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Finite-Element Analysis of Lamb Wave Scattering 
in an Elastic Plate Waveguide 

MASANORI KOSHIBA, SHOJI KARAKIDA, AND MICHIO SUZUKI, SENIOR MEMBER, IEEE 

A bstrtJct-A method of the solution of scattering of the fundamental 

symmetric Lamb wave in an elastic plate waveguide is described. The 

approach is a combina tion of the fi nite-element and the analytical 

method, The numerical examples o n the scatleling by I wedge-shaped 

internal cnek Ind a wedge-shaped surface crick in I plate are given. 
The renec:don coefficient of the internal crack is considerably influ· 

enced by the wedge apex angle and the resonance phenomena arise 

in the res;km of the crack. On the other hand, the reflection coeffi· 

cient o f the 5Urface crack is nol very much affected by t he wedge apex 

angle. The val idity of the method is conrmned by comparing numerical 

results for In infinitely thin in ternal cnck nonn.1 to the 5Urflte of 

I pla te with the results of the VllI i.tionll method. 

I. INTRODUCTION 

T HE scattering of guided modes by the discontinuities in 

an elastic waveguide is a basic problem in nondestructive 

evaluation and also has important implications with regard to 

electrical signal'processing functions (1) - (4) , and the scatter· 

ing of Lamb waves by cracks in an elastic plate has been 

investigated extensively [51 - [10]. Auld et al. have analyzed 

the scattering of Lamb waves by an infinitely thin crack nor· 

mal to the surface of a plate using the variational method 

[5 ] -(7]. Rokhlin has analyzed the scattering of Lamb waves 

by an infinitely thin crack parallel to the surface of a plate 

using the modified Wiener-Hopf method [8] or the method 

Manuscript received May 4, 1983 ; revised October II , 1983. 
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of multiple diffractions (9] , ( ID]. Although these methods 

are useful for the discontinuities of regular shape, it seems to 

be difficult to apply these methods to those of arbitrary shape. 

Recently the numerical method based on the finite-element 

m~thod has been developed for the analysis of the scattering 

of horizontally polarized shear (SH) waves with a single par­

ticle.velocity component parallel to the plate surface [11 ] ­

[13 J. This approach is useful for the analysis of the scattering 

by the arbitrarily shaped discontinuities. 

In this paper, this numerical approach based on the fin ite­

clement method is extended to the analysis of the scattering 

of Lamb waves with two particle-velocity components, lying 

in the plane perpendicular to the plate surface. Numerical 

example~ on the scattering by a wedge-shaped internal crack 

and a wedge·shaped surface crack in a plate are given. The 

reflection coefficient of the internal crack is conSiderably 

influenced by the wedge apex angle and the resonance phe­

nomena arise in the region of the crack. On the other hand, 

the reflection coefficient of the surface crack is not very much 

affected by the wedge apex angle. The validity of the method 

is confirmed by comparing numerical results for an infinitely 

thin internal crack normal to the surface of a plate with the 

results of the variational method [71. 

II . BASIC EQUATIONS 

In order to minimize the details, we consider the symmetric 

Lamb wave excitation of a symmetric plate waveguide as 

shown in Fig. I , where the boundaries r I and r 2 connect 

0018-9537/84/0 100-0018101.00 © 1984 IEEE 
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Fig. 1. Discontinuity in elastic plate waveguide. 

the discontinuities to the waveguides 1 and 2, respectively, 

the x component ofthe particle velocity Vx and the y compo· 

nent of the particle velocity Vy are antisymmetric and sym· 

metric about the midplane 1'3 (x = 0), respectively, the plane 

1'4 is the stress·free surface, and the region n with the bound­

aries 1'1 to r4 completely encloses the discontinuities. The 

plate waveguide is assumed to have some discontinuities which 

are symmetric about the midplane 1'3. 
Assuming that there is no variation in the z direction, we 

have the following basic equations [1] : 

aT"Jax + aT,ylay - jwpv, = 0, r =x,Y, 

jwT"" A + 2/.1 ~ 0 avx/ax 

( I) 

jwTyy = ~ A + 2/.1 0 aVy/ay , (2) 

jwTxy 0 0 

" 
avx/ay + avy/ax 

where Txx , Tyy , and Txy = Tyx are the stresses, w is the 

angular frequency, p is the mass density, and A and J.I. are the 

Lame constants. 

Ill. MATHEMATICAL F ORMULATION 

A. Finite-Element Approach 

Dividing the region n into a number of second-order tri­

angular elements [14'] , [IS] as shown in Fig. 2, the particle 

velocity v, within each element is defined in terms of the 

particle velocity v, k at the nodal point k (k = 1,2, ... ,6): , 

v,={NY(v, }e , r=x,y, (3) 

where 

{v,}e"" [v, IV, ,V, 3V'4V, sV, 6J T, r""x,y, (4) , , , , , , 

(5) 

Here {v, }e is the particle-velocity vector corresponding to the 

nodal points within each element, T, {.}, and {_}T denote a 

transpose, a column vector, and a row vector, respectively, and 

shape fu nctions N I to N6 are given by 

NI -=L I(2L I - 1) (6,) 

N2 = L1(2L, - 1) (6b) 

N] = L3(2L 3 - I) (6<) 

N4= 4LIL2 (6d) 

Ns = 4L1L] (6.) 

N6:: 4L3LI (6f) 

" 
, 

L-_____ _ y 

Fig. 2. Second-order triangular element_ 

with the area coordinates L I , L" and L3 [141. [I5]. The 

relation equation between the area coordinates and Cartesian 

coordinates is given by 

X XI x, Xl Ll 

Y = Y I Y2 Y3 L, 

1 1 1 1 Ll 

where (Xj.Yj ) are the Cartesian coordinates of the vertex; 

(j= 1,2,3) ofthetriangle. 

Using a Galerkin procedure on (I), we obtain 

I {N} (aT,x /ax + aT,y/ay - jWPeV,) df'l = {OJ, 
n, 

(7) 

r = x ,y, (8) 

where f'le represents an element subdomain and {OJ is a null 
vector. 

Integrating by parts, we obtain for (8) 

i [(o {N} / ilx)T,. + (0 {NJ/oy)T,y + jwp, (N },,) dn 
n, 

-I {N}Tmdr={O} , ' =X,y , (9) 
c, 

where 

(IO) 

Here r e represents the contour of the triangular element, and 

fi x and lIy are the x and y components of an outward normal 
unit-vector to r e, respectively. 

Noting that 'r'xn and Tyn are continuous across r e (bound­

ary conditions at the interface between two different media), 

Vx = Tyx = 0 on r3 (midplane), and Txn = Tyn "" 0 on r4 
(stress-free surface), from (2), (3), and (9) the following global 

matrix equation is derived: 

[[A n } 

[A yx ] 
[A xy )J ~"~ 
[A n ) {oy} 

1 {N},T,y, ,(x,y,)dx , 
rl e' 

= L: L: (- I)'jw 
, 

(II) 
fa I e' 1 {N} jTyy,/(x ,Yi)dx 

C, <' , 
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where 

[Au] = 2:-1 [( I.. + 2 •• )(a {NJ/ax)(a (NjT/ax) 
• n. 

+ •• (a (N}/ay) (a (N}T/ay) 

- w 2Pe{N}{N }T] dxdy, (12a) 

[A, , ] = [A,, ]T= E r [I.. (a {N}/ax)(a (N}T/ay) 
e JOe 

+ • • (a {NJ/ay)(a (N }T/ ax)] dxdy, (l2b) 

lA,,] =E r I •• (a {N}/ax)(a (NjT/ax) 
t JOt 
+ (A, + 2.,) (a {N}/ay)(a (N )T/ay) 

- w'p. {Nj{NjT] dxdy. (12e) 

Here the components of the {fix} vector arc the values of V;c at 

all nodal points in n except r J , the components of the {vy} 

vector are the values of /)y at all nodal points in n, Lt' and Le' 
extend over all different elements and the elements related to 

r l (j =- 1, 2), respectively, Txy, I(X, YI) and T yy, I(X, Yi) are the 

stresses on r l , and {N }/ is the shape function vector on r i , 

n,mely, {N}, = (N(x ,y,)}. 

Using the shape function {N}i' the particle velocity v, i(X,Y f) 
• 

and the stress T,y, f(X ,Y/) on r i may be discretized as follows: 

V"f(X ,YI) =- {N}T {v,h,t", r "'x,Y, (13a) 

T,y,I(X,YI) =- {N }T {T,y}i,t" , r=-x ,Y , (13b) 

where {U,}I,t" and {Tryh, e' are t h ~ particle-velocity vector 

and the stress vector corresponding to the nodal points within 

each element related to r i , respectively. 

Substituting (1 3) into (11), we obtain 

[A ] 

where 

,nd 

{ lIxh 
{uy}o 
------ = 
{Ux h2 
{tlY}12 

IB] • fIB] , 
LIO] 

{OJ 

-----------
(B] {T;CY}12 

[B] {T" } ,, 

r=-x,Y, 

r "'x, Y , 

IO] l 
IB ]~ , 

(14) 

(IS) 

(16) 

(I 7) 

Here the components of the {vx}o vector are the values of Ux 
at the nodal points in n except r I , r 2 , and r 3 , the compo­

nents of the {vy }o vector are the values of uy at the nodal 

points in n except r I and r 2, the components of the {u,}/ 

and {T,yh vectors are the values of IJr and Try at the nodal 

points on r l , respectively, [A J is the matrix formed by [Au] , 

[Axy ] , [Ay x ] ,and [A yy ], and [0] isa zero matrix. 

B. Analytical Approach 

In (14), the values of the stresses T xy and T y y on PI (i = 1,2) 
are unknown, so that it is necessary to introduce the compati­

bility conditions for the interface bou ndary PI between the 

interior region (YI < Y <12) and the exterior region (y <Y I, 

Y ~Y2). Considering the analytical relation between 

(- Txy vyJTonPtand [ux TyyJTon P/which canbe 

obtained by use of the orthogonality relation [1 ] , (2 ) , [5) 
of the normal modes in an elastic plate waveguide, the values 

of particle velocities and stresses at the nodal points can be 

calculated numerically from (1 4). The solutions lux Tyy] T 

(or (-Txy vyl T) on r l allow the determination of the 

reflection coefficient and the transmission coefficient. The 

details will be discussed later. 

The internal fields in the waveguide i (i = 1, 2) in Fig. 1 are 

represented by the sum of normal modes as [1] , [2] , [5] 

. {t'm (x)} (1 %) 

[
- T.",(X,y)J '" I (" ) b ( ")] 

( ) 
= L. aim exp - j"lmY - 1m exp j"imY 

vy,i X,Y m 

. (x'm(x)} , (I9b) 

where 

(['m(X)} = (f,.'m(x) fy,lm(X)]T (20,) 

,"d 

{glm(X)}::: IKx,lm(X) gy,lm(x)]T. (20b) 

Here aim and bim are the amplitudes of the mth mode 

(m '" 0 , 1, 2, ... ) in the waveguide j propagating (or decaying) 

toward the +y and -Y directions, respectively, and .8im is the 

wavenumber in the Y direction. The mode functions {[1m (x)} 

and {glm (x)} satisfy the followi ng orthonormalization condi­

tionll ) : 

. {{,m' (x)} dx = 'mm', (2 1) 

where amm, is the KroneckerB. The dispersion relation for 

(jim and the mode fu nctions aTC given in the Appendix. 

IBI; =(- IJ'iwEI {N},{N}T dx, 1= 1,2. 

Now, assuming that the fundamental Lamb wave (m = 0) of 

(IS) uni t amplitude is incident from the left of waveguide 1 in 

" r, . . ' Fig. I , the amplitudes of normal modes may be written as 
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{

I , 

aim = 0, 

m :: 0; 
(22.) 

m=123'" , " , 

b
2m 

= 0 m:: 0, 1, 2,···. (22b) 

Considering (I9), (21), and (22), Txy, I(x , YI) and lIy,/(X, Y I) 

on r l may be expressed as 

[
- T Xy(, I(x , Y)f~ = 26

/1 
exp (-It3 ' (lY l ){g IO(X)} 

lIy, t x,y, J 

+(- I)'1
dl

2: (g'm (X)}{g,m (x')}T 
, m 

, IOX,'(X',;,) 1 dx', 

LTyy,I(X ,Yt~ 
(23) 

Similarly, IIx,/(X,YI) and Tyy,t(x,Yt) on r l may be expressed 

" 

( dl 
+(- 1), L 2: l ftm(X)}{{,m(x' ))T 

, m 

, [ - Txy , '~X"YI) J dx" 
U,.,/(X ,YI) 

(24) 

Using (3) and (13), (23) can be discretized as follows: 

[
-ITx,),]=;" [{gx} ,] + r[Gn ) I [G., ) ,] [10

.), J 
{U,.} , {gy} l llG,.xlt [Gyy l t {Tyy}t 

(25) 

where 

{g,}, :: 2 exp (- I.BlOyd {g"o h, r =X,y, (26) 

[G" ,) I = (-1)'2: {g"m},2: 1 g",lm (x'){N(x"YIll' dx', 
m -") ~ rt ~ , , 

r , r = X,y. (27) 

Here the components of the (g, m}1 vector are the values of 

g"lm (x) at the nodal points on r/' 
Similarly, (24) can be discretized as follows: 

[lox), J=;, lUx!.] + IfFn )l [F xy ) ~ [ -I Tx ,} ~ 
{TyyJt 1 LUyh L(Fyx ll (Fyy lJ {UY} I J 

(28) 

Where 

{I'}l =2 exp (- 1t31oy ,){frG h , r = x,y , (29) , 

[F" ,) I = ( - 1)' 2: (["m), 2: I {",1m (x'){N(x', YIll' dx', 
m e' f l ~ , , 

r , r =x ,y. (30) 

Here the components of the U, m h vector are the values of 

f~,lm (x) at the nodal points on rio 

" 
Using either (25) or (28), the values of particle velocities and 

st resses at the nodal points can be calculated numerically from 

(14), 

C. Combination of Finite-Element and 

Analytical Relationl 

Using (15) and ( 16), from (14) and (25) we obtain the 

following final matrix equation: 

(A) 

, , , (0) 
:-----. ------

i (8) (0) , 
: '(0) - (8) 

--- -------- --- - -~-----------, , 
(0) i -(Gn ) (0) i (I) - (Gxy ) 

: - (G,x) (1 ) : (0) - (G,, ) , , 

{Ux }o 
10} 

{ lIyh 
--------- -----_. 

{lIx}12 
= 10} 

{Uyh2 
--------- -------
-{Txy}12 {gx)1l 

{ Tyyh2 {gy}12 

where 

} [{g,!'] 
{g, Il = {O}' r =x,y, 

, 
(G ,) = ~G" , ) , 

rr [0) 
(0) J 

[G", h ' 
r , r ""' X,Y. 

Here [I I is a unit matrix. 

(31) 

(32) 

(33) 

Similarly, from (14) and (28) we obtain the following final 

matrix equation: 

(A ) 

, , , (0) 

:-------------, 
: (8 ) )0) , 
: (0) - (8) 

----l--------- --~------- ------

: )1) - [Fx, ) : -[Fn ) (0) 
[OJ : : 

: (0) - (F,,) : - [F,x) (1) 

10} 

= 10} 

where 

IW,] 
{[,} " = L 10} , r "" x ,Y. 

(34) 

(35) 
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-fuodAmenlal 

LAmb .&v. 

r • 
om ..... , 

Fig. 3. Typical division of wedge-shaped internal crack. 

[F 'J = fiF" , J , 
" L [OJ 

[OJ J 
(F,,,'12 • 

'-r, r -x,y. (36) 

The values of the particle velocity "x and the stress T yy at 

the nodal points on r l (j::::. 1,2), namely, {vlL'h and {Tyyh, 
are computed from (3 1) or (34), and then, by using (13), 

vx,/(X,Yi) and Ty y,t(x,Yt) are calculated from these values. 

The solutions vx,/(x,y,) and Tyy,i(X,Y/) allow the detennina­

tion of the reflection coefficient r at y = YI = 0 and the trans­

mission coefficient t aty ::: y, of the fundamental Lamb wave. 

Considering ( 19), (2 1), and (22), r and t may be written as 

r = blO=-l+ {gIO(X)V' dx, (37) 1
d
, ["X ,(x,y, =0) J 

o Tyy,I(X,YI = 0) 

IV. ANALYSIS OF LAMB WAVE SCATl'ERING 

BY A CRACK 

(38) 

In this section, we present the computed results for the 

fundamental Lamb wave reflection coefficient of a wedge· 

shaped crack with stress· free surfaces in a plate of thickness 

2d. A typical division of an internal crack into second· order 

triangular elements is shown in Fig. 3, where 28 is the wedge 

apex angle. If the boundaries r 1 and r 2 are located slightly 

away from the discontinuity, the evanescent higher modes 

with pure imaginary and complex wavenumbers [lJ , [5]-[10] 

have little effect on the fields on r I and r 2 due to rapidly 

decaying modes from the discontinuity and the influence of 

the evanescent higher modes is involved in the finite· element 

region n. Hence it is usually sufficient to consider the propa· 

gating modes only in (27) and (30), and, if necessary, a few 

evanescent higher modes for a reasonable approximation. 

Convergence of the solution is checked by increasing a vaJue 

of I in Fig. 3. In this calculation, a Poisson's ratio a = O.3l 

and 2k$ d/rr= 1.0, where k, = w·./p/p.. All the higher modes 

are nonpropagating evanescent modes. In order to present the 

numerical verification of the method. Fig. 4 shows the mag· 

nitude and the phase of the reflection coefficient of an in· 

finitely thin internal crack (8 = 0) normal to the surface of 

a plate as a function of I/ XLo , where hLO is the wavelength 

of the fundamental Lamb wave and the crack to plate thick· 

ness ratio hId = 0.5. The phase is evaluated at the position 

, 

0·5 5 -120 , , --
" I 
I 

" 'Ir-. , - ' , , 

Pha .. of 

-Irl 

,-

1; 

s 
f , , 

: t= · -,+- · - · t]·-·f~-
-125 0·50 , , , 

0·4 5 
o 

1-, I , ---" 
0- .0·31 , 2k.dlT:' .0. h/d.O·S 

' ·0 
II ALO 

-130 
' ·0 

Fig. 4. Convergence behavior in calculation of re flection coefficients of 
an infinitely thin internal crack. The solid line is the results obtained 
by using (31). The broken line is the results obtained by using (34). 

'.O I------~ :;::::1f""l 

0·5 

o . Tan , Au l d 

Pr.s.nt 

"nalysis 

'0 -120 

• • • ~ 
CL -140 

: t= -· t~ --
_160 

0" .. 0·31 

2k.d ' .... , ·0 

-180 '--~ - --~::':-~~-~--" 
a 0·5 1·0 

hid 

Fig. 5. Reflection coeffICient of an infinitely thin internal crack. 
o results 7J of variational method with the trial function Vy = 

1 - (x/h)l and v" z O . • results [7 J of voriational method with the 
trial functio n uy a cos (flx/2h) and v" to, 
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'.0,-- ------- - -----, 

0·5 

0. -100 
• ~ -
'0 -120 

• • • L 

a. -140 

-160 
:f= - - ~% ---

cr ,,0·31 

2k.d/l :1·0 

'Id 
Fig. 6. Reflection coefficient of infmiteiy thin surface crack. 

of a crack . The difference between the value (solid lines) 

calculated from (31) and the value (dashed lines) calculated 

from (34) can be distinguished only for the range of l/"}"LO ~ 

0.5, and the two values converge with [IALo::::::: 0.5. There· 

fore, we set 1 equal to 2 ALO and present only the results 

obtained by using (31) . 

Fig. 5 shows the magnitude and the phase of the reflection 

coefficient of an infinitely thin internal crack normal to the 

surface of a plate as a function of hid. Agreement between 

Our results and the results (circles) of the variational method 

with the trial function uy = VI ~ (xlh)l and u ~ = 0[7] is seen 

to be exce!lent. The results are in good agreement with the 

results (dots) of the variation method with the trial function 

Vy '" cos (rrxI2h) and Ux '" 0[7] at small values of hId. 

Fig. 6 shows the magnitude and the phase of the reflection 

coefficient of an infinitely thin surface crack normal to the 

surface of a plate as a function of hid. It is ~ een that the 

magnitude of the reflection coefficient of the infinitely thin 

surface crack is smaller than that of the infiritely thin internal 
crack. 

Figs. 7 and 8 show the magnitude of the reflection coeffi· 

cient of a wedge·shaped internal crack and a wedge-shaped 

surface crack as a function of the wedge apex angle tan 0, 

--

' ·0 

0·5 

a 
a 

:f=;. ; ~m ---

(1\ 

r 

h /d;0·8 

'·0 

0- ;0 ·31 

2k.dlh1·0 

/' 

hld:0·5 

'\ 

' ·0 
tan9 

Fig. 7. Reflection coefficient of wedge-shaped internal crack. 

,. 
df- VQ, 0- =0·31 

a -- -_._._._.-

d ACT' 
2k.dll :1·0 

,. 
h fd"O ·8 

o· 5 

h i d ,, 0 ·5 

a 
a '·0 ' ·0 

Fig. 8. Reflection coefficient of wedge·shaped surface crack. 

respectively. The reflection coefficient of the internal crack 

is considerably influenced by the wedge apex angle and the 

curves exhibit resonances, resulting in complete reflection 

" 

of the incident wave. By virtue of the problem's symmetry, 

for the incidence of the fundamental symmetric Lamb wave 

the antisymmetric Lamb waves are not excited in a plate 

except the region occupied by the crack. In the crack·region 

the plate waveguide branches into two waveguides, and bo th 

symmetric and antisymmetric Lamb waves are excited in each 

separated waveguide of length 2h tan 8. The resonances are 
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considered to be caused by the interaction between symmetric 

and antisymmetric waves. These resonances are similar to the 

case of an infinitely thin crack parallel to the surface of a plate 

[8] - [1OJ . On the other hand, for the surface crack antisym­

metric Lamb waves are not excited in the crack-region and this 

region is regarded as a tapered plate waveguide. Therefore, the 

reflection coefficient of the surface crack is not very much 

affected by the wedge apex angle and an increase in the wedge 

apex angle results in a general reduction of the reflection 

coefficient. 

The results of the present approach for the edge resonance 

in a semi·infinite plate [5] are given in [16]. 

V. CONCLUSION 

A method of analysis, based on the fmite-element approach 

and the analytical approach, was developed for the solution of 

scattering of the fundamental symmetric Lamb wave in an 

elastic plate waveguide. This method is useful for discontinui­

t ies of arbitrary shape. Numerica1 examples are presented for 

an infinitely thin crack and a wedge-shaped crack. 

This approach can be applied to the analysis of scauering 

of Rayleigh waves (1 J -(4] by increasing the plate thickness 

in the same manner as the case of SH-type piezoelectric surface 

waves [12]. 

ApPENDIX 

The dispersion relation for fJm (for simplicity the subscript 

i is abbreviated) is given as 

tan K,r,m d/tan K',m d = - 4fJ!.K/,mK,r,m !(K:,m -lJ!.} (AI) 

K/ m :: .. .fkl - {3!. (A2) , 

K,r,m :z v'k; -lJ!. (A3) 

k, = wVp/(H 2") (A4) 

k, = w../iiTii. (AS) 

The mode functions {1m (X}} and {gm (x)} are given as 

(fm (x)) = {T,. (x)}/.JDm 

{gm (x)} = {jm (x)}/.JDm 

Um (x)) = [!"m (x) Jy,m (x) ) T 

tim (X}} = (ix,m (X) iy,m (x)] T 

Dm = tUm (x))T lim (x)} dx 

Ix m (X) = sin KI mX - [2/J!. /(fJ!. - K: m)J " , 

· (S, m/S,r m) sin K,r mX 
" , 

ly,m (x) = - j(P!WKI,m) [(k: - 2Kl,m) 

· CaSK, mX - ({3!. - K: m) , , 

· (C
" 

m/C,r,m) cos K I,m X] 

(A6) 

(A7) 

(AB) 

(A9) 

(AIO) 

(All) 

(AI2) 

(AI3) 

iy,m (x) = j(fJm /lf. I,m) (cos K I,m X - [(fJ!. - K:,m )/2fJ!.] 

. (C',m /C$,m) COS K$,mX) (AI4) 

S"m '" sin Kl,m d 

C"m '" COSK',m d 

S, m = sin K$ m d , , 

(AIS) 

(AI6) 

(AI7) 

(A l B) C, m =COSK, m d. , , 
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