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Abstract. Martensitic crystals which can undergo a cubic to tetragonal phase transformation
have a nonconvex energy density with three symmetry-related, rotationally invariant energy wells.
We give estimates for the numerical approximation of a first-order laminate for such martensitic
crystals. We give bounds for the L

2 convergence of directional derivatives in the “twin” plane, for
the L

2 convergence of the deformation, for the weak convergence of the deformation gradient, for the
convergence of the microstructure, and for the convergence of nonlinear integrals of the deformation
gradient.
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1. Introduction. Martensitic crystals have a high temperature, symmetric solid
phase known as austenite, and a lower temperature, less symmetric solid phase known
as martensite. The austenitic phase exists in one variant, but the martensitic phase
can exist in several symmetry-related variants. For some boundary conditions, the
elastic energy of a martensitic crystal can be lowered as much as possible only by
the fine scale mixing of the martensitic variants to form a microstructure. A simple
and common example of such a microstructure is a first-order laminate in which the
deformation gradient oscillates in parallel layers between two stress-free homogeneous
states.

Based on the assumption that the crystal structure is determined by the prin-
ciple of energy minimization, the recently developed geometrically nonlinear theory
of thermoelasticity describes the martensitic microstructure as the limit of energy-
minimizing sequences of deformations; see [2, 3, 13, 16, 19, 20] and the references
therein. In this theory, the elastic energy density for the crystal below the transfor-
mation temperature is nonconvex and is minimized on a set of deformation gradients
SO(3)U1 ∪ · · · ∪ SO(3)UM for M > 1, where SO(3) is the set of proper rotations, that
is,

SO(3) =
{

Q ∈ R
3×3 : QT = Q−1 and detQ = 1

}

,

where R
3×3 is the set of all 3×3 real matrices, and where the Ui ∈ R

3×3 represent the
symmetry-related martensitic variants. Martensitic crystals that can undergo a cubic
to tetragonal phase transformation have three martensitic energy wells, so M = 3
[2, 3, 20].
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We present in this paper a numerical analysis of the approximation of an energy-
minimizing first-order laminate for the cubic to tetragonal transformation. Ball and
James have shown for boundary conditions that are consistent with such a first-order
laminate that no energy-minimizing microstructure other than the first-order lami-
nate can exist [3]. We establish in this paper an approximation theory for the cubic to
tetragonal transformation with bounds for the L2 convergence of directional deriva-
tives in the “twin plane,” for the L2 convergence of the deformation, for the weak con-
vergence of the deformation gradient, for the convergence of the microstructure, and
for the convergence of nonlinear integrals of the deformation gradient. These bounds
are then used to give error estimates for conforming finite element approximations.
Three-dimensional numerical computations for the cubic to tetragonal phase trans-
formation have been reported in [11, 17, 18], and the numerical analysis presented in
this paper gives a rigorous validation for some of the reported numerical experiments.

A theory of numerical analysis for the microstructure in nonconvex variational
problems was developed in [10, 12] and has been extended in [4, 6, 7, 8, 15, 24].
Analyses of the approximation of relaxed variational problems have been given in
[5, 14, 25, 26, 27, 29, 30]. Our work relies most directly on the analysis given in [21]
for the numerical approximation of microstructure for a rotationally invariant, double
well energy density. We note that the analysis given in [21] covers the orthorhombic
to monoclinic transformation which can be modeled by a double well energy density
[3, 20]. An extension of the analysis in this paper to a class of nonconforming elements
is given in [22].

We refer to the recent paper [20] for a more extensive survey on the numerical
computation and analysis of martensitic microstructure. We also refer to [23] for an
analysis of the convergence of numerical methods for the computation of microstruc-
ture in ferromagnetic crystals [23].

In section 2 we first describe the underlying continuum model for the cubic to
tetragonal martensitic transformation. We prove in section 3 the convergence in L2

for the directional derivatives in the “twin plane” of energy-minimizing sequences of
deformations, and we prove in section 4 the convergence in L2 of the deformation
and the weak convergence of the deformation gradient. In section 5 we prove the
convergence of the microstructure for energy-minimizing sequences of deformations.
More precisely, we give bounds for the volume fractions of the oscillating deformation
gradients, and we prove the convergence of nonlinear integrals of the deformation
gradient. Finally, in section 6 we present error estimates for conforming finite element
approximations.

2. The continuum model. We denote by Ω the reference configuration of the
crystal, which is taken to be the homogeneous austenitic state at the transforma-
tion temperature. We assume that Ω ⊂ R

3 is a bounded domain with a Lipschitz
continuous boundary. We denote deformations by y : Ω → R

3 and corresponding
deformation gradients by ∇y : Ω → R

3×3. We denote the elastic energy density at a
fixed temperature below the transformation temperature by the continuous function
φ : R

3×3 → R. We consider the variational problem to minimize the elastic energy

E(y) ≡
∫

Ω

φ(∇y(x))dx(1)

over all deformations y which satisfy given boundary conditions.
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The variants of the tetragonal phase for the cubic to tetragonal transformation
can be given by [2, 3, 20]

U1 = η1I + (η2 − η1)e1 ⊗ e1, U2 = η1I + (η2 − η1)e2 ⊗ e2,

U3 = η1I + (η2 − η1)e3 ⊗ e3,(2)

where { e1, e2, e3 } is an orthonormal basis for R
3 and where η1 and η2 are positive

constants such that η1 6= η2. We recall that v ⊗ w ∈ R
3×3 for v, w ∈ R

3 is the tensor
product defined by (v ⊗ w)u = (w · u)v for u ∈ R

3, or equivalently, (v ⊗ w)kl = vkwl.

We note that the variants of the tetragonal phase are symmetry-related since we
have for i, j ∈ { 1, 2, 3 } , i 6= j, that

QUiQ
T = Uj for Q = −I + (ei + ej) ⊗ (ei + ej),(3)

where Q = −I +(ei +ej)⊗ (ei +ej) is the rotation of π radians about the axis ei +ej .

We also note that

QUiQ
T = Ui for Q = −I + 2ej ⊗ ej(4)

for i, j ∈ { 1, 2, 3 } . The symmetry group of the cube [2, 20],

G = { Q1, . . . , Q24 } ,

is generated by the set of rotations Q = −I+(ei+ej)⊗(ei+ej) for i, j ∈ { 1, 2, 3 } , i 6=
j, and Q = −I + 2ej ⊗ ej for j ∈ { 1, 2, 3 } , so we have that

{

QiU1Q
T
i : Qi ∈ G

}

= { U1, U2, U3 } .

To model the cubic to tetragonal martensitic transformation, we assume that the
energy density φ is minimized on the energy wells

Ui ≡ SO(3)Ui = { QUi : Q ∈ SO(3) }

for i = 1, 2, 3, so we may assume after rescaling the energy density that

φ(F ) ≥ 0 ∀F ∈ R
3×3,

φ(F ) = 0 if and only if F ∈ U ≡ U1 ∪ U2 ∪ U3.(5)

We shall also assume that the energy density φ grows quadratically away from the
energy wells, that is,

φ(F ) ≥ κ‖F − π(F )‖2 ∀F ∈ R
3×3,(6)

where κ > 0 is a constant and π : R
3×3 → U is a Borel measurable projection such

that

‖F − π(F )‖ = min
G∈U

‖F − G‖ ∀F ∈ R
3×3.

In the above and in the following we use the matrix norm defined by

‖F‖2 ≡ trace
(

FT F
)

=
3

∑

i,j=1

F 2
ij ∀F = (Fij) ∈ R

3×3.
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The projection π(F ) exists for any F ∈ R
3×3, since U is compact, although the

projection may not be unique. It is unique, however, if ‖F − π(F )‖ is small enough
[20].

Two matrices F0, F1 ∈ R
3×3 are rank-one connected [3, 20] if there exist a ∈ R

3

and n ∈ R
3, |n| = 1, such that

F1 = F0 + a ⊗ n.(7)

We shall assume in what follows that F0 and F1 are rank-one connected as in (7) and
that F0 ∈ U and F1 ∈ U . We can then construct the continuous, energy-minimizing,
first-order laminate wγ(x) : R

3 → R
3 with layer thickness γ > 0 by

wγ(x) = γw

(

x

γ

)

,(8)

where

w(x) = F0x +

[
∫ x·n

0

χ (s) ds

]

a

and where χ(s) : R → R is the characteristic function with period 1 defined for
0 < λ < 1 by

χ(s) =

{

0 for all 0 ≤ s ≤ 1 − λ,
1 for all 1 − λ < s < 1.

Now by the scaling properties of wγ(x) we have that

|wγ(x) − Fλx| = γ

∣

∣

∣

∣

w

(

x

γ

)

− Fλ

(

x

γ

)∣

∣

∣

∣

= γ

∣

∣

∣

∣

∣

∫ x·n
γ

0

[χ (s) − λ] ds a

∣

∣

∣

∣

∣

≤ λ(1 − λ)|a|γ,(9)

where

Fλ = (1 − λ)F0 + λF1 = F0 + λa ⊗ n.

We also have

∇wγ(x) = F0 + χ

(

x · n

γ

)

a ⊗ n for almost all x ∈ Ω,

so

∇wγ(x) =

{

F0 if jγ < x · n < (j + 1 − λ)γ for some j ∈ Z,

F1 if (j + 1 − λ)γ < x · n < (j + 1)γ for some j ∈ Z.
(10)

Hence, it follows from (5) and (10) that

∫

Ω

φ (∇wγ(x)) dx = 0

since F0, F1 ∈ U . We see by (9) that the deformations wγ(x) converge uniformly to
Fλx as γ → 0, but by (10) the deformation gradients oscillate between F0 in layers of
thickness (1 − λ)γ and F1 in layers of thickness λγ.
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We consider in this paper the approximation of the energy-minimizing microstruc-
ture subject to the boundary conditions

y(x) = Fλx = [(1 − λ)F0 + λF1]x ∀x ∈ ∂Ω

for 0 < λ < 1 and F0, F1 ∈ U . Thus, we will consider the minimization of the energy
(1) with respect to the set of admissible deformations given by

W
1,∞
Fλ

(Ω; R3) ≡
{

y ∈ W 1,∞(Ω; R3) : y(x) = Fλx for x ∈ ∂Ω
}

.

The following two lemmas [2, 3, 20] show that for the cubic to tetragonal trans-
formation (2) each F0 ∈ Ui is not rank-one connected to any F1 ∈ Ui with F0 6= F1,

but that every F0 ∈ Ui is rank-one connected to two distinct F1 ∈ Uj for all j 6= i,
j ∈ { 1, 2, 3 } .

LEMMA 1. If F0 ∈ Ui for some i ∈ { 1, 2, 3 } , then there does not exist F1 ∈ Ui

with F0 6= F1, such that F0 and F1 are rank-one connected.

LEMMA 2. If F0 ∈ Ui for some i ∈ { 1, 2, 3 } , then for any j 6= i, j ∈ { 1, 2, 3 } ,

there exist two distinct F1 ∈ Uj such that F0 and F1 are rank-one connected. Further,

if F0 ∈ Ui and F1 ∈ Uj are rank-one connected so that

F1 = F0 + a ⊗ n(11)

for a ∈ R
3 and n ∈ R

3, |n| = 1, then

n ∈
{

± 1√
2
(ei + ej),±

1√
2
(ei − ej)

}

.(12)

We note that n and −n give the same rank-one connections for F0 and F1 in (11)
since

F1 = F0 + a ⊗ n = F0 + (−a) ⊗ (−n).

The planes with normal vectors n given by (12) are known as the “twin planes”
in the crystallographical literature. The continuous, energy-minimizing, first-order
laminate wγ(x) given by (8) has distinct constant gradients in layers which are parallel
to the twin planes. It can be easily shown by Lemma 2 that there exists a continuous
energy-minimizing deformation with a distinct constant gradient on each side of a
smooth interface if and only if the interface is a twin plane [2, 3, 20].

3. Estimates for directional derivatives in the twin plane. We recall that

Fλ = (1 − λ)F0 + λF1,

where 0 < λ < 1 and where F0 ∈ U and F1 ∈ U are rank-one connected so that

F1 = F0 + a ⊗ n,

and we recall that

W
1,∞
Fλ

(Ω; R3) ≡
{

y ∈ W 1,∞(Ω; R3) : y(x) = Fλx for x ∈ ∂Ω
}

.

It follows from Lemma 2 that F0 ∈ Uk and F1 ∈ Ul, for some k, l ∈ { 1, 2, 3 } such
that k 6= l.
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LEMMA 3. For any y ∈ W
1,∞
Fλ

(Ω; R3), we have

∫

Ω

‖∇y(x) − π (∇y(x))‖2
dx ≤ κ−1E(y).

Proof. The inequality follows directly from the quadratic growth rate of the energy
density φ away from the energy wells (6).

The next lemma gives an estimate for the convergence of the directional deriva-
tives in the twin plane for energy-minimizing sequences of deformations. In the
following, C will denote a generic positive constant which is independent of y ∈
W

1,∞
Fλ

(Ω; R3).

LEMMA 4. If w ∈ R
3 satisfies w · n = 0, then there exists a positive constant C

such that

∫

Ω

|[π(∇y(x)) − Fλ]w|2 dx ≤ CE(y)1/2 ∀y ∈ W
1,∞
Fλ

(Ω; R3).(13)

Proof. We may assume without loss of generality, by the symmetry relations (3)
and (4) and by Lemma 2, that F0 ∈ U1, F1 ∈ U2,

n =
1√
2
(e1 + e2),

and

F1 = F0 + a ⊗ n(14)

for some a ∈ R
3. We define

w1 = e1 − e2 + e3 and w2 = e1 − e2 − e3.(15)

It is easy to check that

|Uiwj | =
√

2η2
1 + η2

2(16)

for all i ∈ { 1, 2, 3 } and j ∈ { 1, 2 }. We also have for any i ∈ { 1, 2, 3 } that

|QUiw̃| = |Uiw̃| ∀Q ∈ SO(3), ∀w̃ ∈ R
3.(17)

We can thus conclude by (16) and (17) that

|Uwj | =
√

2η2
1 + η2

2 ∀U ∈ U , ∀j ∈ { 1, 2 }(18)

since U = U1 ∪ U2 ∪ U3 and Ui = SO(3)Ui.

Since { e1, e2, e3 } is an orthonormal basis for R
3, we have that w1 ·n = w2 ·n = 0.

Thus, it follows that we have for j ∈ { 1, 2 } by the rank-one connection (14) that

F1wj = F0wj = Fλwj ,(19)

so

|F1wj | = |F0wj | = |Fλwj |.(20)
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Since π(F ) ∈ U for all F ∈ R
3×3 and F0, F1 ∈ U we can obtain from (18) and (20)

that for j ∈ { 1, 2 } we have

|π(F )wj | = |Fλwj | ∀F ∈ R
3×3.(21)

We have that

Fλ =
1

meas(Ω)

∫

Ω

∇y(x) dx(22)

since y(x) = Fλx for x ∈ ∂Ω. It then follows from (21), (22), the Cauchy–Schwarz
inequality, and Lemma 3 that for j ∈ { 1, 2 }

∫

Ω

|[π(∇y(x)) − Fλ]wj |2 dx

= 2Fλwj ·
∫

Ω

[Fλ − π(∇y(x))]wjdx

= 2Fλwj ·
∫

Ω

[∇y(x) − π(∇y(x))]wjdx

≤ C

∫

Ω

‖∇y(x) − π(∇y(x))‖ dx

≤ C

[
∫

Ω

‖∇y(x) − π(∇y(x))‖2
dx

]1/2

≤ CE(y)1/2.

Finally, since {w1, w2} is a basis for the two-dimensional subspace defined by w ·n = 0,

we have that (13) holds for any w ∈ R
3 such that w · n = 0.

The following theorem giving bounds on the directional derivatives orthogonal to
n is a consequence of the above two lemmas and the triangle inequality and will play
a key role in establishing all of the other bounds.

THEOREM 1. If w ∈ R
3 satisfies w · n = 0, then there exists a positive constant

C such that
∫

Ω

|[∇y(x) − Fλ]w|2 dx ≤ C
[

E(y)1/2 + E(y)
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).

4. Estimates for deformations and deformation gradients. We now give
bounds on the convergence of energy-minimizing sequences of deformations in
W

1,∞
Fλ

(Ω; R3) to the homogeneous deformation Fλx.
THEOREM 2. There exists a positive constant C such that

∫

Ω

|y(x) − Fλx|2 dx ≤ C
[

E(y)1/2 + E(y)
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).

Proof. If y ∈ W
1,∞
Fλ

(Ω; R3), then y(x) − Fλx = 0 for all x ∈ ∂Ω. Thus, for any

w ∈ R
3 there exists a positive constant C by the Poincaré inequality [21, 31] so that

∫

Ω

|y(x) − Fλx|2dx ≤ C

∫

Ω

|[∇y(x) − Fλ]w|2 dx ∀y ∈ W
1,∞
Fλ

(Ω; R3).

Our assertion follows from Theorem 1, with w ∈ R
3 so chosen that w · n = 0.
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Our next theorem gives an estimate for the weak convergence of the gradients of
energy-minimizing sequences of deformations. The proof follows from Lemma 3 and
Theorem 2.

THEOREM 3. For any Lipschitz domain ω ⊂ Ω, there exists a positive constant C

such that
∥

∥

∥

∥

∫

ω

[∇y(x) − Fλ] dx

∥

∥

∥

∥

≤ C
[

E(y)1/8 + E(y)1/2
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).

Proof. If follows from the divergence theorem and the Cauchy–Schwarz inequality
that

∥

∥

∥

∥

∫

ω

[∇y(x) − Fλ] dx

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

∂ω

[y(x) − Fλx] ⊗ ν dS

∥

∥

∥

∥

≤
∫

∂ω

|y(x) − Fλx| dS

≤ meas2(∂ω)
1/2

(
∫

∂ω

|y(x) − Fλx|2 dS

)1/2

,(23)

where ν is the unit exterior normal to ∂ω and where meas2(∂ω) is the surface area of
∂ω. We can obtain by the trace theorem [1, 31] that

∫

∂ω

∣

∣y(x) − Fλx
∣

∣

2
dS

≤ C

[
∫

ω

|y(x) − Fλx|2 dx +

∫

ω

∣

∣∇|y(x) − Fλx|2
∣

∣ dx

]

≤ C

[
∫

ω

|y(x) − Fλx|2 dx +

∫

ω

|y(x) − Fλx| · ‖∇ [y(x) − Fλx] ‖ dx

]

≤ C

[
∫

ω

|y(x) − Fλx|2 dx

+

(
∫

ω

|y(x) − Fλx|2 dx

)1/2 (
∫

ω

‖∇ [y(x) − Fλx] ‖2 dx

)1/2]

.(24)

We have by the triangle inequality and Lemma 3 that

(
∫

ω

‖∇y(x) − Fλ‖2 dx

)1/2

≤
(

∫

ω

‖∇y(x) − π (∇y(x)) ‖2 dx

)1/2

+

(
∫

ω

‖π (∇y(x)) − Fλ‖2 dx

)1/2

≤ κ−1/2E(y)1/2 + 2(2η2
1 + η2

2)1/2meas(ω)
1/2

.(25)

It follows by using Theorem 2 and (25) in (24) that
∫

∂ω

∣

∣y(x) − Fλx
∣

∣

2
dS ≤ C

[

E(y)1/4 + E(y)1/2 + E(y)
]

≤ C
[

E(y)1/4 + E(y)
]

∀y ∈ W
1,∞
Fλ

(Ω; R3),(26)

since β1/2 ≤ β + β1/4 for β > 0. We finally obtain the result of Theorem 3 by
substituting (26) into (23).
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We recall that F0 ∈ Uk, F1 ∈ Ul for k, l ∈ { 1, 2, 3 } such that k 6= l. We define
the projection operator πkl : R

3×3 → Uk ∪ Ul by

‖F − πkl(F )‖ = min
G∈Uk∪Ul

‖F − G‖ ∀F ∈ R
3×3.

We also define the operators R : R
3×3 → SO(3) and Π : R

3×3 → {F0, F1} by the
relation

πkl(F ) = R(F )Π(F ) ∀F ∈ R
3×3.(27)

The proof of the following lemma shows that the measure of the set of points
in which the gradient of energy-minimizing sequences of deformations is near Um for
m ∈ { 1, 2, 3 } such that m 6= k and m 6= l converges to zero.

LEMMA 5. If F0 ∈ Uk and F1 ∈ Ul for k, l ∈ { 1, 2, 3 } , k 6= l, then there exists

a positive constant C such that

∫

Ω

‖∇y(x) − πkl(∇y(x))‖2
dx ≤ C

[

E(y)1/2 + E(y)
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).

Proof. We can again assume without loss of generality that F0 ∈ U1, F1 ∈ U2,

n =
1√
2
(e1 + e2),

and

F1 = F0 + a ⊗ n

for some a ∈ R
3. We have for any Q ∈ SO(3) that

QU3e3 6= Fλe3

since

|QU3e3| = |U3e3| = η2 and |Fλe3| = |F0e3| = |U1e3| = η1.

Thus, we have by the triangle inequality that

inf
F∈U3

|Fλe3 − Fe3| ≥ |η2 − η1|.

Denoting

Ω3 ≡ {x ∈ Ω : π(∇y(x)) ∈ U3} ,

we then obtain by Lemma 4 that

meas(Ω3) =

∫

Ω3

dx

≤ |η2 − η1|−2

∫

Ω3

|[π(∇y(x)) − Fλ] e3|2 dx

≤ CE(y)1/2(28)
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since e3 ·n = 0. Consequently, we have by Lemma 3 that (recall that we have assumed
that k = 1 and l = 2)

∫

Ω

‖∇y(x) − π12(∇y(x))‖2
dx

≤ 2

∫

Ω

‖∇y(x) − π(∇y(x))‖2
dx + 2

∫

Ω

‖π(∇y(x)) − π12(∇y(x))‖2
dx

≤ 2

∫

Ω

‖∇y(x) − π(∇y(x))‖2
dx + 8(2η2

1 + η2
2) meas(Ω3)

≤ C
[

E(y)1/2 + E(y)
]

.

The following theorem gives estimates for the convergence of gradients of energy-
minimizing sequences of deformations to the set {F0, F1}.

THEOREM 4. There exists a positive constant C such that
∫

Ω

‖∇y(x) − Π(∇y(x))‖2
dx ≤ C

[

E(y)1/2 + E(y)
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).

Proof. We again assume without loss of generality that F0 ∈ U1, F1 ∈ U2, and

n =
1√
2
(e1 + e2).

We define as in (15)

w1 = e1 − e2 + e3 and w2 = e1 − e2 − e3.

Since wj · n = 0 for j = 1, 2, we have by (19) that

Π(F )wj = F1wj = F0wj = Fλwj ∀F ∈ R
3×3.

Thus, it follows from (27) with k = 1 and l = 2 that

[R (F ) − I]F0wj = [R (F ) − I] Π(F )wj = [π12 (F ) − Fλ]wj

= [π12 (F ) − π(F )]wj + [π(F ) − Fλ]wj ∀F ∈ R
3×3.(29)

We can then apply the triangle inequality to (29) with F = ∇y(x) and estimate the
two terms by (28) and Lemma 4 to obtain

∫

Ω

|[R (∇y(x)) − I]F0wj |2 dx

≤ 2

∫

Ω

|[π12(∇y(x)) − π (∇y(x))]wj |2 dx + 2

∫

Ω

| [π (∇y(x)) − Fλ]wj |2 dx

≤ CE(y)1/2 for j = 1, 2.(30)

We have for

m = F0w1 × F0w2

that

Qm = QF0w1 × QF0w2 ∀Q ∈ SO(3).
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Thus, we have the identity

[R (F ) − I]m = {R (F ) F0w1 × R (F ) F0w2} − {F0w1 × F0w2}
= {[R (F ) − I]F0w1 × R (F ) F0w2} − {F0w1 × [I − R (F )]F0w2}

for all F ∈ R
3×3. We can then obtain from using the above identity with F = ∇y(x)

and the estimates (30) that

∫

Ω

|[R (∇y(x)) − I]m|2 dx ≤ CE(y)1/2.(31)

Now { F0w1, F0w2, m } is a basis for R
3, so we have from (30) and (31) that

∫

Ω

‖[R (∇y(x)) − I]‖2
dx ≤ C

[

E(y)1/2 + E(y)
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).(32)

We can then prove Theorem 4 by applying the triangle inequality to the identity

F − Π(F )= [F − π12(F )] + [π12(F ) − Π(F )]

= [F − π12(F )] + [R(F ) − I] Π(F ) ∀F ∈ R
3×3

with F = ∇y(x) and by estimating the two terms by Lemma 5 and (32).

5. Estimates for the volume fractions and nonlinear integrals of the

deformation gradients. For any subset ω ⊂ Ω, ρ > 0, and y ∈ W
1,∞
Fλ

(Ω; R3), we
define the sets

ω0
ρ(y) = {x ∈ ω : Π(∇y(x)) = F0 and ‖F0 − ∇y(x)‖ < ρ} ,

ω1
ρ(y) = {x ∈ ω : Π(∇y(x)) = F1 and ‖F1 − ∇y(x)‖ < ρ} .

The following theorem states that for any Lipschitz domain ω ⊂ Ω and for any energy-
minimizing sequence {yk} in W

1,∞
Fλ

(Ω; R3) the volume fraction that ∇yk is near F0

converges to 1 − λ and the volume fraction that ∇yk is near F1 converges to λ. We
note that the uniqueness of the Young measure for the minimization of the energy (1)
for the cubic to tetragonal transformation with respect to the set W

1,∞
Fλ

(Ω; R3) [3] is
a consequence of the following theorem [20].

THEOREM 5. For any Lipschitz domain ω ⊂ Ω and any ρ > 0, there exists a

positive constant C such that

∣

∣

∣

∣

∣

meas ω0
ρ(y)

meas ω
− (1 − λ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

meas ω1
ρ(y)

meas ω
− λ

∣

∣

∣

∣

∣

≤ C
[

E(y)1/8 + E(y)1/2
]

for all y ∈ W
1,∞
Fλ

(Ω; R3).

Proof. It follows from the definition of ω0
ρ ≡ ω0

ρ(y) and ω1
ρ ≡ ω1

ρ(y) that

[

meas ω0
ρ − (1 − λ)meas ω

]

F0 +
[

meas ω1
ρ − λmeas ω

]

F1

=

∫

ω

[Π (∇y(x)) − Fλ] dx −
∫

ω−{ω0
ρ∪ω1

ρ}

Π (∇y(x)) dx.

We have by the triangle inequality, the Cauchy–Schwarz inequality, Theorem 4, and



CUBIC TO TETRAGONAL 387

Theorem 3 that
∥

∥

∥

∥

∫

ω

[Π (∇y(x)) − Fλ] dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

ω

[Π (∇y(x)) − ∇y(x)] dx

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

ω

[∇y(x) − Fλ] dx

∥

∥

∥

∥

≤ meas(ω)
1/2

[
∫

ω

‖Π (∇y(x)) − ∇y(x)‖2
dx

]1/2

+

∥

∥

∥

∥

∫

ω

[∇y(x) − Fλ] dx

∥

∥

∥

∥

≤ C
[

E(y)1/8 + E(y)1/2
]

∀y ∈ W
1,∞
Fλ

(Ω; R3).(33)

Next, we have by the definition of ω0
ρ and ω1

ρ that

meas
(

ω − {ω0
ρ ∪ ω1

ρ}
)

≤ 1

ρ

∫

ω−{ω0
ρ∪ω1

ρ}

‖Π (∇y(x)) − ∇y(x)‖ dx.(34)

Since ‖Π(F )‖ =
√

2η2
1 + η2

2 for all F ∈ R
3×3, we can conclude from (34) and Theo-

rem 4 that
∥

∥

∥

∥

∫

ω−{ω0
ρ∪ω1

ρ}

Π (∇y(x)) dx

∥

∥

∥

∥

≤ Cmeas
(

ω − {ω0
ρ ∪ ω1

ρ}
)

≤ C

ρ

∫

ω−{ω0
ρ∪ω1

ρ}

‖Π (∇y(x)) − ∇y(x)‖ dx

≤ C(meas ω)1/2

ρ

[
∫

ω

‖Π (∇y(x)) − ∇y(x)‖2
dx

]1/2

≤ C
[

E(y)1/4 + E(y)1/2
]

.(35)

Hence, we have from (33) and (35) that

∥

∥

[

meas ω0
ρ − (1 − λ)meas ω

]

F0 +
[

meas ω1
ρ − λ meas ω

]

F1

∥

∥

≤ C
[

E(y)1/8 + E(y)1/2
]

.(36)

Our assertion now follows from the linear independence of F0 and F1.

For linear transformations L : R
3×3 → R we define the operator norm

‖L‖ = max
‖A‖=1

|L(A)|,

so for Lipschitz functions g(A) : R
3×3 → R we can define the function norm

∥

∥

∥

∥

∂g

∂A

∥

∥

∥

∥

L∞

= ess supB∈R3×3

∥

∥

∥

∥

∂g

∂A
(B)

∥

∥

∥

∥

.

We obtain estimates for the Sobolev space V of measurable functions f(x, A) : Ω ×
R

3×3 → R such that

‖f‖2
V =

∫

Ω

[

∥

∥

∥

∥

∂f

∂A
(x, ·)

∥

∥

∥

∥

2

L∞

+ |∇G(x)n|2 + G(x)2

]

dx < ∞,
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where

G(x) = f(x, F1) − f(x, F0).

We observe that if f(x, A) ∈ V, then f(x, A) is Lipschitz continuous as a function of
A ∈ R

3×3 for almost all x ∈ Ω.

THEOREM 6. There exists a positive constant C such that

∣

∣

∣

∣

∫

Ω

{f (x,∇y(x)) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

∣

∣

∣

∣

≤ C‖f‖V

[

E(y)1/4 + E(y)1/2
]

∀f ∈ V, ∀y ∈ W
1,∞
Fλ

(Ω; R3).(37)

Proof. It is convenient to divide the integral (37) into two terms by

∫

Ω

{f (x,∇y(x)) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

=

∫

Ω

[f (x,∇y(x)) − f (x,Π (∇y(x)))] dx

+

∫

Ω

{f (x,Π (∇y(x))) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

= J1 + J2.

The term J1 can be estimated by Theorem 4 as follows:

|J1| ≤
∫

Ω

∥

∥

∥

∥

∂f

∂A
(x, ·)

∥

∥

∥

∥

L∞

‖∇y(x) − Π (∇y(x))‖ dx

≤
[

∫

Ω

∥

∥

∥

∥

∂f

∂A
(x, ·)

∥

∥

∥

∥

2

L∞

dx

]1/2
[
∫

Ω

‖∇y(x) − Π (∇y(x))‖2
dx

]1/2

≤ C

[

∫

Ω

∥

∥

∥

∥

∂f

∂A
(x, ·)

∥

∥

∥

∥

2

L∞

dx

]1/2
[

E(y)1/4 + E(y)1/2
]

.(38)

We have for G(x) = f(x, F1) − f(x, F0) the identity

f (x,Π (A)) − [(1 − λ)f(x, F0) + λf(x, F1)]

=
1

|a|2 {a · [Π(A) − Fλ]n} [f(x, F1) − f(x, F0)]

=
1

|a|2 {a · [Π(A) − Fλ]n} G(x),(39)

so it follows from (39) and integration by parts that

J2 =

∫

Ω

{f (x,Π (∇y(x))) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

=
1

|a|2
∫

Ω

{a · [Π (∇y(x)) − Fλ]n} G(x) dx

=
1

|a|2
∫

Ω

{a · [Π (∇y(x)) − ∇y(x)]n} G(x) dx
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+
1

|a|2
∫

Ω

{a · [∇y(x) − Fλ]n} G(x) dx

=
1

|a|2
∫

Ω

{a · [Π (∇y(x)) − ∇y(x)]n} G(x) dx

− 1

|a|2
∫

Ω

{a · [y(x) − Fλx]} {∇G(x) · n} dx.

We can thus conclude from the Cauchy–Schwarz inequality, Lemma 3, and The-
orem 4 that

|J2| ≤ C

{
∫

Ω

|∇G(x) · n|2 dx +

∫

Ω

G(x)2 dx

}1/2
[

E(y)1/4 + E(y)1/2
]

.(40)

We can then obtain the result (37) of Theorem 6 from (38) and (40).

6. Finite element approximations. We now define the properties of the con-
forming finite element spaces required for our numerical analysis of microstructure.
We assume that τh for 0 < h < h0, where h0 is a positive constant, is a family of
decompositions of Ω into polyhedra {K} such that [9, 28] :

1. Ω̄ = ∪K∈τh
K;

2. interior K1 ∩ interior K2 = ∅ if K1 6= K2 for K1, K2 ∈ τh;
3. if S = K1 ∩ K2 6= ∅ for K1 6= K2, K1, K2 ∈ τh, then S is a common face,

edge, or vertex of K1 and K2;
4. diam K ≤ h for all K ∈ τh.

Our family of conforming finite element spaces, Ah, defined for mesh diameters
in the range 0 < h < h0, satisfies

Ah ⊂ W 1,∞(Ω; R3) for 0 < h < h0.

We assume that there exists an interpolation operator Ih : W 1,∞(Ω; R3) → Ah such
that

ess supx∈Ω‖∇Ihy(x)‖ ≤ C ess supx∈Ω‖∇y(x)‖(41)

for all y ∈ W 1,∞(Ω; R3), where the constant C in (41) and below will always denote a
generic positive constant independent of h. We also assume for y ∈ W 1,∞(Ω; R3) that

Ihy(x)|K = y(x)|K for any K ∈ τh such that y(x)|K ∈
{

P 1(K)
}3

,(42)

where
{

P 1(K)
}3 ≡ P 1(K) × P 1(K) × P 1(K) and P 1(K) denotes the space of linear

polynomials defined on K.

We denote the finite element space of admissible functions satisfying the boundary
condition

yh(x) = Fλx ∀x ∈ ∂Ω

by

Ah,Fλ
= Ah ∩ W

1,∞
Fλ

(Ω; R3) = { yh ∈ Ah : yh(x) = Fλx for x ∈ ∂Ω } ,

and we further assume that the interpolation operator Ih satisfies the property that

Ihy ∈ Ah,Fλ
if y ∈ W

1,∞
Fλ

(Ω; R3).(43)
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The most widely used conforming finite element methods based on continuous,
piecewise polynomial spaces have interpolation operators Ih satisfying (41) (for quasi-
regular meshes), (42), and (43) (see [9, 28]). In particular, (41)–(43) are valid for
trilinear elements defined on rectangular parallelepipeds as well as for linear elements
defined on tetrahedra.

The following theorem gives the existence of finite element energy-minimizers as
well as the error estimate of the corresponding minimum energy.

THEOREM 7. There exist a positive constant C and yh ∈ Ah,Fλ
such that

E(yh) = min
zh∈Ah,Fλ

E(zh) ≤ Ch1/2.(44)

Proof. We have by the quadratic growth rate of the energy density (6) that

‖∇y‖L2(Ω;R3×3) ≤ ‖∇y − π(∇y)‖L2(Ω;R3×3) + ‖π(∇y)‖L2(Ω;R3×3)

≤ κ−1/2E(y)1/2 +
√

2η2
1 + η2

2 (meas Ω)
1/2 ∀y ∈ W

1,∞
Fλ

(Ω; R3),(45)

and we have by the Poincaré inequality [1, 31], since y(x) = Fλx for all x ∈ ∂Ω for
y ∈ W

1,∞
Fλ

(Ω; R3), that

‖y‖W 1,2(Ω;R3) ≤ C‖∇y‖L2(Ω;R3×3) + C ∀y ∈ W
1,∞
Fλ

(Ω; R3).(46)

We thus obtain from (45) and (46) the growth property that

‖y‖W 1,2(Ω;R3) ≤ CE(y)1/2 + C ∀y ∈ W
1,∞
Fλ

(Ω; R3).(47)

The existence of an finite element energy minimizer yh ∈ Ah,Fλ
now follows by com-

pactness from the continuity of E restricted to the finite-dimensional affine space Ah,Fλ

and the growth property of the energy (47).
To finish the proof, we refer to [8, 21] for the construction of a finite element

deformation zh ∈ Ah,Fλ
such that

E(zh) ≤ Ch
1

2 , 0 < h < h0.

The number of local minima of the problem

inf
vh∈Ah,Fλ

E(vh)

grows arbitrarily large as the mesh size h → 0 [20]. Many of these local minima
are approximations on different length scales to the same optimal microstructure
[20]. Thus, it is reasonable to give error estimates for finite element approximations
yh ∈ Ah,Fλ

satisfying the quasi-optimality condition

E(yh) ≤ α inf
zh∈Ah,Fλ

E(zh)(48)

for some constant α > 1 independent of h.

It follows directly from the above theorem and the bounds established in sections
3, 4, and 5 that we can obtain the following error estimates for a quasi-optimal finite
element deformation yh ∈ Ah,Fλ

.
COROLLARY 1. If w ∈ R

3 satisfies w · n = 0, then there exists a positive constant

C such that
∫

Ω

|[∇yh(x) − Fλ]w|2 dx ≤ Ch1/4

for any yh ∈ Ah,Fλ
which satisfies the quasi-optimality condition (48).
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COROLLARY 2. There exists a positive constant C such that

∫

Ω

|yh(x) − Fλx|2 dx ≤ Ch1/4

for any yh ∈ Ah,Fλ
which satisfies the quasi-optimality condition (48).

COROLLARY 3. If ω ⊂ Ω is a Lipschitz domain, then there exists a positive

constant C such that

∥

∥

∥

∥

∫

ω

[∇yh(x) − Fλ] dx

∥

∥

∥

∥

≤ Ch1/16

for any yh ∈ Ah,Fλ
which satisfies the quasi-optimality condition (48).

COROLLARY 4. There exists a positive constant C such that

∫

Ω

‖∇yh(x) − Π(∇yh(x))‖2
dx ≤ Ch1/4

for any yh ∈ Ah,Fλ
which satisfies the quasi-optimality condition (48).

COROLLARY 5. If ω ⊂ Ω is a Lipschitz domain and ρ > 0, then there exists a

positive constant C such that

∣

∣

∣

∣

∣

meas ω0
ρ(yh)

meas ω
− (1 − λ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

meas ω1
ρ(yh)

meas ω
− λ

∣

∣

∣

∣

∣

≤ Ch1/16

for any yh ∈ Ah,Fλ
which satisfies the quasi-optimality condition (48).

COROLLARY 6. There exists a positive constant C such that

∣

∣

∣

∣

∫

Ω

{f (x,∇yh(x)) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

∣

∣

∣

∣

≤ C‖f‖Vh1/8

for any f ∈ V and any yh ∈ Ah,Fλ
which satisfies the quasi-optimality condition (48).
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