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Finite-Element Analysis of Lamb Wave Scattering
in an Elastic Plate Waveguide

MASANORI KOSHIBA, SHOJI KARAKIDA, aNp MICHIO SUZUKI, SENIOR MEMBER, IEEE

Abstract—A method of the solution of scattering of the fundamental
symmetric Lamb wave in an elastic plate waveguide is described. The
approach is a combination of the finite-element and the analytical
method, The numerical examples on the scattering by a wedge-shaped
internal crack and a wedge-shaped surface crack in a plate are given.
The reflection coefficient of the internal crack is considerably influ-
enced by the wedge apex angle and the resonance phenomena arise
in the region of the crack. On the other hand, the reflection coeffi-
cient of the surface crack is not very much affected by the wedge apex
angle. The validity of the method is confirmed by comparing numerical
results for an infinitely thin internal crack normal to the surface of
a plate with the results of the variational method.

I. INTRODUCTION

HE scattering of guided modes by the discontinuities in

an elastic waveguide is a basic problem in nondestructive
evaluation and also has important implications with regard to
electrical signal-processing functions [1]-[4], and the scatter-
ing of Lamb waves by cracks in an elastic plate has been
investigated extensively [5]-[10]. Auld et al. have analyzed
the scattering of Lamb waves by an infinitely thin crack nor-
mal to the surface of a plate using the variational method
[S1-[7]. Rokhlin has analyzed the scattering of Lamb waves
by an infinitely thin crack parallel to the surface of a plate
using the modified Wiener-Hopf method [8] or the method

Manuscript received May 4, 1983; revised October 11, 1983.
The authors are with the Department of Electronic Engineering,
Hokkaido University, Sapporo, 060, Japan.

of multiple diffractions [9], [10]. Although these methods
are useful for the discontinuities of regular shape, it seems to

be difficult to apply these methods to those of arbitrary shape. .

Recently the numerical method based on the finite-element
method has been developed for the analysis of the scattering
of horizontally polarized shear (SH) waves with a single par-
ticle-velocity component parallel to the plate surface [11] -

[13]. This approach is useful for the analysis of the scattering

by the arbitrarily shaped discontinuities.

In this paper, this numerical approach based on the finite-
element method is extended to the analysis of the scattering
of Lamb waves with two particle-velocity components, lying
in the plane perpendicular to the plate surface. Numerical
examples on the scattering by a wedge-shaped internal crack
and a wedge-shaped surface crack in a plate are given. The
reflection coefficient of the internal crack is considerably
influenced by the wedge apex angle and the resonance phe-
nomena arise in the region of the crack. On the other hand,

the reflection coefficient of the surface crack is not very much
affected by the wedge apex angle. The validity of the method

is confirmed by comparing numerical results for an infinitely
thin internal crack normal to the surface of a plate with the
results of the variational method [7].

II. Basic EQUATIONS

In order to minimize the details, we consider the symmetric
Lamb wave excitation of a symmetric plate waveguide as
shown in Fig. 1, where the boundaries I'; and I'; connect
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Fig. 1. Discontinuity in elastic plate waveguide.
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the discontinuities to the waveguides 1 and 2, respectively,
the x component of the particle velocity v, and the ¥ compo-
nent of the particle velocity vy are antisymmetric and sym-
metric about the midplane I'; (x = 0), respectively, the plane
I', is the stress-free surface, and the region £ with the bound-
aries I'y to I'y completely encloses the discontinuities. The
plate waveguide is assumed to have some discontinuities which
are symmetric about the midplane I';.

Assuming that there is no variation in the z direction, we
have the following basic equations [1] :

0T [0x + 8T, [0y - jowpu, =0, r=x,y, (1)
ey [ T G W T | IR
jwTyy |51 A A+2u O duy /3y A
jwTyy 0 0 u || dv, /3y + dvyfox

where Ty, Ty, and Ty, = T, are the stresses, w is the
angular frequency, p is the mass density, and A and u are the
Lamé constants.

III. MATHEMATICAL FORMULATION
A. Finite-Element Approach

Dividing the region £2 into a number of second-order tri-
angular elements [14], [15] as shown in Fig. 2, the particle
velocity v, within each element is defined in terms of the
particle velocity v, 4 at the nodal pointk (k=1,2, -, 6):

Ur: {N}T{Ur}e: ?'=x,y, {3)
where

{”r}e T [Ur,1”r,2”r,3”r,4”r,5”r,ﬁ] T! Fr=x,), (4)

{N} = [N\N,NsNyNsNg] ™. (5)

Here {v,}, is the particle-velocity vector corresponding to the
nodal points within each element, T, {-}, and {-}7 denote a
transpose, a column vector, and a row vector, respectively, and
shape functions V; to Ny are given by

Ni=L,Q2L; - 1) (62)
N2 =Ly(2L, - 1) (6b)
N3y =L3(2L3 - 1) (6¢)
N,=4L,L, (6d)
Ns=4L,L, (6¢)
Ng =4L;L, (6f)
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Fig. 2. Second-order triangular element.

with the area coordinates Ly, L,,and L3 [14], [15]. The
relation equation between the area coordinates and Cartesian
coordinates is given by

_x- _xl Xa x: HL:
YIFl Y1 Y2 YallLlal, (7)
1 e el P (|

where (x;, y;) are the Cartesian coordinates of the vertex j
(7 =1, 2, 3) of the triangle.
Using a Galerkin procedure on (1), we obtain

{N} (3T, /ox + 07,,,/3y - jwpev,) dS2 = {0},
nE

r = ‘xj yr (8}
where (), represents an element subdomain and {0} is a null

vector,
Integrating by parts, we obtain for (8)

[(a{N}fa}:) Ly ¥ (0 {N}fay)Try +jwp. {N}v,] dQ

ﬂE
= {N}Trn A = {D}: r=x,y, (9)
FE
where
Trn=Trx”x+Try”y: r=x,y. {:10)

Here I, represents the contour of the triangular element, and
1y and n,, are the x and y components of an outward normal
unit-vector to I, respectively.

Noting that 7', and T}, are continuous across I', (bound-
ary conditions at the interface between two different media),
Uy =Ty =0onT; (midplane), and T, = Ty, =0 on Ty
(stress-free surface), from (2), (3), and (9) the following global
matrix equation is derived:

[[Axx] [Axyjl [[Ux}]
{Ayx] [A;p_p] : '[Uy}

Ly e

; {N}iTyy, i(x, ;) dx
=3 > (-Djw

i=1 &

(11)
{N}iTyy, i(x, y;) dx

Ff, &

S— e
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where
[l =3 & [(Ne +21,) (@ {N}/3x) (3 {N}T /ox)
+ue (3{N}/ay) (3{N}"/3y)

- Wi (INHN}] dx dy, (12a)

v e sy fn DN @ {N}2x) (3 (V7 23)

+ (3 {N}ay) @ {N}"[ax)] dx dy, (12b)
[4,,1 =5 | [re(d{N}/ox) (d{N}T/ox)

e ~§lp

+ (A + 21.) (Q{NY/2y) 2 {N}T/ay)

- w2 p ANHN}] dx dy. (12¢)

Here the components of the {v, } vector are the values of v, at
all nodal points in £2 except I'3, the components of the {v,}
vector are the values of v,, at all nodal points in £, Z, and Z,
extend over all different elements and the elements related to
I; (=1, 2), respectively, T, ;(x,»;) and T,,,, ;(x, y;) are the
stresses on I';, and {/V'}; is the shape function vector on I';,
namely, {N'}; = {N(x, )}

Using the shape function {/V};, the particle velocity v, ;(x,¥;)
and the stress T, ;(x, ;) on I'; may be discretized as follows:

vy, (%, Y1) = {N}?{Ur}:‘,e':— (13a)
Tf}',i(xryi)z {N}?{Try}i,e*s (13b)

where {v,} i,e and {7, y}i et are the particle-velocity vector
and the stress vector corresponding to the nodal points within
each element related to I';, respectively.

Substituting (13) into (11), we obtain

Fr=x,v,

i o

] o
0l A =) T S , (14)
‘[Ux}u [B] {Txy}u
{U}:}u L.!:B] {Tyy}lz_
where
{312 = j:jj, r=x,y, (15)
R
{Tr‘}'}li ™ _;Triig]’ Fr=x,), (16)
(8], [0]
Bl = : 17
o @, o
and

e "I

Here the components of the {v, }o vector are the values of v,
at the nodal points in £ except I'y, I';, and I'3, the compo-
nents of the {u},}ﬂ vector are the values of v,, at the nodal
points in § except I'; and I';, the components of the {v, };
and {7} }; vectors are the values of v, and T,,, at the nodal
points on I';, respectively, [4] is the matrix formed by [A;x],
[Axy],[Ayx],and [4,,], and [0] is a zero matrix.

B. Analytical Approach

In (14), the values of the stresses T, and T',,,, onT; (i = 1,2)
are unknown, so that it is necessary to introduce the compati-
bility conditions for the interface boundary I'; between the
interior region (y; <y ‘;:y;) and the exterior region (y S y,,
y 2¥,). Considering the analytical relation between '
=Tyl T on T and [v, T),] T on T; which can be
obtained by use of the orthogonality relation [1], [2], [S]
of the normal modes in an elastic plate waveguide, the values
of particle velocities and stresses at the nodal points can be
calculated numerically from (14). The solutions [v, Ty, ] 4
(or -7, w;] Ty on T; allow the determination of the
reflection coefficient and the transmission coefficient. The
details will be discussed later.

The internal fields in the waveguide i (i = 1, 2) in Fig. 1 are
represented by the sum of normal modes as [1], [2], [5]

[z;,(fngi}] =Z [@m exp (-7Bim ) + Dim xp (jBim )]

“A{Sim ()} (192)
[-:;T(;(;;!)} I% [@im exp (-7Bim¥) = bim €xp (JBim V)]
 {8im (), (19b)
where '
{fim GO} = [foeyim ) Sy, im G T (202)
and

(i O} = (e O 1 (T (20b)

Here a;,, and b;,, are the amplitudes of the mth mode :
(m=0,1,2,---)in the waveguide i propagating (or decaying)
toward the +y and -y directions, respectively, and f;,, isthe
wavenumber in the y direction. The mode functions {f;,, (x)}
and {g;,,, (x)} satisfy the following orthonormalization condi- |
tion [1]: |

d; d;
f {fim (x}}T ‘[gim‘(x)} dx = f {&8im (x)}T
0 0

Lo OO} X = 8,y 218

where 8,,,,,,- is the Kronecker §. The dispersion relation for ;
B;, and the mode functions are given in the Appendix.

Now, assuming that the fundamental Lamb wave (72 = 0) of
unit amplitude is incident from the left of waveguide 1 in
Fig. 1, the amplitudes of normal modes may be written as
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s (22)
i a
Tym 0, m=1723"**,

Dam =0 m=0,1,2,-" (22b)

Considering (19), (21), and (22), Tyy, i(x,y;) and vy (X, 1)
on I'; may be expressed as

'Txl’rf(x’yf) =26; exp (‘fﬁm}’l){gm(x)}
uy,;-(x,yf)

dj
HiLE J; > {gim C)Hem )}

o, 30 e
Ty_v,:'(xr: Yi)

Similarly, vy, ;(x,¥;) and Ty, ;(x, ¥;) on I'; may be expressed
as

(23)

[”x:f(x= Vi) ]:| =284 exp (-7B10¥1) {f10(x)}

Tyy,f(x!yl'

dj
+C | Sim G HSim 6
0 m

¢ —Txy,i(x;:yi) dx’
Uy,i(x':yi)

Using (3) and (13), (23) can be discretized as follows:

[_'[Txy}i =§_ l: x +[[Gxx]i [ny]:] l:{ux}i -J
{Uy}i i {gy}l [ny]i Iny]i {Tyy}i

(25)

(24)

where

{g.}1 =2 exp (-/P1o¥1 ){gr,nh ’

[Grr ]I ( 1)‘2 {gr m}xz gr',;'m (x'){N(x’,y:')}T dx’:
Ly e
J r,r'=x,y. (27)

Here the components of the {g, ,, }; vector are the values of
& im (x) at the nodal points on I';.
Similarly, (24) can be discretized as follows:

[{Ux} ]_5 [{fx}] + [[Fxxlf [ny]i] ['{Txy}ijl
{T }'} o {fy}z [Fy,x]i [Fyy]f {”y}:'

(28)

r=x,y, (26)

where

{h =2 exp (-Broyi) {01,

s, ] = (~1)‘z{f,m}2f o 1 ) INGE, pOIT ',

PIE

r=x,y, (29)

r,r =x,y. (30)

Here the components of the {f;, ,, }; vector are the values of
Iy, im (x) at the nodal points on I';.

21

Using either (25) or (28), the values of particle velocities and
stresses at the nodal points can be calculated numerically from

(14).

C. Combination of Finite-Element and
Analytical Relations

Using (15) and (16), from (14) and (25) we obtain the
following final matrix equation:

s i (0] —
A T AR
A e o
ENE SRR A AL Bl
s | ~[Gxx] [0} [1] -[Gy]
i "[G}'x] [1] E [D] [G}!y]_
ﬁ{ﬂx}u 3 £
{0}
el ] e
{U ha
i =| {0} (31)
P et S
{Txy}n {gx}12
s '[Tyy}u _{g}!}l’}.—
where
{gr}l!. = {iﬁ;]s F=I,}', (32)
_[Gy1y (0] i
el = | 1) e 1]’ AR 5 e

Here [1] is a unit matrix.
Similarly, from (14) and (28) we obtain the following final
matrix equation:

Lt l: (0] =
A VS e C
e | [B] [0]
________________ L g
[U'] I [ ] _[ny] l{ [Fxx] [0]
(0] -[Fyyl i -[Fyx] [11)
r—{ux}l} 3| [ 7]
oo {0}
{viha
= 34
b __i[i_ o
{Txy}lz l {fx}l‘l
= {Tyy}l'.'-‘ _{f}:}lﬂ_
where
{fr}l'.". = [[?g;}s r=x,y, (35)
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Fig. 3. Typical division of wedge-shaped internal crack.
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[F,] = [[F""] 1l ] rr=x,y. (36) 0-50\ — <-128
[0] [Fwrla

The values of the particle velocity v, and the stress T, at i
the nodal points on IT'; (i = 1, 2), namely, {v,.}; and {T,, },
are computed from (31) or (34), and then, by using (13),
vy, i(x,7;) and T\, ;(x, ;) are calculated from these values.
The solutions v, ;(x,y;) and T, ;(x, ;) allow the determina-
tion of the reflection coefficient 7 at y = y; =0 and the trans- 0-45 L -130
mission coefficient ¢ at y =y, of the fundamental Lamb wave. 0 1:0 1AL, &0
Considering (19), (21), and (22), r and ¢ may be written as

d] v (x:yl T 0)
S5 i Tl ¥x;1
r=by =-1 "'J; {g10(x)} [T”,l(x,h 5 O;l dx, (37)

Fig. 4. Convergence behavior in calculation of reflection coefficients of
an infinitely thin internal crack. The solid line is the results obtained
by using (31). The broken line is the results obtained by using (34).

1.0

T

oe Tan, Auld

d, ¥
t=azo exp (-/B20Y2) = f {g20(0)}" [ﬂx,z(x,y ) )] dx. -~ Present
0 5

T},}.,z(x, Va analysis

Irl

(38) i

0.5+

IV. ANALYSIS OF LAMB WAVE SCATTERING
BY A CRACK

In this section, we present the computed results for the

fundamental Lamb wave reflection coefficient of a wedge-
shaped crack with stress-free surfaces in a plate of thickness
2d. A typical division of an internal crack into second-order
triangular elements is shown in Fig. 3, where 20 is the wedge 0
apex angle. If the boundaries I'y and I'; are located slightly =
away from the discontinuity, the evanescent higher modes h
with pure imaginary and complex wavenumbers [1], [5]-[10]
have little effect on the fields on I'y and I'; due to rapidly
decaying modes from the discontinuity and the influence of
the evanescent higher modes is involved in the finite-element
region §2. Hence it is usually sufficient to consider the propa-
gating modes only in (27) and (30), and, if necessary, a few
evanescent higher modes for a reasonable approximation.
Convergence of the solution is checked by increasing a value
of / in Fig. 3. In this calculation, a Poisson’s ratio ¢ = 0.31
and 2k, d/m = 1.0, where k; = w+/p/u. All the higher modes =180F
are nonpropagating evanescent modes. In order to present the i 2k,d /1=1.0
numerical verification of the method, Fig. 4 shows the mag-
nitude and the phase of the reflection coefficient of an in-
finitely thin internal crack (6 = 0) normal to the surface of ; Wik

Fig. 5. Reflection coefficient of an infinitely thin internal crack.

a plate as a function of [/A; o, where Ao is the wavelength o results [7] of variational method with the trial function v), =

of the fundamental Lamb wave and the crack to plate thick- V1 - (e/h)2 and vy, = 0. e results [7] of variational method with the
ness ratio #/d = 0.5. The phase is evaluated at the position trial function vy, = cos (mx/2h) and vy = 0.

-100-

-120

Phase of r (deg)

-140F

-180— e
0 05 1-0
hid
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Fig. 6. Reflection coefficient of infinitely thin surface crack.

of a crack. The difference between the value (solid lines)
calculated from (31) and the value (dashed lines) calculated
from (34) can be distinguished only for the range of I/ A ¢ <
0.5, and the two values converge with I/ Az = 0.5. There-
fore, we set / equal to 27z, and present only the results
obtained by using (31).

Fig. 5 shows the magnitude and the phase of the reflection
coefficient of an infinitely thin internal crack normal to the
surface of a plate as a function of h/d. Agreement between
our results and the results (circles) of the variational method

with the trial function vy, = 4/1 - (x/h)? and v, = 0[7] is seen

to be excellent. The results are in good agreement with the
results (dots) of the variation method with the trial function
v, = cos (mx/2h) and v, = 0[7] at small values of h/d.

Fig. 6 shows the magnitude and the phase of the reflection
coefficient of an infinitely thin surface crack normal to the
surface of a plate as a function of h/d. It is seen that the
magnitude of the reflection coefficient of the infinitely thin

surface crack is smaller than that of the infinitely thin internal

crack,

Figs. 7 and 8 show the magnitude of the reflection coeffi-
Cient of a wedge-shaped internal crack and a wedge-shaped
Surface crack as a function of the wedge apex angle tan 6,

o =0.31
2k, d/T=1.0

Iri

h/d=0-5

U 1 1 i 1 | i L L ]

0 1.0
tan®
Fig. 7. Reflection coefficient of wedge-shaped internal crack.

2.0

26
L I
1.0 ¢ :_: ________ s o =0.31
i 2k,d/T=1.0
- A ]h
i 26
- __-__—-—-_'-“
05
o h/d=0.5
0 i e ER S e s S ol o LR RO : .
0 1.0 2.0
tamno

Fig. 8. Reflection coefficient of wedge-shaped surface crack.

respectively. The reflection coefficient of the internal crack
is considerably influenced by the wedge apex angle and the
curves exhibit resonances, resulting in complete reflection
of the incident wave. By virtue of the problem’s symmetry,
for the incidence of the fundamental symmetric Lamb wave
the antisymmetric Lamb waves are not excited in a plate
except the region occupied by the crack. In the crack-region
the plate waveguide branches into two waveguides, and both

23

symmetric and antisymmetric Lamb waves are excited in each

separated waveguide of length 24 tan 8. The resonances are
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considered to be caused by the interaction between symmetric
and antisymmetric waves. These resonances are similar to the
case of an infinitely thin crack parallel to the surface of a plate
[8]-[10]. On the other hand, for the surface crack antisym-
metric Lamb waves are not excited in the crack-region and this
region is regarded as a tapered plate waveguide. Therefore, the

reflection coefficient of the surface crack is not very much

affected by the wedge apex angle and an increase in the wedge

apex angle results in a general reduction of the reflection
coefficient.

The results of the present approach for the edge resonance

in a semi-infinite plate [5] are given in [16].

V. CONCLUSION

A method of analysis, based on the finite-element approach
and the analytical approach, was developed for the solution of

scattering of the fundamental symmetric Lamb wave in an

elastic plate waveguide. This method is useful for discontinui-
ties of arbitrary shape. Numerical examples are presented for

an infinitely thin crack and a wedge-shaped crack.
This approach can be applied to the analysis of scattering
of Rayleigh waves [1]-[4] by increasing the plate thickness

in the same manner as the case of SH-type piezoelectric surface

waves [12].

APPENDIX

The dispersion relation for 8, (for simplicity the subscript

i is abbreviated) is given as

tan Kg p, dftan kg, d=-4Bm Ky mKs,m/(Ks,m - ) (Al)
(A2)
(A3)
(A4)
(AS5)

Ki,m = V&I - Bm
ks,m = Vks - Bm
k= WW
ks = w\/p/L.
The mode functions {f,,, (x)} and {g,, (x)} are given as
(om0} = (o )}/
(&m ()} = {Zm )H/N/Drm
(5O} = [Fem@®) Him@]T
{&m )} = [Bx,m ®) Zy,m )"
d
D = | AT G (o 00

Fem () =Sin Ky X ~ [285, /(B3 - K3,m)]
Sy (05 ) SN K X

Fy,m %) = —j (K m) [(K] - 2kf m)
O8I = (B —Rim)

i (Ci,mf(cs,m) cos K.i,mx]

(A6)
(A7)
(A8)
(A9)

(A10)

(A11)

(A12)

Zx,m (X) = QB /w) [sinky X - (S1,m/Ss,m) sin kg x|
(A13)

(1]
[2]

[3]
[4]
(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Ey,m(x) =j(ﬁmf-"£,m) (cos Ki,mX ~ [(.Bfn = Kg,m)xlzﬁriﬁ}

“(C1,m/Cs,m) COS Kg, p X) (A14)
Si,m = SinKy m d (A15)
Cim =COSKymd (A16)
Ss.m =SiNKg ;y d (A17)
Cs,m = COSKg 1 d. (A18)
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