+~ 1 _ At.(Op.+ x/OX3" (20) 

Some of the advantages of the present scheme are - the pressure Poisson equation 
alone is solved from a set of algebraic equations. In steps I and 3 mass lumping is 
done which makes the stiffness matrix diagonal. The inverse of the diagonal matrix 
is just the inverse of each element which saves the computational time. The explicit 
scheme tends to shift the frequency of oscillation up and the mass lumping procedure 
shifts it down. Hence the combination of these two will result in a well-matched 
scheme. The stiffness matrix in the Poisson equation does not depend on anything 
that evolves with time and hence the assembly procedure is done only once in the 
first iteration. 

The solution of the partial differential equation is sought using the finite element 
method. The Galerkin weighted-residual technique is used to formulate the problem. 
Benim & Zinser (1985) have reported that linear elements are preferable to higher 
order elements for turbulent flow problems. Based on their suggestion, linear 
triangular elements in two-dimensional problems and tetrahydron elements for 
three-dimensional problems are used. Also triangular elements and tetrahedral 
elements do not require any numerical integration which again saves computational 
time. 

4. Results and discussion 

4.1 2-D turbulent f lows 

4.1a Developing f low through a smooth circular pipe: A circular pipe represents the 
simplest axisymmetric geometry. Turbulence modelling is not complete even in this 
geometry. Comparative study of different models of turbulence by the same code, for 
a particular problem under identical conditions, would throw unambiguous light 
on the strength and weakness of each model. In the present section, different models 
of turbulence are evaluated for their predictive capabilities. Both momentum and 
heat transfer are studied. 

Taylor et ai (1977) suggest the use of special elements with logarithmic shape 
functions near the wall to get better predictions. High Re versions of the model tend 
to give accurate results for this problem (Benim & Zinser 1985; Morgan et al 1987; 
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Taylor  et al 1981, pp. 341-9). However, Martinuzzi & Pollard (1989) conclude that 

the low Re version k-e  model performs better than the high Re version model. Benim & 

Zinser (1985) use the high Re version of the k-e  model for their predictions. One 

of their important suggestions is the use of linear elements in favour of higher order 

elements. Taylor  et at (t977) clearly bring out that in high Re version models, the 

initial assumption of wall shear stress is very crucial. The predictions are highly 

sensitive to the initial assumption. Benim & Zinser (1985) suggest a brilliant approach, 

by which this problem can be completely obviated. In the present work, this approach 
is extended to heat flow prediction for all the boundary conditions. The conclusion 

of Martinuzzi & Pollard 0989), that low Re models perform better is not true over 
a range of Reynolds number, particularly at high Reynolds numbers. The low Re 

anodel used by them, which is based on Lam & Bremhorst (1981) damping, is known 

for its accurate prediction near the wall, especially at low Reynolds numbers (less 
than 105). 

(i) Geometry and boundary conditions - The developing length of turbulent flow in a 

pipe is approximately 30-50 pipe diameters. Hence the length of the pipe is selected 

as 70 times the pipe diameter. 

Inlet values of turbulent kinetic energy k and its dissipation are specified based on 

Martinuzzi & Pollard (1989). The turbulent intensity of the stream at the inlet is 

assumed to be 6%, and a uniform k profile is specified. The inlet condition of e is 

calculated from the following relationship. 

8Ln = (C a" k 3/;t )/(0"015D). (21) 

(ii) Results and discussion- Table 1 compares the fully developed friction factor, 

Nusselt number and the centreline velocity. All the derivatives are calculated using 
the wall function approach. The comparison is shown for Reynolds number 100000. 

Performance of the low Re version of the q - f  model is bad. In all other cases the 

error is well within the acceptable limit. 

Table 1. Comparison of fully developed centre line velocity, friction factor and 
Nusselt number for flow through a smooth circular pipe at Re = 100000 and 
Pr = 0.71. 

UCL Cf Nu 

Present Error t Present Error~ Present Error* 
Model work (%) work (%) work (%) 

PML 1"150 -- 5"7 0"0183 1"7 186 2"0 
NML 1"216 -- 0"3 0"0169 -- 6" 1 166 -- 8"9 
VEV 1"242 1"8 0"0168 -- 6"7 163 -- 10"6 
k-I (LR) 1.200 - 1.6 0.0182 - 1-1 186 2.0 
k-I (HR) 1"183 --3"0 0"0173 --4"2 178 --2"3 
k-e (LR) 1"190 -- 2"5 0"0182 1-1 195 7"0 
k-e (HR) 1.160 - 4.9 0"0176 -- 2.5 180 -- 1.3 
q- f  (LR) 1"120 -- 8"2 0"0250 38-9 240 31"7 
q-f  (HR) 1"160 -- 4"9 0"0190 5-6 197 8"1 

~Compared with the fully developed value 1-220; ~Compared with the fully 
developed value 0.018; *Compared with the fully developed value 182.30 
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In the literature, only the high Re version of the q,f model is available (Smith 
1984). The high Re version of this model is often quoted for its numerical stability 
(Hutton & Smith 1987, pp. 289-310). Hence an attempt to develop a low Re version 
is made. In the process of derivation a few terms are ignored, these terms are primarily 

responsible for the bad prediction of the q-f  model. The high Re version of q-f  
model's performance indicates that the ignored terms are not important away from 
the wall. Tuning the damping constants will improve the results predicted by the q-f 
model, as the values are only shifted numerically and the trends agree well with the 
behaviour of the other models. 

Figure 1 also reveals another interesting feature. But for zero equation models, all 
the other models show a dip in the friction factor around 10 diameters from the 
entry. This observation coincides with the results of Benim & Zinser (1985). This 
undershoot in the curve is not predicted by the zero equation models as they do not 
incorporate turbulent history in their prediction. As the boundary layer develops 
along the wall the central core is accelerated. When the flow is accelerated the turbulent 
kinetic energy decreases. This influences the prediction of the eddy viscosity. A 
decrease in eddy viscosity in turn decreases the friction factor, which is the cause of 
the undershoot of friction factor. 

Figure 2 compares the fully developed profiles predicted using different models with 
the experimental results as in Ravisankar (1992). Fully developed turbulent kiltetic 
energy profiles predicted by the high and low Re versions of k-I ,  k-e and q- f  models 
are compared with the experimental results 'of Lawn (vide Martinuzzi &-Pollard 
1989) in figure 3. Low Re version q-f  model over-predicts turbulent kinetic energy. 
This is the reason for over-prediction of eddy viscosity, which in turn is responsible 
for the over-estimation of the skin friction coefficient. 

The damping functions used in the models are not valid over a big range of 
Reynolds numbers. Most of them are valid only for Re less than 500 000. On the 
other hand the high Re version of the models can be applied only in the fully turbulent 
zones. Figure 4 shows the variation o f  Nu along the pipe length, predicted with 
different models. The trends are similar to the variation of friction factor. Especially 
the prediction of low Re q-f model indicates this clearly. Also the undershoot of Nu 
is similar to the undershoot of Cf. 
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Table 2. Comparison of the number of iterations for 
convergence using k-e model with modified wall function 
approach for different initial distributions. 

Wall Initial Iterations t 
S. boundary Temperature required for 
No. Condition distribution convergence 

1 Temperature 0-0 87 
2 Temperature 1.0 91 
3 Heat flux 0.0 95 
4 Heat flux 1.0 141 

t Maximum error tolerable between two successive iterations 
is specified as 1 x 10-7 

One of the important contributions of the present work is the extension of the wall 
function approach of Benim & Zinser (1985) to heat transfer prediction. This reduces 
the anxiety in specifying the initial temperature distribution at the wall layer. Table 2 
gives the details about the number of iterations required for convergence for the 
correct values of two extreme conditions. A steady-state solver with high Re k-e 
model is used to obtain the solution. The converged values are the same even though 
the assumptions of initial distributions are drastically different. 
(iii) Conclusions - (1) The modified wall function approach for heat transfer prediction 
with high Re version of the models is successful. This approach is insensitive to the 
initial distribution of wall temperature. 

(2) The predictions of low Re version of q - f  model are poor. The terms neglected in 
the process of derivation are found to be important near the wall. 
(3) The one-equation k-1 model, displays excellent stability and the quality of 
predictions is good. This model is highly reliable for its performance. The only 
difficulty is the specification of the mixing length distribution for complex geometries. 
(4) All the damping functions need critical examination. Invariably the low Re versions 
of the models fail at Re = 500 000 and above. 

4.1b Heat transfer augmentation in channels - effect of  rib wall inclination: Channels 
with turbulence promoters such as ribs, fins and thin obstructions are used for heat 
transfer augmentation in heat exchangers. All the experiments show that the heat 
transfer coefficient increases by a factor of two in the vicinity of the reattachment 
point. The flow of cooling air in gas turbine blades can be approximated as the flow 
through a channel with two opposite rib roughened walls. The wall of the rib is 
generally made vertical for obtaining maximum mixing. However, slightly inclining 
the wall of the rib brings down the total pressure drop and results in better heat 
transfer augmentation efficiency. 

Currently, a large number of technical papers are available for turbulent flow inside 
rib-roughened channels. However little attention is given to the shape of the rib. Han 
et al (1978) experimentally studied the effect of angle of attack, pitch ratio and rib 
shape on friction factor and heat transfer results. The shape of the rib was altered 
by filling modelling clay in the corners of the rectangular ribs instead of inclining 
the wall. The effects of rib shape on the pressure drop and heat transfer augmentation 
efficiency are not studied. 
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A brief literature survey is summarized below. Liou et al (1990) presented mean 
velocity and turbulence intensity profiles for an arrangement of two pairs of turbulence 
promoters mounted in tandem in channel flow. The predictions are compared with 
experiments. Measured axial velocity and turbulent kinetic energy values are given 
as inlet conditions for the numerical predictions. The effect of pitch ratio and the 
influence of Re on the reattachment length are documented. It has been found 
experimentally that there are two major enhancement peaks, one located slightly 
downstream of the leading edge of the rib and the other 0.5 to 1.0 rib heights upstream 
of the reattachment point. Acharya et al (1993) used nonlinear and standard k -e  

models with wall functions for predicting the recirculation lengths and maximum 
Nusselt number locations and compared them with the experiments. Both models 
predicted reattachment lengths well but under-predicted local Nusselt numbers. This 
is attributed to inadequacies in wall functions. Also the Nusselt number peak near 
the leading edge of the rib is not predicted. 

The Reynolds number based on hydraulic diameter of the channel is 85 600. The 
study is carried out with three pitch ratios (PR), 5, 10 and 15. The rib wall angles (0) 
considered are 0, 35 and 50. The aim of the study is to investigate the variations in 
Nusselt number, friction factor, reattachment lengths and efficiency of heat transfer 
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~ 0 . 4 ~  

~ 0 . 2  

~ 0 . 4 - . - - - _  
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.O.6 ~ ~ i i  
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- 0 . 2 - - - - - - - - - - -  

Figure 5. Stream-line plots for 
flow through ribbed channels for 
different pitch ratios and different 
rib-wall inclinations. 
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Table 3. Comparison of reattachment length for 
turbulent flow through sudden pipe expansion. 

Inlet U Reattachment 
Inlet k Inlet k profile length 

0.16 0.23 1/7 law 6.10 
0.11 0.22 1/7 law 8.60 
0'06 0.0882 1/7 law 10.10 
0-06 0.1633 1/7 law 5.70 
0"06 0.0882 Uniform 8'90 

profile 

augmentation by varying the wall inclination and pitch ratios. The same geometry 

is used as in Liou et al (1990). The reattachment lengths are calculated from the 

trailing edge of the rib. 

(i) Results and discussion - Figure 5, shows some typical stream line plots. As the rib 

wall inclination increases, the separation bubble became smaller. 

The prediction of reattachment length is very sensitive to the inlet conditions of k 

and e. For  the flow through a sudden pipe expansion the authors studied the effect 

of inlet conditions of k and e and table 3 gives the prediction of reattachment lengths 

for Re = 100 000 with k-e model. The experimental value for reattachment length for 

sudden expansion is around 8.5 to 9"0 step heights (Nallasamy 1987). These results 

clearly bring out the effect of inlet k and e on the prediction of reattachment length. 

For  the present study no comparison of reattachment length was done since the inlet 

k and e are not given by Liou et al (1990). 
Table 4 compares the reattachment lengths for various pitch ratios and step wall 

inclinations. The reattachment length after second step X,2 is around 3 in all the 

cases. The rib wall inclination has little effect on the X 2 .  Liou et al (1990) reported 

that X 2  remains almost constant for 5 < PR < 20. For  0 = 0  ° and P R  10 and 15, the 

XR1 is almost double that of X~2. 
Figures 6 and 7 compare the velocity profiles at three different sections for P R  = 10 

and 15. As the rib wall inclination increases the negative velocities and centre-line 

Table 4. Values of XR1 and XR2. 

0 PR XR1 XR2 

5 - -  3"026 
0 10 5"633 2"972 

15 5"953 3"119 

5 - -  2"689 
35 10 3-540 2-542 

15 3"659 2"971 

5 - -  2"649 
50 10 3"611 2"561 

15 3"746 2"756 
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for flow through ribbed channels. 
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"~"~"~ '~"  Figure 7. Comparison of axial 
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. . . . . . . . . .  tions for different 0 and PR = 15,  

for flow through ribbed channels. 

velocities decrease. This explains the reduction in reattachment lengths. Similar flow 
distributions are found in all cases, downstream of the second rib. Further 
downstream, the flow eventually approaches that of the fully,developed channel flow. 

Figures 8 and 9 show the variations of turbulent kinetic energy profiles for PR = 10 
and 15. The value of turbulent kinetic energy in the centre region of the flow is almost 
zero. On the other hand, large values of k are found in the flow separation region 

THETA== O" 
. . . .  THETA-35* 

THETA=50* 

X I - 3 . 0 5  Xt=1.7~ ~ Xt I I . 4 0  

z ' ,  . . .  / , ' 2 "  " 

Turbulent Kinetic Energy 

Figure 8. Comparison of tur- 
bulent kinetic energy profiles at 
different locations for different 0 
and PR= 10, for flow through 
ribbed channels. 
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of tur- 
bulent kinetic energy profiles at 
different locations for different 0 
and PR= 15, for flow through 
ribbed channels. 

and the shear layers where high velocity gradients exist. As the angle 0 increases, the 
peak value of turbulent kinetic energy reduces. This is due to the reduced mixing of 
the flow. Figure 10 shows the three-dimensional plot of turbulent kinetic energy for 
PR = 10 and 0 = 35 °. The tWO peaks in the plot correspond to the peak values of 
kinetic energy below two ribs. 

Figures 11 and 12 show the Nusselt number peaks clearly. As was reported by 
Liou et al (1990) every step has two peaks, one just near the leading edge of the step 
and another 0"5 to 1.0 times the step height upstream of the reattachment point. It 
can be seen from these figures that both the peaks are predicted well in these cases. 
However, the peaks occurred at a distance of about 1 to 1.5 times the step height, 
upstream of the reattachment points. 

t 

Figure 10. 3-D plot of turbulent kinetic energy for PR = 10 and 0 = 10. 
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The conventional way of estimating the heat transfer augmentation is given by 
Rabas (1989) as 

ratio of average heat transfer coefficient 
r/= 

ratio of pressure drop per unit length 
(22) 

Geometry without turbulence promoters is taken as the reference for .comparison. 
Table 5 gives the efficiencies for different cases for Pr number = 0.722. Comparisons 
are made with smooth channel flow keeping all other conditions such as length, Re 
and inlet profiles the same. The results for smooth channel are also obtained by the 
same code using the k-e model. 

Then r/reduces with pitch ratio and increases with rib wall angle inclination. The 
average Nusselt number is reduced with pitch ratio and rib wall angle inclination. 
The average Nusselt number varies between 1.75 and 2.0 times the smooth channel 
Nusselt number. Liou et al (1990) reported that relative to a smooth duct, the presence 
of periodic ribs at two opposite walls yields up to 2-2-fold increase in fully developed 
average Nusselt number. 
(ii) Conclusions- The pressure drop in channels with ribs reduced with rib wall 
inclination. There is no significant drop in average heat transfer coefficient. All the 
trends in local Nusselt number and reattachment lengths are predicted. The 
improvement in heat transfer augmentation varies between 30 and 39 percent for 
various step-side inclinations ,when compared with the straight ribs, the maximum 
being for P R  = 10 and 0 =  35 °. It is also observed that the maximum average 
Nusselt number is achieved for a pitch ratio of 10. 

4.1c Flow through a plane diffuser - Comparison between flow with and without inlet 

velocity distortions: Diffusers are widely used for converting kinetic energy to 
pressure energy. A proper understanding of flows in a diffuser will lead to a better 
design of fluid machines with improved efficiency. The flow in a diffuser is highly 
complex and simple analytical solutions are not available to treat such turbulent 
flows under adverse pressure gradients. Most of the numerical predictions of diffuser 
flows are based on boundary layer approximations and solutions are obtained by 
either solving the integral equations or by solving the modelled differential equations. 

It is well known that certain types of inlet velocity distortions affect the efficiency 
of the diffuser in converting kinetic energy to pressure energy. Hence the influence 

Table 5. Comparison of ~/values. 

5 1"894 9"28 0"2041 
0 10 1'851 11'41 0-1622 

15 1"795 12-40 0"1448 

5 1-952 7-65 0"2552 
35 10 1'918 9'76 0"1965 

15 1"867 9"92 0"1882 

5 1"737 6'47 0"2685 
50 10 1'845 8'17 0-2258 

15 1"770 9"11 0"1943 

0 PR Nu/Nu~ AP/AP s ~l 
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of inlet velocity distortions on diffuser performance needs detailed investigation. It 
has been observed that with certain types of velocity distortions at the inlet of the 
diffuser, the efficiency decreases, while with certain other types of distortions, the 
efficiency improves when compared to the uniform velocity distribution at the inlet. 

The prediction of diffuser flows with uniform inlet velocity is fairly well established. 
Lai & coworkers report the inadequacy of the wall-function approximations for 
diffuser flows. Since the high Reynolds number versions of the standard two-equation 
models are based on the local equilibrium assumption and use some kind of wall 
function to handle the near wall flow, they are not suitable for diffuser flow calculations. 
In order to account for the anisotropic behaviour near a wall some kind of a low 
Reynolds number version of a turbulence model capable of resolving the flow up to 
the wall should be considered. 

Hah (1983), used the finite difference method to predict turbulent flows in planar, 
conical and annular diffusers with inlet swirl and inlet velocity distortion. With the 
swirling velocity component, the flow is pressed towards the wall by centrifugal force 
and the wall boundary layer is less likely to separate even if the diffuser divergent 
angle is large, afad a higher pressure recovery coefficient is observed. Inlet velocity 
distortion is obtained by putting a thin ring outside the wall boundary layer at the 
inlet for a diffuser of total expansion angle of 16 °. The separation near the wall is 
suppressed when the inlet flow is altered, resulting.in more favourable pressure 
gradient along the wall and higher diffuser performance is thus obtained. Hoffman 
(1982) also altered the inlet velocity and reported an improvement in the overall 
diffuser efficiency. 

The present investigation is aimed at studying the improvement in diffuser 
performance by distorting the inlet velocity profile. Chitambaran (1978) conducted 
experiments for a plane diffuser with a divergent angle of 4 °, both with and without 
inlet distortions. No separation is reported in the diffuser. The present results are 
compared with the experiments conducted by Chitambaran (1978). A low Reynolds 
number version of the k-E model is used to close the momentum equations. 

(i) Resul t s  and discussion - Figures 13 and 14 give the stream lines for Case 1 (flow 
without inlet velocity distortion) and Case 2 (flow with distortion) respectively. The 
stream lines in Case 2 are slightly packed together in the first half of the diffuser. 
This is due to the distortion in inlet velocity profile. In the second half of the diffuser 

Figure 13. Streamline plot for flow through diffuser without inlet distortion. 
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03 

Figure 14. Streamline plot for flow through diffuser with inlet distortion. 

the distortion effect dies out and the stream lines become similar to that of the Case 1. 
No separation is predicted as reported in the experiments. Figures 15 and 16 compare 
the predicted velocity profiles at three downstream sections with experiments for 
Case 1 and Case 2. For Case 1 the prediction is good. In the second half of the 
diffuser the maximum velocity is slightly less than experiments for Case 2. In most 
of the sections the near-wall prediction is good and the maximum error in the 
prediction of velocity profiles is 4.1 percent. The distortion in the velocity profile is 

predicted very well. 
The inlet condition for ~ in Case 1 is calculated using (21) where D is taken as the 

width of the diffuser. The inlet condition for Case 2 is calculated using the following 

formula. 

~in = (C. 3/4 k3/2)/(Icy)" (23) 

where ~c is a constant in Prandtl mixing length and is equal to 0.4. 

The turbulent kinetic energy profiles for Case 1 are given in figure 17. For Case 2 

the profiles are compared with experiments in figure 18. In the first half of the diffuser 

the prediction is good and in the second half the peak value in the profile is slightly 

under-predicted. The peak values of turbulent kinetic energy are much higher when 

compared with free stream turbulence. There is marginal increase in the intensity of 
free stream turbulence, towards the exit of the diffuser. The occurrence of the peak 
is very close to the wall near the inlet of the diffuser and the peak is shifted away 
from the wall with distance in the stream-wise direction. 

In the calculation of sin from (23), if the normal wall distance is taken from the 
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~0.5 
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t 
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Figure 15. Comparison of axial 
velocity for flow through diffuser 
without inlet distortion at diffe- 
rent axial locations. 



804 M Srinivas et al 

Present X~-5.07 
• • • .  • Experiments " ~ ' - - ~ K  _ 

X1-1.82 ~ '  
X,-O.3g ~ ~ "  

= j  o.b' 0.5 j , ~  
w l  w i | w w r - )  ¢ v i ) v i ) w ) w w w ) * l l  | )  v | I I r l '  ) ' 

Axial Velocity 

Figure 16. Comparison of axial 
velocity for flow through diffuser 
with inlet distortion at different 
axial locations. 

wall of the diffuser the peak value in the k profile in Case 2 near the axis due to the 
inlet distortion is under-predicted, This could be due to the fact that the aerofoil also 
acts as a wall. For the calculation of ei, the normal wall distance in (23) is slightly 
modified. The tip of the aerofoil is considered to be a wall and the normal wall 
distance is taken as the minimum distance from the diffuser wall and the aerofoil tip. 
This makes the normal distance of nodes near the axis less than that of the distance 
from the wall and results in higher e values near the axis. As a result the peak value 
in the k profile has increased and compares well with the experiments in the initial 
portion of the diffuser. 

The prediction of pressure distribution is very vital for the diffuser. Figures 19 and 
20 show the comparison of pressure recovery percentage with axial distance, It agrees 
very well with the experiments. Pressure recovery factor is defined as the ratio of 
actual pressure recovered to the theoretical pressure recovery possible. The theoretical 
pressure recovery possible is calculated using one-dimensional Bernoulli's equation 
between inlet and outlet sections of the diffuser. In Case 2, 81% of the possible kinetic 
energy has been converted into pressure energy. In Case 2 it is 88%. Figure 21 
compares the pressure recovery factor with experiments and the agreement is good. 
Figure 22 shows the variation of pressure recovery factor for Case 2. It can be seen 
that 61% of the possible pressure recovery takes place in the first half of the diffuser 
in Case 1 and 66% in the first half in Case 2. The remaining 39 and 34% recovery 
takes place in the second half of the diffuser for Case 1 and Case 2 respectively. An 
improvement of 8-8% in pressure recovery has been obtained in Case 2 from Case 1. 

Figure 23 and 24 show the comparison of friction factors for Case 1 and Case 2. 
The maximum error in this comparison is about 6.82%. For Case 2 the comparison 
in the first half is better when compared to the second half. 
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Figure 17. Variation of tur- 
bulent kinetic energy for flow 
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Figure 18. Comparison of tur- 
bulent kinetic energy for flow 
through diffuser with inlet distor- 
tion at different axial locations. 

(ii) Conclusions - The inlet velocity distortion created by the aerofoil resulted in 8.8% 

more pressure recovery in a two-dimensional plane diffuser with divergent angle 4 °. 

The general purpose finite element code based on low Reynolds number k-e equation 

predicted the mean velocity profiles, kinetic energy profiles and pressure recovery 

reasonably well and provides useful guidance and information for the advanced 

design. 

4.2 3-D Laminar flows 

4.2a Flows in rectangular ducts: Numerical solutions of 3-D laminar flows in ducts 
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Figure 19. Comparison of pressure recovery percentage for flow through diffuser 
without inlet velocity distortion. 
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Figure 22. Comparison of pressure recovery coefficient for flow through diffuser 
with inlet velocity distortion. 

is well developed with parabolic procedures. Patankar and Spalding (Firziger 1987) 
presented an accurate and economical parabolic method for calculating heat and 
mass, and momentum transfer in three-dimensional flows. A finite element procedure 
for the prediction of laminar forced convection in three-dimensional parabolic flows 
is presented by Nonino et al (1988). Local Nusselt number variations are presented 
and the results are compared with the correlations. Godbole (1975) used a penalty 
function approach for solving flow at a very low Re number. 

In the present study, the complete Navier-Stokes equations are solved. Flow in 
rectangular ducts is solved for aspect ratios ~t* = 0.5, 0-75, 1-0. Aspect ratio 1.0 is for 
a square duct. Heat is treated as a scalar in forced convection problems. The 
temperature field has no influence on the flow field. The Navier-Stokes' and the 
energy equations are solved as an uncoupled system. 

(i) Geometry and boundary conditions - Due to symmetry, only a quarter of the duct 
is solved. All the lengths are non-dimensionalised with the hydraulic diameter of the 
duct. No-slip boundary conditions are assumed on the walls, symmetric conditions 
at the axis and also that there should not be any flow across the axis plane. Hence 
the flow velocity perpendicular to the axis plane is specified as zero on the axis. 
Traction-free boundary conditions are specified at the exit. Pressure is specified as 
zero at the exit. Inlet velocity is specified as unity. The hydrodynamic developing 
length for ducts is approximately 0.01 times the Reynolds number for the square and 
rectangular ducts. Different lengths are taken for different Re to save computing time. 
However in the case of the rectangular ducts, the same length is taken for all the Re 
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numbers solved i.e. 50, 100 and 200. 
The domain is divided into tetrahedral elements. Initially the domain is divided 

into cuboids. Each cuboid can be divided into either five or six tetrahedral elements 
without introducing any new nodes. However if the cuboid is divided into five 
tetrahedrae, each cuboid has to be divided in a different manner. In order to avoid 
this, each cuboid is divided into six tetrahedra. This does not increase the memory 
requirement since no new nodes are introduced. Also the increase in computational 
time is negligible. 
(ii) Results and discussion- Figure 25 shows the comparison with experiments of 
velocity profiles of square duct. Grid independence tests were conducted with 11 x 11, 
13 x 13 and 15 x 15 grids. The variation from 13 x 13 in the velocity profile for 
15 x 15 is very little. Unlike in 2-D flows, the size of the mesh goes up rapidly even 
by increasing the mesh size by one node in each section. The bandwidth also goes up 
rapidly. In order to keep the size of the problem and the computational time required 
at a reasonable level all the further calculations are carried out with a grid size of 
13 x 13. 

Aspect ratio of elements in each section is approximately adjusted to one. The 
mesh is irregular and at least three nodes a,e placed within the boundary layer. Also 
it is observed that it is better to refine the mesh in each section rather than to have 
more sections in the flow direction for better prediction of fully developed velocity 
profile, Nusselt number and friction factor. It is also observed that as the mesh is 
refined the development of the flow is slow. Table 6 shows the comparison of Umax/Um 
and the hydrodynamic length for square ducts for different values of Re. The hydro- 
dynamic developing lengths for square ducts given by Srinivas (1994) are in good 
agreement with experiments. 

Even though the cell Peclet number is larger, stability is taken care of by the time 
step. All the convective and diffusive terms of Navier-Stokes equations are multiplied 
with the time step. The maximum time step permissible varies from mesh to mesh. 
As the mesh becomes finer the time step allowable becomes smaller. 
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Table 6. Comparison of maximum velocity and hydro- 
dynamic length for flow through a square duct for 
different values of Re. 

U mx/U,,, Lhy 

Present t Present 
Re work work Dalton* Han* 

50 2" 11 4"90 4"5 3"75 
100 2"03 10"10 9-0 7"50 
200 1'97 19-60 18"0 15"0 
500 1-96 43-10 45-0 37-50 

* Compared with the fully developed value 2-090 
* Shah & London (1978) 

The wall derivatives are evaluated using curve fitting techniques. It is observed 

that 4-point fit is adequate to predict the Nusselt numbers and friction factors. It is 

not advisable to go beyond 5-point fit, as the higher order polynomial fits are well 

known for their lack of accuracy and their tendency to manifest kinks and oscillations 

in the fitted curve. The derivatives are evaluated at all the boundary nodes and the 

curve is integrated for the evaluation of Nusselt number and friction factor. 

Table 7 shows the prediction of fully developed Nusselt numbers for constant 

temperature boundary condition for various Re and for various g*. 
Figures 26 and 27 show the variation of non-dimensionalised pressure drop for 

different Re for 0t* = 0.5 and 0-75. It can be seen that no chequer-board oscillations 

are present in the pressure field prediction. 
The skin friction coefficient and the Nusselt number are often used to present the 

results in a concise manner. Figure 28 shows the variation of friction factor for square 

ducts for different Re. Figures 29 and 30 show the variation of bulk temperature and 

Nusselt number for different Pr numbers. The maximum error in the prediction of 

Nusselt number and friction factor is about  39/0. Figure 31 shows the isotherms in 
fully developed section. 

(iii) Conclusions- The problems solved reveal many aspects of the developed tool. 

The results indicate that the present predictions are good. The pressure field shows 
no chequer-board splitting. A four-point fit is adequate to calculate the wall 

derivatives. 

Table 7. Comparison of Nusselt numbers for different 
Re for square ducts and rectangular ducts. 

Nusselt number 

S. No Re ct* - 1"0 0-50 0-75 

1 50 2"980 3"58 3" 11 
2 100 2"967 3-62 3"07 
3 200 2"910 3"64 3"05 

Fully developed value for ~* = 1.00 is 2.996, 0-75 is 3.140, 
0.50 is 3.91 (as given in Shah & London 1978) 
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5. Closure 

The present method offers a cost and storage effective algorithm for prediction of 
2-D and 3-D internal flows. It requires a minimum of cPU time and storage space, 

as no large matrix is being solved. During the early period of the transient behaviour, 

the flow field and the thermal field evolve rapidly and the time step has to be very 

small. As time progresses, the rate of convergence becomes slower, i.e., the difference 

between the values of any field variable for two successive iterations become smaller, 

at which state the time step can be progressively increased. Thus a judicious selection 

of time step effects a significant reduction in storage requirement and cPu  time. At 

the same time, accuracies comparable to finite difference methods are achieved. All 

the present results have been obtained by running the finite element code on an AT 
486 machine. 
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List of  symbols 

Cf 
C~, C,1, C~2 

f~,,fl ,f2 
f 

friction factor; 
turbulence model constants; 

turbulence model functions; 

frequency; 



814 M Srinivas et al 

HR 

k 
l 

Lref 
LR 

n , n + l  

Nu 
Nu 
Nus 
NML 
P 
AP 
AP~ 
PML 

Pi 
Pe 
Pr 
PR 

Re 
t 
At 
T, 
U1 
U3 

Uref 
U, 
V 
VEV 

X1 
X3 
XR1 
XR2 

Y 

~T 

F.in 

VT 

P 

0 

high Reynolds version of turbulence model; 
turbulence kinetic energy 
mixing length; 
Reference length for non-dimensionalization; 
low Reynolds version of turbulence model; 
at nth and (n + 1) th time step; 
Nusselt number; 
average Nusselt number for ribbed channel; 
Nusselt number of smooth channel; 
Nikuradse mixing length; 
mean component of pressure; 
pressure drop per unit length of fibbed length; 
pressure drop per unit length of smooth channel; 
Prandtl mixing length; 
pitch of the ribs as shown; 
Peclet number = Re.Pr; 
Prandtl number; 
pitch ratio, P~/H; 

Reynolds number; 
dimensionless time; 
time step; 
Wall heat flux temperature (used in high Re versions); 
flow direction velocity for 2-D problems; 
flow direction velocity for 3-D problems; 
reference velocity; 
friction velocity (used in high Re version); 
pseudo velocity in Eulerian velocity correction method; 
Van Driest effective viscosity model; 
flow direction for 2-D problems; 
flow direction for 3-D problems; 
non-dimensional reattachment length (with fib height) after first fib; 
non-dimensional reattachment length (with rib height) after second 
rib; 
normal wall distance; 
thermal diffusivity; 
turbulent thermal diffusivity; 
turbulent kinetic energy dissipation; 
inlet value of 5; 
momentum diffusivity; 
turbulent momentum diffusivity; 
heat transfer augmentation efficiency; 
density; 
turbulence model constants for diffusion of k and e; 
rib wall inclination. 
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